

PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data

1.1 Company		STMicroelectronics International N.V
1.2 PCN No.		AMS/21/12687
1.3 Title of PCN		Qualification of TSHT for products assembled in Mini SO package
1.4 Product Category		See product list
1.5 Issue date		2021-04-16

2. PCN Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Marcello SAN BIAGIO
2.1.2 Marketing Manager	Salvatore DI VINCENZO
2.1.3 Quality Manager	Giuseppe LISI

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
Transfer	Line transfer for a full process or process brick (process step, control plan, recipes) from one site to another site: Assembly site (SOP 2617)	Assembly plant : - Carsem - TSHT

4. Description of change

	Old	New
4.1 Description	Assembly plant : - Carsem	Assembly plant : - Carsem - TSHT
4.2 Anticipated Impact on form, fit, function, quality, reliability or processability?	No impact	

5. Reason / motivation for change

5.1 Motivation	The qualification of TSHT for Mini SO package will allow us to rationalize our production tool and provide better delivery service
5.2 Customer Benefit	SERVICE IMPROVEMENT

6. Marking of parts / traceability of change

6.1 Description	New Finished good codes
-----------------	-------------------------

7. Timing / schedule

7.1 Date of qualification results	2021-03-15
7.2 Intended start of delivery	2021-07-15
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation

8.1 Description	12687 12687 PCN standard-MiniSO TSHT.pdf		
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2021-04-16

9. Attachments (additional documentations)

12687 Public product.pdf
12687 12687 PCN standard-MiniSO TSHT.pdf

10. Affected parts

10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
L6920DBTR	L6920DBTR	
	L6920DCTR	
L6926013TR	L6926013TR	
L6928D013TR	L6928D013TR	
	LMC6482IST	
	LMV823AIST	
	LMV823IST	
	TSB572IST	
	TSV358AIST	
	TSV623AIST	
	TSV623IST	
	TSV6293AIST	
	TSV6293IST	
	TSV633AIST	
	TSV633IST	
	TSV6393AIST	
	TSV6393IST	
	TSV853IST	
	TSX3702IST	
	TSX393IST	
	TSX562AIST	
	TSX562IST	
	TSX632AIST	
	TSX632IST	
	TSX922IST	
	TSX923IST	
	TSX9292IST	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

**PRODUCT/PROCESS
CHANGE NOTIFICATION**

PCN AMS/21/12687

Analog, MEMS & Sensors (AMS)

**New assembly site for General Purpose Analog
products in MiniSO8/MiniSO10 packages**

WHAT:

Progressing on activities related to process modernization and quality improvement, ST is pleased to announce the introduction of TSHT/China as an added subcontractor for Assy and Test & Finishing activities for some products assembled in our MiniSO8/10 package.

Please find more information related to material change in the table here below

Material	Current process	Modified process	Comment
Diffusion location	ST Ang Mo Kio (Singapore)/ UMC / ST Agrate	ST Ang Mo Kio (Singapore)/ UMC / ST Agrate	
Assembly location	Amkor Philippines Carsem Malaysia	TSHT China	
Molding compound	Sumitomo G700 Sumitomo G770 Hitachi CEL 8240	Hitachi CEL 9220	
Die attach	Henkel 8290 / QMI519	Henkel 8200T/Henkel8600/	
Leadframe	Copper	Copper	
Plating	NiPdAu / Matte Sn	Matte Sn	
Wire	Gold 1.2Mils/1mil / 0.8Mil	Gold 1.3mils /Gold 1mil/ Copper Pd coated 1 mil/ 0.8 mil	

WHY:

The purpose of the introduction of TSHT for both Assy and Test & Finishing activities for the here above listed commercial products is to further improve the rationalization of our manufacturing assets and provide a better support to our customers by enhancing the manufacturing process for higher volume production.

HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests.

You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

WHEN:

The new material set will be implemented in Q3/2021 in TSHT China.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets.

There is -as well- no change in the packing process or in the standard delivery quantities. Shipments may start earlier with the customer's written agreement.

