

## PRODUCT / PROCESS CHANGE NOTIFICATION

### 1. PCN basic data

|                      |                                                                                   |                                                                        |
|----------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1.1 Company          |  | STMicroelectronics International N.V                                   |
| 1.2 PCN No.          |                                                                                   | AMS/21/12761                                                           |
| 1.3 Title of PCN     |                                                                                   | Qualification of ST Shenzhen for Assembly of M74HC4060 in SO16 package |
| 1.4 Product Category |                                                                                   | See product list                                                       |
| 1.5 Issue date       |                                                                                   | 2021-04-30                                                             |

### 2. PCN Team

|                           |                          |
|---------------------------|--------------------------|
| 2.1 Contact supplier      |                          |
| 2.1.1 Name                | ROBERTSON HEATHER        |
| 2.1.2 Phone               | +1 8475853058            |
| 2.1.3 Email               | heather.robertson@st.com |
| 2.2 Change responsibility |                          |
| 2.2.1 Product Manager     | Marcello SAN BIAGIO      |
| 2.1.2 Marketing Manager   | Salvatore DI VINCENZO    |
| 2.1.3 Quality Manager     | Jean-Marc BUGNARD        |

### 3. Change

| 3.1 Category | 3.2 Type of change                                                                                                                              | 3.3 Manufacturing Location        |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Transfer     | Line transfer for a full process or process brick (process step, control plan, recipes) from one site to another site: Assembly site (SOP 2617) | Assembly plant :<br>- ST Shenzhen |

### 4. Description of change

|                                                                                        | Old                                     | New                                                      |
|----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|
| 4.1 Description                                                                        | Assembly plant :<br>- Subcontractor ASE | Assembly plant :<br>- Subcontractor ASE<br>- ST Shenzhen |
| 4.2 Anticipated Impact on form, fit, function, quality, reliability or processability? | No impact                               |                                                          |

### 5. Reason / motivation for change

|                      |                     |
|----------------------|---------------------|
| 5.1 Motivation       | Service improvement |
| 5.2 Customer Benefit | SERVICE IMPROVEMENT |

### 6. Marking of parts / traceability of change

|                 |                        |
|-----------------|------------------------|
| 6.1 Description | New finished good code |
|-----------------|------------------------|

### 7. Timing / schedule

|                                     |              |
|-------------------------------------|--------------|
| 7.1 Date of qualification results   | 2021-04-22   |
| 7.2 Intended start of delivery      | 2021-08-01   |
| 7.3 Qualification sample available? | Upon Request |

### 8. Qualification / Validation

|                                                    |                                  |            |            |
|----------------------------------------------------|----------------------------------|------------|------------|
| 8.1 Description                                    | 12761 SO16SHZ Z460 std final.pdf |            |            |
| 8.2 Qualification report and qualification results | Available (see attachment)       | Issue Date | 2021-04-30 |

**9. Attachments (additional documentations)**

12761 Public product.pdf  
12761 SO16SHZ Z460 std final.pdf

**10. Affected parts**

| <b>10. 1 Current</b>           |                                | <b>10.2 New (if applicable)</b> |
|--------------------------------|--------------------------------|---------------------------------|
| <b>10.1.1 Customer Part No</b> | <b>10.1.2 Supplier Part No</b> | <b>10.1.2 Supplier Part No</b>  |
|                                | M74HC4060RM13TR                |                                 |