Reliability Qualification plan

AMS Back-end qualification
MSOP 8/MSOP10
Production transfer to TSHT

General Information		Locations
Product Line	<i>UT06, UT45, UT46, 0462, V633, 0193, 0358, UY36</i>	<i>ST Singapore, ST Agate</i>
Product Description	Dual comparator bipolar, Dual op amp bipolar, Dual precision op amp,	Wafer fab
	<i>L6926013TR, L6928D013TR, L6920DCTR, TS972IST, TSV633IST, LM2903WST, LM2904WST, TSX7192IST,</i>	Assembly plant
P/N		<i>TSHT China</i>
Product Group	<i>AMS</i>	Reliability Lab
Product division	<i>General Purpose Analog &RF</i>	<i>ST Grenoble, TSHT</i>
Package	<i>MiniSO8, MiniSO10</i>	
Silicon Process technology	<i>BCD5, HF2CMOS, Bipolar, HCMOS5, HVG8A</i>	

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS.....	9
2	GLOSSARY	9
3	RELIABILITY EVALUATION OVERVIEW	9
3.1	OBJECTIVES.....	9
3.2	CONCLUSION	9
4	DEVICE CHARACTERISTICS	10
4.1	DEVICE DESCRIPTION	10
4.2	CONSTRUCTION NOTE.....	18
5	TESTS RESULTS SUMMARY	19
5.1	TEST VEHICLE	19
5.2	TEST PLAN AND RESULTS SUMMARY	19
6	ANNEXES	20
6.1	DEVICE DETAILS	ERROR! BOOKMARK NOT DEFINED.
6.2	TESTS DESCRIPTION	20

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

To qualify a new assembly site, TSHT China, for products in MiniSO8/10 package for Analog products.

3.2 Conclusion

Qualification Plan requirements have to be fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description


L6926013TR

L6926

High efficiency monolithic synchronous step-down regulator

Datasheet - production data

Features

- 2 V to 5.5 V battery input range
- High efficiency: up to 95%
- Internal synchronous switch
- No external Schottky diode required
- Extremely low quiescent current
- 1 μ A max. shutdown supply current
- 800 mA max. output current
- Adjustable output voltage from 0.6 V
- Low-dropout operation: up to 100% duty cycle
- Selectable low noise/low consumption mode at light load
- Power Good signal
- $\pm 1\%$ output voltage accuracy
- Current mode control
- 600 kHz switching frequency
- Externally synchronized from 500 kHz to 1.4 MHz
- OVP
- Short-circuit protection

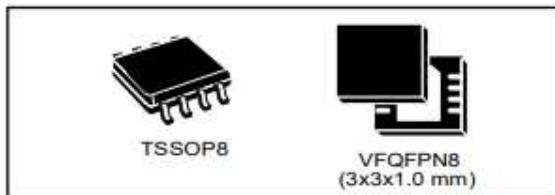
Applications

- Battery-powered equipment
- Portable instruments
- Cellular phones
- PDAs and handheld terminals
- DSC
- GPS

Description

The device is a DC-DC monolithic regulator specifically designed to provide high efficiency. The L6926 supply voltage can be as low as 2 V to be used in single Li-Ion cell supplied applications. Output voltage can be selected by an external divider down to 0.6 V. Duty cycle can saturate 100% allowing low-dropout operation. The device is based on a 600 kHz fixed frequency, current mode architecture. Low consumption mode operation can be selected at light load conditions, allowing switching losses to be reduced. The L6926 is externally synchronized by a clock, which makes it useful in noise sensitive applications. Other features like Power Good, overvoltage protection, short-circuit protection and thermal shutdown (150 °C) are also present.