**IMPORTANT NOTICE – PLEASE READ CAREFULLY**

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved



## Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

**PCN Title :** Qualification of ST Shenzhen for Assembly of M74HC4060 in SO16 package

**PCN Reference :** AMS/21/12761

**Subject :** Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

|                 |  |  |
|-----------------|--|--|
| M74HC4060RM13TR |  |  |
|-----------------|--|--|



### **IMPORTANT NOTICE – PLEASE READ CAREFULLY**

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

# Reliability Evaluation Report

*qualification SO16*  
ST Shenzhen

| General Information               |                                                                                                                         | Locations              |                                                |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|
| <b>Product Line</b>               | T.V.1:P10B01<br>T.V.2: R85201<br>T.V.3.Z460                                                                             | <b>Wafer fab</b>       | ST AMK6 Singapore                              |
| <b>Product Description</b>        | Hex Buffer/Converters Non Inverting<br>Analog Mux With Current Injection Effect<br>14 Stage Binary Counter / Oscillator | <b>Assembly plant</b>  | ST Shenzhen                                    |
| <b>P/N</b>                        | T.V.1: HCF4010YM013TR,<br>T.V.2: M74HC4852YRM13TR,<br>T.V.3: M74HC4060RM13TR                                            | <b>Reliability Lab</b> | Catania Reliability LAB<br>SHZ Reliability Lab |
| <b>Product Group</b>              | AMS                                                                                                                     |                        |                                                |
| <b>Product division</b>           | General Purpose Analog                                                                                                  |                        |                                                |
| <b>Package</b>                    | SO16                                                                                                                    |                        |                                                |
| <b>Silicon Process technology</b> | TV1:CMOSMG<br>TV2:HCMOS4T<br>T.V3. NHSFII                                                                               |                        |                                                |

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

## TABLE OF CONTENTS

|          |                                                 |           |
|----------|-------------------------------------------------|-----------|
| <b>1</b> | <b>APPLICABLE AND REFERENCE DOCUMENTS .....</b> | <b>6</b>  |
| <b>2</b> | <b>GLOSSARY .....</b>                           | <b>6</b>  |
| <b>3</b> | <b>RELIABILITY EVALUATION OVERVIEW .....</b>    | <b>6</b>  |
| 3.1      | OBJECTIVES.....                                 | 6         |
| 3.2      | CONCLUSION.....                                 | 6         |
| <b>4</b> | <b>DEVICE CHARACTERISTICS .....</b>             | <b>7</b>  |
| 4.1      | DEVICE DESCRIPTION .....                        | 7         |
| 4.2      | CONSTRUCTION NOTE.....                          | 10        |
| <b>5</b> | <b>TESTS RESULTS SUMMARY .....</b>              | <b>11</b> |
| 5.1      | TEST VEHICLE .....                              | 11        |
| 5.2      | TEST PLAN AND RESULTS SUMMARY.....              | 11        |
| <b>6</b> | <b>ANNEXES .....</b>                            | <b>12</b> |

## 1 APPLICABLE AND REFERENCE DOCUMENTS

| Document reference | Short description                                       |
|--------------------|---------------------------------------------------------|
| <b>JESD47</b>      | Stress-Test-Driven Qualification of Integrated Circuits |
| <b>0061692</b>     | Reliability tests and criteria for qualifications       |
|                    |                                                         |

## 2 GLOSSARY

|            |                       |
|------------|-----------------------|
| <b>DUT</b> | Device Under Test     |
| <b>PCB</b> | Printed Circuit Board |
| <b>SS</b>  | Sample Size           |
|            |                       |

## 3 RELIABILITY EVALUATION OVERVIEW

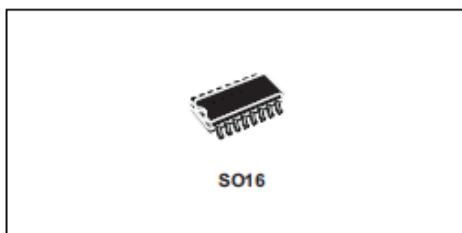
### 3.1 Objectives

To perform the qualification for the SO16 produced in ST Shenzhen, based on the JESD47 specification.

### 3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

Reliability agreement for qualification.


## 4 DEVICE CHARACTERISTICS

### 4.1 Device description

**HCF4010**

Hex buffer/converter (non-inverting)

Datasheet – production data



#### Features

- Propagation delay time
  - $t_{PD} = 50$  ns (typ.) at  $V_{DD} = 10$  V,  $C_L = 50$  pF
- High to low level logic conversion
- Multiplexer: 1 to 6 or 6 to 1
- High "sink" and "source" current capability
- Quiescent current specified up to 20 V
- 5 V, 10 V and 15 V parametric ratings
- Input leakage current
- $I_I = 100$  nA (max.) at  $V_{DD} = 18$  V,  $T_A = 25$  °C  
100% tested for quiescent current
- ESD performance
  - CDM: 1 kV
  - HBM: 1 kV
  - MM: 150 V

#### Applications

- Automotive
- Industrial
- Computer
- Consumer

#### Description

The HCF4010 device is a monolithic integrated circuit fabricated in MOS (metal oxide semiconductor) technology available in an SO16 package.

It is a non-inverting hex buffer/converter and can be used as a CMOS to TTL logic level converter, as a current "sink" or "source" driver, or as a multiplexer (1 to 6).

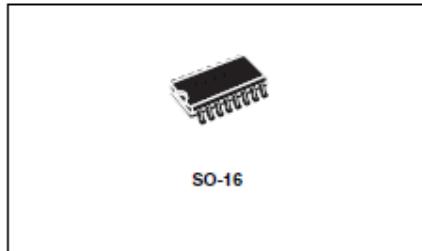
It is the preferred replacement of the HCF4050B in buffer applications.

Table 1. Device summary

| Order code                    | Temperature range | Package                 | Packing       | Marking  |
|-------------------------------|-------------------|-------------------------|---------------|----------|
| HCF4010M013TR                 | -55 °C to +125 °C | SO16                    |               | HCF4010  |
| HCF4010YM013TR <sup>(1)</sup> | -40 °C to +125 °C | SO16 (automotive grade) | Tape and reel | HCF4010Y |

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.




## M74HC4852

### Dual 4:1 channel analog MUX/DEMUX with injection current protection

Datasheet – production data

#### Features

- Low power dissipation
  - $I_{CC} = 2 \mu A$  (max.) at  $T_A = 25^\circ C$
- Injection current protection:  $V_{\Delta out} < 1 mV$  at  $V_{CC} = 5 V$ ,  $I_{IN} = 1 mA$ ,  $R_S = 3.9 k\Omega$
- "ON" resistance at  $T_A = 25^\circ C$ 
  - 215  $\Omega$  typ. ( $V_{CC} = 3.0 V$ )
  - 160  $\Omega$  typ. ( $V_{CC} = 4.5 V$ )
  - 150  $\Omega$  typ. ( $V_{CC} = 6 V$ )
- Fast switching:  $t_{pd} = 8.6 ns$  (typ.) at  $T_A = 25^\circ C$ ,  $V_{CC} = 4.5 V$
- Wide operating supply voltage range
  - $V_{CC} = 2 V$  to  $6 V$
- High noise immunity:  $V_{NIH} = V_{NIL} = 28\% V_{CC}$  (min.)
- Pin and function compatible with series 4052, 4852
- Latch-up performance exceeds 500 mA
  - (JESD 17)
- ESD performance
  - HBM: 2000 V
  - MM: 200 V
  - CDM: 1000 V



#### Description

The M74HC4852 device is a dual four-channel analog multiplexer/demultiplexer manufactured with silicon gate C<sup>2</sup>MOS technology.

It features injection current effect control which makes the device particularly suited for use in automotive applications where voltages in excess of normal logic voltage are common. The injection current effect control allows signals at disabled input channels to exceed the supply voltage range or go down to ground without affecting the signal of the enabled analog channel.

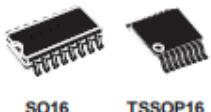
This eliminates the need for external diode-resistor networks typically used to keep the analog channel signals within the supply voltage range.

#### Applications

- Automotive
- Computer
- Consumer
- Industrial

Table 1. Device summary

| Order code                      | Temperature range | Package                 | Packaging     | Marking   |
|---------------------------------|-------------------|-------------------------|---------------|-----------|
| M74HC4852RM13TR                 | -55/+125 °C       | SO16                    | Tape and reel | 74HC4852  |
| M74HC4852YRM13TR <sup>(1)</sup> | -40/+125 °C       | SO16 (automotive grade) | Tape and reel | 74HC4852Y |


1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.



# M74HC4060

## 14-stage binary counter/oscillator

Datasheet - production data



SO16      TSSOP16

### Applications

- Automotive
- Industrial
- Computer
- Consumer

### Description

The M74HC4060 device is a high speed CMOS 14-stage binary counter/oscillator fabricated with silicon gate C<sup>2</sup>MOS technology.

The oscillator configuration allows design of either RC or crystal oscillator circuits. A high level on the CLEAR accomplishes the reset function, i.e. all counter outputs are made low and the oscillator is disabled.

A negative transition on the clock input increments the counter. Ten kinds of divided output are provided; 4 to 10 and 12 to 14 stage inclusive. The maximum division available at Q12 is 1/16384 of the oscillator frequency.

The  $\bar{Q}$  input and the CLEAR input are equipped with protection circuits against static discharge and transient excess voltage.