Table 1: Device summary


Order code	Package	Packing
L6926	TSSOP8	Tube
L6926013TR	TSSOP8	Tape and reel
L6926Q1	VFQFPN8	Tube
L6926Q1TR	VFQFPN8	Tape and reel

L6928D013TR

L6928

High efficiency monolithic synchronous step-down regulator

Datasheet - production data

Features

- 2 V to 5.5 V battery input range
- High efficiency: up to 95%
- Internal synchronous switch
- No external Schottky diode required
- Extremely low quiescent current
- 1 μ A max. shutdown supply current
- 800 mA max. output current
- Adjustable output voltage from 0.6 V
- Low-dropout operation: up to 100% duty cycle
- Selectable low noise/low consumption mode at light load
- Power Good signal
- $\pm 1\%$ output voltage accuracy
- Current mode control
- 1.4 MHz switching frequency
- Externally synchronized from 1 MHz to 2 MHz
- OVP
- Short-circuit protection

Applications

- Battery-powered equipment
- Portable instruments
- Cellular phones
- PDAs and handheld terminals
- DSC
- GPS

Description

The device is a DC-DC monolithic regulator specifically designed to provide high efficiency. The L6928 supply voltage can be as low as 2 V to be used in single Li-Ion cell supplied applications. Output voltage can be selected by an external divider down to 0.6 V. Duty cycle can saturate 100% allowing low-dropout operation. The device is based on a 1.4 MHz fixed frequency, current mode architecture. Low consumption mode operation can be selected at light load conditions, allowing switching losses to be reduced. The L6928 is externally synchronized by a clock, which makes it useful in noise sensitive applications. Other features like Power Good, overvoltage protection, short-circuit protection and thermal shutdown (150 °C) are also present.

Table 1: Device summary

Order code	Package	Packing
L6928D	TSSOP8	Tube
L6928D013TR	TSSOP8	Tape and reel
L6928Q1	VFQFPN8	Tube
L6928Q1TR	VFQFPN8	Tape and reel

L6920DCTR

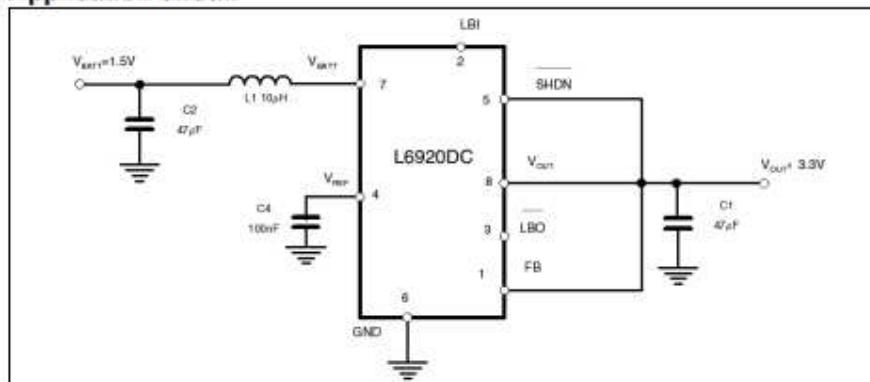
L6920DC
Synchronous rectifier step up converter
General features

- 0.8V start up input voltage
- Up to 5.5V operating input voltage
- Internal synchronous rectifier
- Adjustable output voltage from 1.8V to 5.5V
- 3.3V and 5V fixed output voltages
- Low battery voltage detection
- Reverse battery protection
- 550mA minimum input current limit
- Switching frequency up to 1MHz
- 1.23V reference voltage available

Description

The L6920DC is a high efficiency monolithic step up switching converter IC especially designed for battery powered application.

Package is MSOP8 in order to minimize PCB space. It requires only three external components to realize the conversion from the battery voltage to the selected output voltage.


The minimum output voltage is 1.8V: suitable to supply the most advanced ASIC and µP.

High switching frequency allows for a low profile, small sized inductor and output capacitor to be used.

Reference voltage, low battery detection and Shutdown are provided together with over current, over voltage.