### Features

- High speed:  
 $f_{max} = 65$  MHz (typ.) at  $V_{CC} = 6$  V
- Low power dissipation:  
 $I_{CC} = 4$  A (max.) at  $T_A = 25$  °C
- High noise immunity:  
 $V_{NIH} = V_{NIL} = 28\%$   $V_{CC}$  (min.)
- Symmetrical output impedance:  
 $|I_{OH}| = |I_{OL}| = 4$  mA (min.)
- Balanced propagation delays:  $T_{PLH} \equiv T_{PHL}$
- Wide operating voltage range:  
 $V_{CC}$  (opr.) = 2 V to 6 V
- Pin and function compatible with 74 series 4060
- ESD performance
  - HBM: 2 kV
  - MM: 200 V
  - CDM: 1 kV

Table 1. Device summary

| Order code                      | Temperature range | Package                      | Packing       | Marking   |
|---------------------------------|-------------------|------------------------------|---------------|-----------|
| M74HC4060RM13TR                 | -55 °C to +125 °C | SO16                         | Tape and reel | 74HC4060  |
| M74HC4060YRM13TR <sup>(1)</sup> | -40 °C to +125 °C | SO16 (automotive version)    |               | 74HC4060Y |
| M74HC4060TTR                    | -55 °C to +125 °C | TSSOP16                      |               | HC4060    |
| M74HC4060YTTR <sup>(1)</sup>    | -40 °C to +125 °C | TSSOP16 (automotive version) |               | HC4060Y   |

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002.

## 4.2 Construction note

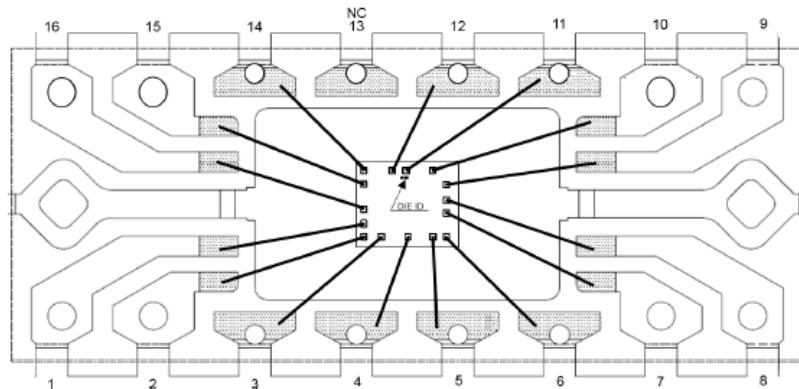
|                                           | HCF4010YM013TR                 | M74HC4852YRM13TR               | M74HC4060RM13TR                      |
|-------------------------------------------|--------------------------------|--------------------------------|--------------------------------------|
| <b>Wafer/Die fab. information</b>         |                                |                                |                                      |
| Wafer fab manufacturing location          | ST AMK6 Singapore              | ST AMK6 Singapore              | ST AMK6 Singapore                    |
| Technology                                | CMOS metal gate                | HCMOS4                         | High speed CMOS                      |
| Process family                            | CMOS                           | Bicmos4                        | CMOS                                 |
| Die finishing back side                   | Lapped Silicon                 | Lapped Silicon                 | Lapped Silicon                       |
| Die size                                  | 1294x1088 $\mu$ m <sup>2</sup> | 1300x1212 $\mu$ m <sup>2</sup> | 2284x1794 $\mu$ m <sup>2</sup>       |
| Bond pad metallization layers             | AlSi                           | AlSiCu                         | AlSi                                 |
| Passivation type                          | P-VAPOX (Si glass)             | PSG + NITRIDE                  | P-VAPOX(SiO <sub>2</sub> ) / NITRIDE |
| <b>Wafer Testing (EWS) information</b>    |                                |                                |                                      |
| Electrical testing manufacturing location | ST Singapore                   | ST Singapore                   | ST Singapore                         |
| Tester                                    | ASL1K                          | ASL1K                          | ASL1K                                |
| <b>Assembly information</b>               |                                |                                |                                      |
| Assembly site                             | ST Shenzhen                    | ST Shenzhen                    | ST Shenzhen                          |
| Package description                       | SO16                           | SO16                           | SO16                                 |
| Molding compound                          | Sumitomo EME-G630AY            | Sumitomo EME-G630AY            | Sumitomo EME-G630AY                  |
| Frame material                            | Cu                             | Cu                             | Cu                                   |
| Die attach process                        | Glue                           | Glue                           | Glue                                 |
| Die attach material                       | ABLESTICK 8601S-25             | ABLESTICK 8601S-25             | ABLESTICK 8601S-25                   |
| Die pad size                              | 94x150                         | 94x150                         | 94x150                               |
| Wire bonding process                      | Wire                           | Wire                           | Wire                                 |
| Wires bonding materials/diameters         | Cu 1 mil                       | Cu 1 mil                       | Cu 1 mil                             |
| Lead finishing process                    | Preplated                      | Preplated                      | Preplated                            |
| Lead finishing/bump solder material       | NiPdAgAu                       | NiPdAgAu                       | NiPdAgAu                             |
| <b>Final testing information</b>          |                                |                                |                                      |
| Testing location                          | ST Shenzhen                    | ST Shenzhen                    | ST Shenzhen                          |
| Tester                                    | ASL1K                          | ASL1K                          | ASL1K                                |

## 5 TESTS RESULTS SUMMARY

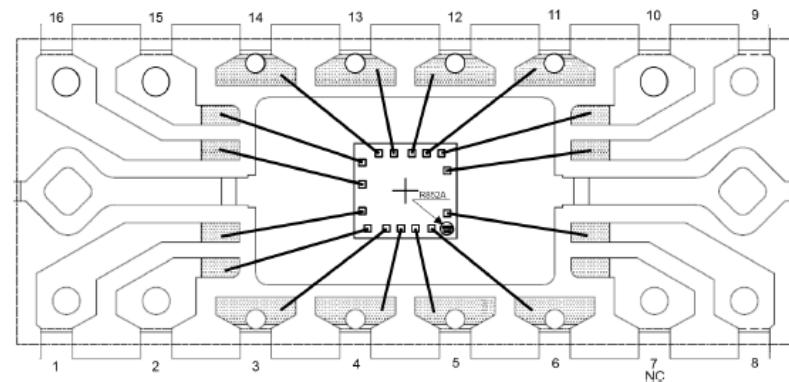
### 5.1 Test vehicle

| Lot # | Techno/package   | Product Line | Comments |
|-------|------------------|--------------|----------|
| 1     | CMOS MG/SO16     | P10B         |          |
| 2     | HCMOS4/SO16      | R852         |          |
| 3     | HSPEED CMOS/SO16 | Z460         |          |

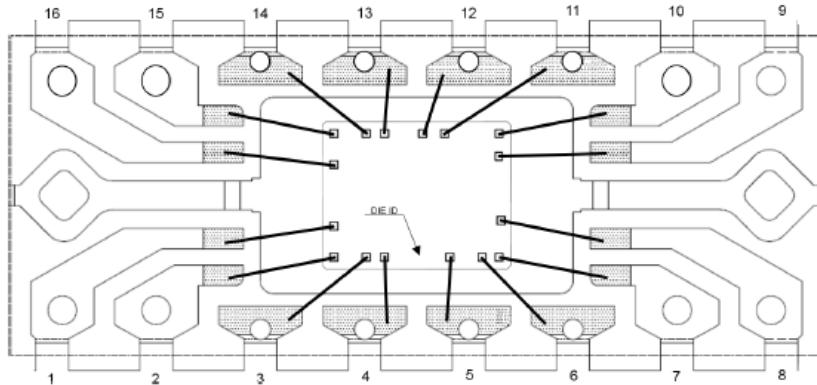
Detailed results in below chapter will refer to P/N and Lot #.