Applications

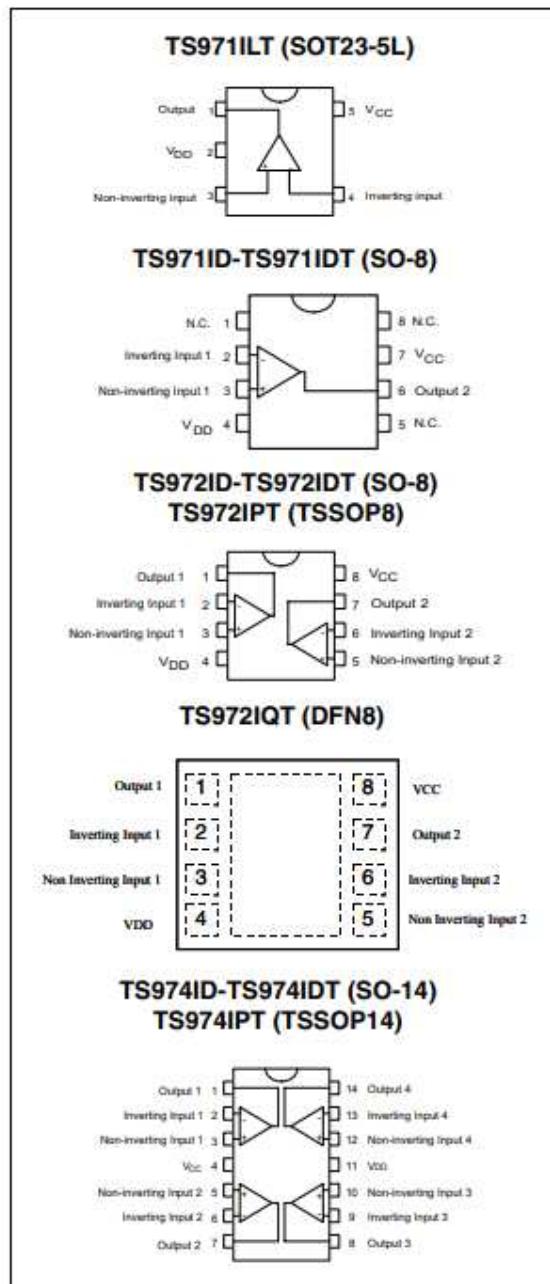
- Conversion from 1 to 3 alkaline,
- NiMH, NiCd battery cells or 1 lithium ION
- PDA and handheld instruments
- Digital cameras
- Cellular phones
- GPS
- Distributed power

Application circuit

TS972IST

TS971, TS972, TS974
Output rail-to-rail very low noise operational amplifier
Features

- Rail-to-rail output voltage swing
±2.4 V at $V_{CC} = \pm 2.5$ V
- Very low noise level: 4 nV/ $\sqrt{\text{Hz}}$
- Ultra low distortion: 0.003%
- High dynamic features: 12 MHz, 4 V/ μs
- Operating range: 2.7 to 10 V
- ESD protection (2 kV)
- Latch-up immunity (class A)

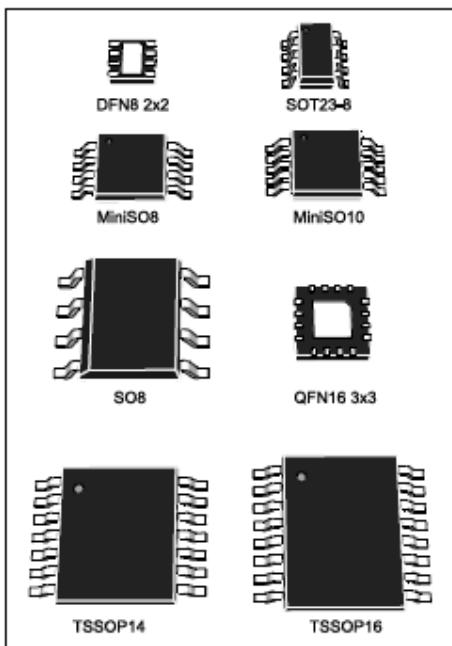

Applications

- Portable devices (CD players, PDAs)
- Portable communication (cell phones, pagers)
- Instrumentation and sensoring
- Professional audio circuits

Description

The TS97x family of operational amplifiers operates with voltages as low as ± 1.35 V and features output rail-to-rail signal swing. The TS97x are particularly well suited for portable and battery-supplied equipment. Very low noise and low distortion characteristics make them ideal for audio pre-amplification.