### 5.2 Test plan and results summary

| Test                      | PC | Std ref.        | Conditions                                                                           | SS | Steps | Failure/SS    |               |               | Note |
|---------------------------|----|-----------------|--------------------------------------------------------------------------------------|----|-------|---------------|---------------|---------------|------|
|                           |    |                 |                                                                                      |    |       | Lot 1<br>P10B | Lot 2<br>R852 | Lot 3<br>Z460 |      |
| <b>Die Oriented Tests</b> |    |                 |                                                                                      |    |       |               |               |               |      |
| HTOL                      | N  | JESD22<br>A-108 | Ta= 125°C<br>TV1 Vbias=+22V; TV2&TV3 Vbias=+7V                                       |    |       | 168 H         | 0/77          | 0/77          | 0/77 |
|                           |    |                 |                                                                                      |    |       | 500 H         | 0/77          | 0/77          | 0/77 |
|                           |    |                 |                                                                                      |    |       | 1000 H        | 0/77          | 0/77          | 0/77 |
| HTSL                      | N  | JESD22<br>A-103 | Ta = 150°C                                                                           |    |       | 168 H         | 0/45          | 0/45          | 0/45 |
|                           |    |                 |                                                                                      |    |       | 500h          | 0/45          | 0/45          | 0/45 |
|                           |    |                 |                                                                                      |    |       | 1000 H        | 0/45          | 0/45          | 0/45 |
| PC                        |    | JESD22<br>A-113 | Drying 24 H @ 125°C<br>Store 40h @Ta=60°C Rh60%<br>Oven Reflow @ Tpeak=260°C 3 times |    |       | Final         | PASS          | PASS          | PASS |
|                           |    |                 |                                                                                      |    |       |               |               |               |      |
| AC                        | Y  | JESD22<br>A-102 | Pa=2Atm / Ta=121°C                                                                   |    | 96 H  | 0/77          | 0/77          | 0/77          |      |
| TC                        | Y  | JESD22<br>A-104 | Ta = -65°C to 150°C                                                                  |    |       | 100 cy        | 0/77          | 0/77          | 0/77 |
|                           |    |                 |                                                                                      |    |       | 500 cy        | 0/77          | 0/77          | 0/77 |
|                           |    |                 |                                                                                      |    |       | 1000 cy       | 0/77          | 0/77          | 0/77 |
| THB                       | Y  | JESD22<br>A-101 | Ta = 85°C, RH = 85%, BIAS 30V                                                        |    |       | 168 H         | 0/77          | 0/77          | 0/77 |
|                           |    |                 |                                                                                      |    |       | 500 H         | 0/77          | 0/77          | 0/77 |
|                           |    |                 |                                                                                      |    |       | 1000 H        | 0/77          | 0/77          | 0/77 |
| ESD                       | N  |                 | CDM                                                                                  | 3  | 1 kV  |               |               | PASS          |      |