The TS971 is available in a variety of packages to suit all types of applications. For applications where space-saving is critical, the SOT23 package (2.8 x 2.9 mm) or the DFN package (3 x 3 mm) simplify the board design because they can be placed everywhere.



TSV633IST

TSV63x, TSV63xA

Dual and quad, rail-to-rail input/output, 60 μ A, 880 kHz operational amplifiers

Datasheet - production data

Related products

- See the TSV52x series for higher merit factor (1.15 MHz for 45 μ A)
- See the TSV61x (120 kHz for 9 μ A) or TSV62x (420 kHz for 29 μ A) for more power savings

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV63x and TSV63xA series of dual and quad operational amplifiers offers low voltage operation and rail-to-rail input and output.

This family features an excellent speed/power consumption ratio, offering an 880 kHz gain-bandwidth product while consuming only 60 μ A at 5 V supply voltage. The devices also feature an ultralow input bias current and TSV633 and TSV635 have a shutdown mode.

These features make the TSV63x and TSV63xA family ideal for sensor interfaces, battery-supplied and portable applications, and active filtering.

Table 1: Device summary

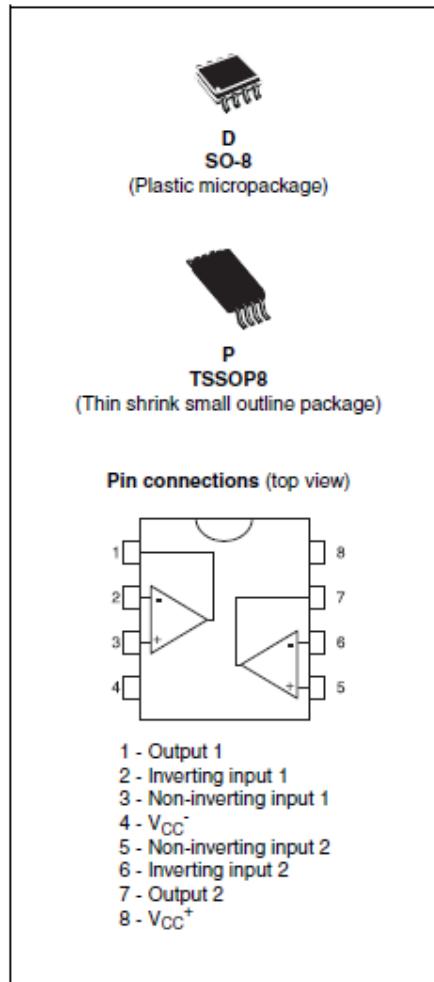
Reference	Dual version		Quad version	
	Without standby	With standby	Without standby	With standby
TSV63x	TSV632	TSV633	TSV634	TSV635
TSV63xA	TSV632A	TSV633A	TSV634A	TSV635A

Features

- Rail-to-rail input and output
- Low power consumption: 60 μ A typ at 5 V
- Low supply voltage: 1.5 V - 5.5 V
- Gain bandwidth product: 880 kHz typ
- Unity gain stable on 100 pF capacitor
- Low power shutdown mode: 5 nA typ
- Low offset voltage: 800 μ V max (A version)
- Low input bias current: 1 pA typ
- EMI hardened op amps
- Automotive qualification

LM2903WST

LM2903W
Low-power, dual-voltage comparator
Datasheet – production data
Features


- Wide, single supply voltage range or dual supplies +2 V to +36 V or ± 1 V to ± 18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ± 5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. ($I_O = 4$ mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs
- ESD internal protection: 2 kV

Description

This device consists of two independent low-power voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

The input common-mode voltage range includes negative rail even though operated from a single power supply voltage.

All pins are protected against electrostatic discharge up to 2 kV. Consequently, the input voltages must not exceed the V_{CC}^+ or V_{CC}^- magnitudes.

LM2904WST,

LM2904, LM2904A LM2904W, LM2904AW Datasheet

Low-power dual operational amplifier

Features

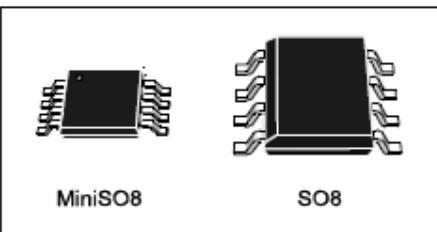
- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/amplifier, essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to $[(V_{CC} +) - 1.5]$ V

Description

This circuit consists of two independent, high gain operational amplifiers (op amps) that have frequency compensation implemented internally. They are designed specifically for automotive and industrial control systems. The circuit operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard 5 V which is used in logic systems and easily provides the required electronic interfaces without requiring any additional power supply.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.


Maturity status link		
	Enhanced V _{IO}	Enhanced E&D
LM2904		
LM2904A	✓	
LM2904W		✓
LM2904AW	✓	✓

Related products

TSB572	Dual op-amps for low-power consumption (380 µA with 2.5 MHz GBP)
LM2902 LM2902W	Quad op-amps version
LM2904WH LM2904AH	High temperature version (150 °C)

TSX7192ST**TSX7192****Low-power, precision, rail-to-rail, 9.0 MHz, 16 V operational amplifiers**

Datasheet - production data

Description

The TSX7192 dual, operational amplifier (op amp) offers high precision functioning with low input offset voltage down to a maximum of 200 μ V at 25 °C. In addition, its rail-to-rail input and output functionality allows this product to be used on full range input and output without limitation. This is particularly useful for a low-voltage supply such as 2.7 V that the TSX7192 is able to operate with.

Thus, the TSX7192 has the great advantage of offering a large span of supply voltages, ranging from 2.7 V to 16 V. It can be used in multiple applications with a unique reference.

Low input bias current performance makes the TSX7192 perfect when used for signal conditioning in sensor interface applications. In addition, low-side and high-side current measurements can be easily made thanks to rail-to-rail functionality. The TSX7192 is a decompensated amplifier and must be used with a gain greater than 10 to ensure stability.

High ESD tolerance (4 kV HBM) and a wide temperature range are also good arguments to use the TSX7192 in the automotive market segment.

Features

- Low input offset voltage: 200 μ V max.
- Rail-to-rail input and output
- Low current consumption: 850 μ A max.
- Gain bandwidth product: 9 MHz
- Low supply voltage: 2.7 to 16 V
- Stable when used with Gain \geq 10
- Low input bias current: 50 pA max.
- High ESD tolerance: 4 kV HBM
- Extended temp. range: -40 °C to 125 °C
- Automotive qualification

Related products

- See the TSX7191 for single op amp version
- See the TSX712 for lower speeds with similar precision
- See the TSX562 for low-power features
- See the TSX632 for micro-power features
- See the TSX922 for higher speeds

Applications

- Battery-powered instrumentation
- Instrumentation amplifier
- Active filtering
- High-impedance sensor interface
- Current sensing (high and low side)

4.2 Construction note

P/N	P/N	P/N		
Wafer fab manufacturing location		Wafer Testing (EWS) information		
Technology				
Die finishing back side				
Die size (microns)				
Passivation type				
Assembly information				
Assembly site				
Package description				
Molding compound				
Frame material				
Die attach process				
Die attach material				
Wire bonding process				
Wires bonding materials/diameters				
Lead finishing process				
Lead finishing/bump solder material				
Final testing information				
Testing location				

P/N	P/N	P/N	P/N	P/N
Wafer fab manufacturing location		Wafer Testing (EWS) information		
Technology	HF2CMOS	UMC Taiwan	ST Singapore	UMC Taiwan
Die finishing back side	RAW SILICON	HCMOS5	Bipolar	HF5CMOS
Die size (microns)	1100x960	1052x982	RAW SILICON	RAW SILICON
Passivation type	PVAPOX+Nitride	PSG+Nitride	Nitride	PSG + NITRIDE
Assembly information				
Assembly site				
Package description				
Molding compound				
Frame material				
Die attach process				
Die attach material				
Wire bonding process				
Wires bonding materials/diameters				
Lead finishing process				
Lead finishing/bump solder material				
Final testing information				
Testing location				