## 6 ANNEXES

### 6.1.1 Bonding diagram


P10B



R852



Z460



### 6.1.2 Package outline

| CP               | Unit / dim | A    | A1   | A2   | b    | D    | E    | E1   | L    |
|------------------|------------|------|------|------|------|------|------|------|------|
| ULQ2003D1013TRY  | 1          | 1.69 | 0.15 | 1.54 | 0.43 | 9.86 | 5.98 | 3.89 | 0.62 |
|                  | 2          | 1.71 | 0.15 | 1.49 | 0.42 | 9.86 | 5.97 | 3.90 | 0.61 |
|                  | 3          | 1.69 | 0.15 | 1.55 | 0.40 | 9.84 | 5.97 | 3.90 | 0.61 |
|                  | 4          | 1.71 | 0.17 | 1.52 | 0.41 | 9.86 | 5.98 | 3.89 | 0.62 |
|                  | 5          | 1.69 | 0.15 | 1.55 | 0.42 | 9.85 | 5.99 | 3.90 | 0.61 |
|                  | 6          | 1.69 | 0.18 | 1.53 | 0.40 | 9.84 | 5.99 | 3.90 | 0.63 |
|                  | 7          | 1.69 | 0.19 | 1.50 | 0.43 | 9.85 | 5.96 | 3.89 | 0.63 |
|                  | 8          | 1.67 | 0.19 | 1.52 | 0.41 | 9.86 | 5.97 | 3.90 | 0.63 |
|                  | 9          | 1.71 | 0.19 | 1.50 | 0.43 | 9.86 | 5.98 | 3.89 | 0.61 |
|                  | 10         | 1.69 | 0.15 | 1.57 | 0.41 | 9.85 | 5.95 | 3.89 | 0.63 |
| HCF4010YM013TR   | 11         | 1.67 | 0.17 | 1.50 | 0.41 | 9.87 | 5.94 | 3.89 | 0.62 |
|                  | 12         | 1.68 | 0.19 | 1.50 | 0.41 | 9.85 | 5.95 | 3.90 | 0.62 |
|                  | 13         | 1.69 | 0.19 | 1.51 | 0.41 | 9.83 | 5.96 | 3.90 | 0.62 |
|                  | 14         | 1.67 | 0.16 | 1.50 | 0.42 | 9.85 | 5.95 | 3.90 | 0.62 |
|                  | 15         | 1.69 | 0.19 | 1.51 | 0.41 | 9.84 | 5.95 | 3.90 | 0.63 |
|                  | 16         | 1.70 | 0.19 | 1.50 | 0.42 | 9.86 | 5.97 | 3.90 | 0.62 |
|                  | 17         | 1.70 | 0.17 | 1.57 | 0.43 | 9.84 | 5.99 | 3.89 | 0.62 |
|                  | 18         | 1.69 | 0.18 | 1.50 | 0.41 | 9.84 | 5.96 | 3.89 | 0.62 |
|                  | 19         | 1.71 | 0.20 | 1.54 | 0.42 | 9.84 | 5.98 | 3.90 | 0.63 |
|                  | 20         | 1.68 | 0.17 | 1.57 | 0.42 | 9.84 | 5.95 | 3.90 | 0.62 |
| M74HC4852YRM13TR | 21         | 1.68 | 0.20 | 1.51 | 0.42 | 9.84 | 5.99 | 3.90 | 0.61 |
|                  | 22         | 1.68 | 0.18 | 1.56 | 0.43 | 9.84 | 5.98 | 3.90 | 0.62 |
|                  | 23         | 1.69 | 0.16 | 1.52 | 0.42 | 9.86 | 5.95 | 3.89 | 0.63 |
|                  | 24         | 1.68 | 0.16 | 1.51 | 0.41 | 9.86 | 5.97 | 3.89 | 0.63 |
|                  | 25         | 1.68 | 0.19 | 1.52 | 0.42 | 9.84 | 5.95 | 3.90 | 0.61 |
|                  | 26         | 1.69 | 0.19 | 1.52 | 0.40 | 9.84 | 5.98 | 3.89 | 0.61 |
|                  | 27         | 1.70 | 0.17 | 1.56 | 0.42 | 9.85 | 5.97 | 3.89 | 0.62 |
|                  | 28         | 1.69 | 0.17 | 1.53 | 0.41 | 9.86 | 5.96 | 3.89 | 0.61 |
|                  | 29         | 1.70 | 0.16 | 1.52 | 0.42 | 9.85 | 5.98 | 3.90 | 0.62 |
|                  | 30         | 1.68 | 0.18 | 1.57 | 0.43 | 9.86 | 5.98 | 3.90 | 0.63 |
|                  | mean       | 1.7  | 0.2  | 1.5  | 0.4  | 9.8  | 6.0  | 3.9  | 0.6  |
|                  | stddev     | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 |
|                  | Cpk        | 1.8  | 1.6  | 1.7  | 3.2  | 1.6  | 3.9  | 9.0  | 11.8 |

### 6.1.3 Bonding strength (WBS/WBP)

Pull test summary

| Unit / TV | P10B  | R852  | Z460  |
|-----------|-------|-------|-------|
| 1         | 11.48 | 12.78 | 12.78 |
| 2         | 12.28 | 12.67 | 12.67 |
| 3         | 10.72 | 13.50 | 13.50 |
| 4         | 9.00  | 13.46 | 13.46 |
| 5         | 12.57 | 13.31 | 13.31 |
| 6         | 14.23 | 18.30 | 18.30 |
| 7         | 12.71 | 15.03 | 15.03 |
| 8         | 11.27 | 14.46 | 14.46 |
| 9         | 12.23 | 18.14 | 14.14 |
| 10        | 8.39  | 18.08 | 14.08 |
| 11        | 11.59 | 13.70 | 13.70 |
| 12        | 10.04 | 14.02 | 14.02 |
| 13        | 12.06 | 17.88 | 17.88 |
| 14        | 14.72 | 12.45 | 12.45 |
| 15        | 11.96 | 14.20 | 14.20 |
| 16        | 10.69 | 10.85 | 13.85 |
| 17        | 10.97 | 12.38 | 12.38 |
| 18        | 12.39 | 13.58 | 13.58 |
| 19        | 13.93 | 13.80 | 13.80 |
| 20        | 12.14 | 14.71 | 14.71 |
| 21        | 12.32 | 12.95 | 12.95 |
| 22        | 12.88 | 13.30 | 13.30 |
| 23        | 13.78 | 14.14 | 14.14 |
| 24        | 9.95  | 12.75 | 12.75 |
| 25        | 13.08 | 14.89 | 14.89 |
| 26        | 12.39 | 16.78 | 16.78 |
| 27        | 11.74 | 14.40 | 14.40 |
| 28        | 13.08 | 14.89 | 14.89 |
| 29        | 12.39 | 16.78 | 16.78 |
| 30        | 11.74 | 14.40 | 14.40 |
| 31        | 13.82 | 13.10 | 13.10 |
| 32        | 11.24 | 16.73 | 16.73 |
| 33        | 10.27 | 17.62 | 17.62 |
| mean      | 11.9  | 14.5  | 14.4  |
| stddev    | 1.42  | 1.91  | 1.57  |
| Cpk       | 1.87  | 1.84  | 2.20  |

## Shear test summary

| Unit / TV | P10B        | R852        | Z460        |
|-----------|-------------|-------------|-------------|
| 1         | 35.48       | 35.85       | 35.85       |
| 2         | 36.46       | 34.81       | 34.81       |
| 3         | 36.03       | 35.33       | 35.33       |
| 4         | 34.47       | 35.33       | 35.33       |
| 5         | 36.47       | 35.79       | 35.79       |
| 6         | 35.53       | 38.65       | 38.65       |
| 7         | 35.87       | 38.49       | 38.49       |
| 8         | 36.48       | 36.6        | 36.6        |
| 9         | 34.68       | 37.22       | 37.22       |
| 10        | 34.48       | 34.41       | 34.41       |
| 11        | 38.72       | 37.88       | 37.88       |
| 12        | 35.36       | 36.76       | 36.76       |
| 13        | 34.28       | 39.92       | 39.92       |
| 14        | 33.07       | 41.28       | 41.28       |
| 15        | 38.03       | 35.76       | 35.76       |
| 16        | 35.6        | 39.94       | 39.94       |
| 17        | 35.85       | 37.72       | 37.72       |
| 18        | 35.48       | 36.16       | 36.16       |
| 19        | 37.01       | 38.4        | 38.4        |
| 20        | 36.84       | 36.9        | 36.9        |
| 21        | 33.61       | 33.24       | 33.24       |
| 22        | 33.37       | 35.54       | 35.54       |
| 23        | 34.54       | 35.06       | 35.06       |
| 24        | 36.13       | 36.21       | 36.21       |
| 25        | 37.71       | 36.8        | 36.8        |
| 26        | 34.21       | 33.66       | 33.66       |
| 27        | 35.19       | 35.54       | 35.54       |
| 28        | 37.71       | 36.8        | 36.8        |
| 29        | 34.21       | 33.66       | 33.66       |
| 30        | 35.19       | 35.54       | 35.54       |
| 31        | 34.02       | 34.72       | 34.72       |
| 32        | 34.27       | 34.93       | 34.93       |
| 33        | 36.86       | 39.11       | 39.11       |
| mean      | <b>35.6</b> | <b>36.5</b> | <b>36.5</b> |
| stddev    | <b>1.38</b> | <b>1.90</b> | <b>1.90</b> |
| Cpk       | <b>3.69</b> | <b>2.85</b> | <b>2.85</b> |

## 1.1 Tests Description

| Test name                                      | Description                                                                                                                                                                                                                       | Purpose                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Die Oriented</b>                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                       |
| <b>HTOL</b><br>Higt Temperature Operating Life | The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.                                                                   | To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.                                                                                                                                                                    |
| <b>HTB</b><br>High Temperature Bias            |                                                                                                                                                                                                                                   | The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.                                                                                                                                                                                                                                  |
| <b>Package Oriented</b>                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                       |
| <b>PC</b><br>Preconditioning                   | The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled of moisture absorption.                                                                                            | As stand-alone test: to investigate the moisture sensitivity level.<br>As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance.<br>The typical failure modes are "pop corn" effect and delamination.                                  |
| <b>AC</b><br>Auto Clave (Pressure Pot)         | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.                                                                                                                          | To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.                                                                                                                                                                                                     |
| <b>TC</b><br>Temperature Cycling               | The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.                                                                                                                     | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation. |
| <b>THB</b><br>Temperature Humidity Bias        | The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.                                                         | To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.                                                                                                                                                                                              |
| <b>Other</b>                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                       |
| <b>ESD</b><br>Electro Static Discharge         | The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models.<br><b>CBM</b> : Charged Device Model<br><b>HBM</b> : Human Body Model<br><b>MM</b> : Machine Model | To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.                                                                                                                                                                                                               |