5 TESTS PLAN SUMMARY

5.1 Test vehicle

Lot #	Process/ Package	Product Line	Comments
1	BCD5/miniSO8	UT06	
2	BCD5/miniSO8	UT45	
3	BCD5/miniSO8	UT46	
4	HF2CMOS/MiniSO8	0462	
5	HCMOS5/MiniSO10	V633	
6	Bipolar/MiniSO8	0193	
7	Bipolar/MiniSO8	0358	
8	HVG8A/MiniSO8	UY36	

5.2 Test plan summary

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS					Note	
						Lot 1 UT06	Lot 2 UT45	Lot3 UT46				
HTSL	N	JESD22 A-103	Ta = 150°C			168 H	0/77	0/77	0/77			
						500 H	0/77	0/77	0/77			
						1000 H	0/77	0/77	0/77			
PC		JESD22 A-113	Drying 24 H @ 125°C Store 192 H @ Ta=30°C Rh=60% Over Reflow @ Tpeak=260°C 3 times		Final	PASS	PASS	PASS				
UHAST	Y	JESD22 A-102	85%RH / Ta=130°C		96 H	0/77	0/77	0/77				
TC	Y	JESD22 A-104	Ta = -55°C to 150°C			100 cy	0/77	0/77	0/77			
						200 cy	0/77	0/77	0/77			
						500cy	0/77	0/77	0/77			
Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS					Note	
						Lot4 0462	Lot5 V633	Lot 6 0193	Lot 7 0358	Lot 8 UY36		
HTB/ HTOL	N	JESD22 A-108	Ta = 125°C or 125°C, BIAS			168 H		3x0/77	0/77	0/77	0/77	
						500 H		3x0/77	0/77	0/77	0/77	
						1000 H		3x0/77	0/77	0/77	0/77	
HTSL	N	JESD22 A-103	Ta = 150°C			168 H	0/50	0/50	0/50	0/50	0/50	
						500 H	0/50	0/50	0/50	0/50	0/50	
						1000 H	50	0/50	0/50	0/50	0/50	
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	PASS	PASS	PASS	PASS	PASS		
UHAST	Y	JESD22 A-102	85%RH / Ta=130°C		96 H	0/77	0/77	0/77	0/77	0/77		
TC	Y	JESD22 A-104	Ta = -55°C to 150°C			100 cy	0/77	0/77	0/77	0/77	0/77	
						200 cy	0/77	0/77	0/77	0/77	0/77	
						500 cy	0/77	0/77	0/77	0/77	0/77	
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS			168 H		3x0/77	0/77	0/77	0/77	
						500 H		3x0/77	0/77	0/77	77	
						1000 H		0/77	0/77	0/77	77	

6 ANNEXES

6.1 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTB High Temperature Bias		
HTRB High Temperature Reverse Bias	The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.
HTFB / HTGB High Temperature Forward (Gate) Bias		To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.

Test name	Description	Purpose
TF / IOL Thermal Fatigue / Intermittent Operating Life	The device is submitted to cycled temperature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title : Qualification of TSHT for products assembled in Mini SO package

PCN Reference : AMS/21/12687

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

L6926013TR	TSX3702IST	TSX562AIST
L6920DBTR	LMV823AIST	LMC6482IST
TSV6293IST	TSV6393IST	TSX922IST
TSB572IST	L6920DCTR	TSV623IST
TSX632IST	TSX9292IST	TSX923IST
TSV6393AIST	TSX632AIST	TSV853IST
TSV853AIST	LMV823IST	TSV623AIST
TSV358AIST	TSX393IST	TSV633AIST
L6928D013TR	TSX562IST	TSV6293AIST
TSV633IST		

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved