

PRODUCT / PROCESS CHANGE INFORMATION

1. PCI basic data

1.1 Company	STMicroelectronics International N.V
1.2 PCI No.	ADG/23/13897
1.3 Title of PCI	L9026 (UR5V): Datasheet Update
1.4 Product Category	L9026
1.5 Issue date	2023-01-27

2. PCI Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Maurizio GALLINARI
2.2.2 Marketing Manager	Francesco MACINA
2.2.3 Quality Manager	Marcello Donato MENCHISE

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
General Product & Design	Modification of datasheet : Errata/error fix	NA

4. Description of change

	Old	New
4.1 Description	Datasheet revision 7	Datasheet revision 8
4.2 Anticipated Impact on form,fit, function, quality, reliability or processability?	No Impact	

5. Reason / motivation for change

5.1 Motivation	Datasheet Update
5.2 Customer Benefit	SERVICE CONTINUITY

6. Marking of parts / traceability of change

6.1 Description	Datasheet available on www.st.com
-----------------	---

7. Timing / schedule

7.1 Date of qualification results	2023-01-17
7.2 Intended start of delivery	2023-02-28
7.3 Qualification sample available?	Not Applicable

8. Qualification / Validation

8.1 Description	13897 L9026_DS_rev8.pdf	
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date

9. Attachments (additional documentations)

13897 Public product.pdf 13897 L9026_DS_rev8.pdf 13897 Details.pdf
--

10. Affected parts		
10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
	L9026-YO-TR	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

PRODUCT/PROCESS CHANGE INFORMATION

TITLE	L9026 (UR5V): Datasheets Update
IMPACTED PRODUCTS	<ul style="list-style-type: none">- L9026-B03N-TR- L9026-YO-TR
CHANGE TYPE	Datasheet Update
CHANGE REASON	Service Continuity
CHANGE DESCRIPTION	<p>Typo correction.</p> <p>Details available on revision history of the document</p>
REPORT	L9026 - DS13397 - Rev 8 – January 2023

Automotive configurable multi-channel relay driver 2HS + 6HS/LS

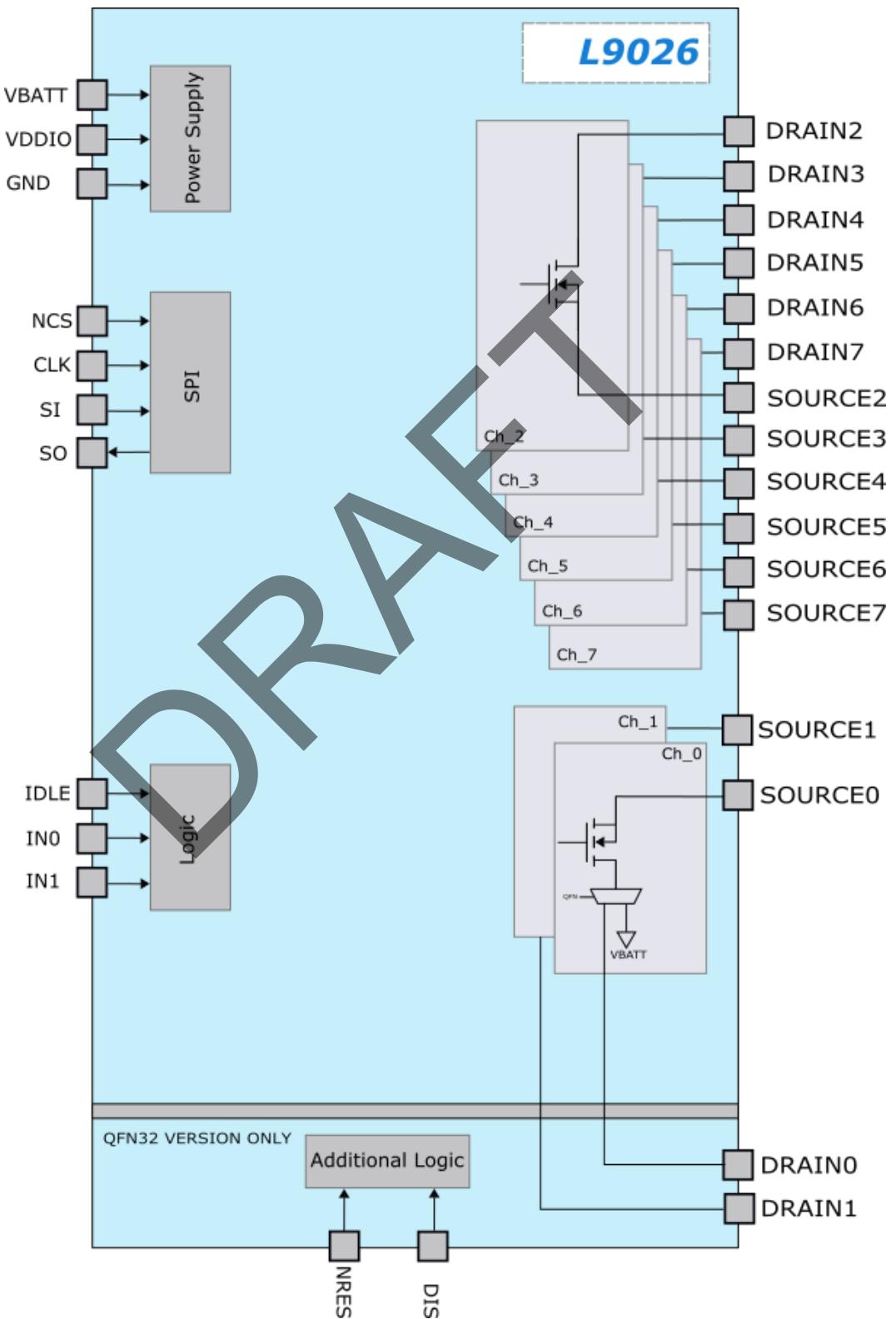
Features

- AEC-Q100 qualified
- Full ISO26262 compliant, ASIL-B systems ready
- Six configurable LS/HS drivers
- Two High side drivers
- 2 parallel input pins with input mapping functionality
- Cranking capability down to VBATT = 3 V
- Digital supply voltage compatible with 3.3 V and 5 V microcontroller
- Reverse battery protection on VBATT and on drain pins without external components
- BIM (bulb inrush mode) especially designed for drive resistive and capacitive loads
- Limp home mode (with usage of IDLE and IN pins)
- Safety features
 - Temperature sensor and monitoring
 - Serial communications using address feedback, one parity bit, frame counter and short frame detection
- SPI interface 16-bit for outputs control and for diagnosis data communication
- Package options: HTSSOP24, VFQFPN32
- Green product (RoHS compliant)

Product status link	
L9026	
Product summary	
Order code	L9026-B03N-TR
Package	VFQFPN32
Packing	Tape and reel
Order code	L9026-YO-TR
Package	HTSSOP24
Packing	Tape and reel

Description

The L9026 is an eight-channel IC, with two fixed HS drivers and six configurable HS/LS drivers designed for automotive applications (LEDs and relays) and compatible with resistive, inductive and capacitive loads. The device offers advanced diagnostic and protection functionalities such as: short to GND, open load, overcurrent, overtemperature detections. The eight output channels can be either driven by SPI or by two dedicated parallel inputs. Limp home functionality is also featured, which allows using two selected drivers in particularly faulty conditions, such as SPI fault, micro fault or supply UV. Daisy chain compatible even with 8bit SPI is available. The device is able to guarantee operations under a cranking scenario down to VBATT = 3 V and guarantees very low quiescent current under RESET condition.


L9026 has two input pins available connected to two outputs by default, in case of using different or additional outputs, it is managed by SPI.

For a direct control and PWM L9026 has two input pins available connected to two outputs by default, in case of manage different or additional output it is controlled by SPI.

The device is available in two package versions: HTSSOP24 and VFQFPN32. Only for the QFN package 2 additional pins are available for safety reasons. In details, the NRES pin is used to reset internal registers to their default values and the DIS pin is used to disable all channels.

1 Block diagram

Figure 1. Block diagram

2 Application circuit

Here below two general application circuits:

- [Figure 2](#) reports L9026 with the HTSSOP24 version package
- [Figure 3](#) shows the application of L9026 with the VFQFPN32 version package

In the list of external components, the different parts are marked following the items reported below:

1. mandatory components for L9026 functionality
2. recommended components for EMC robustness
3. recommended components for ESD trials
4. recommended System component

Note:

recommended components may depend on the requirements at system levels and shall be confirmed by specific tests on the final application.

Figure 2. HTSSOP24 Application schematic

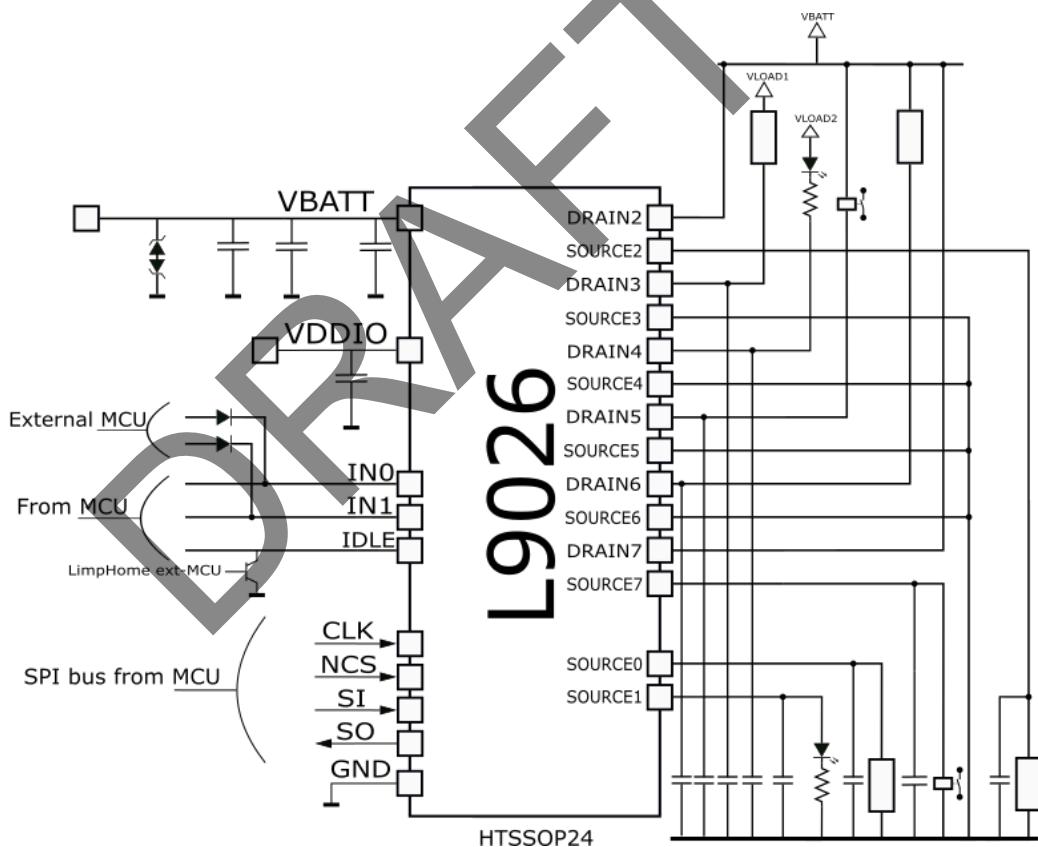


Figure 3. VFQFPN32 Application schematic

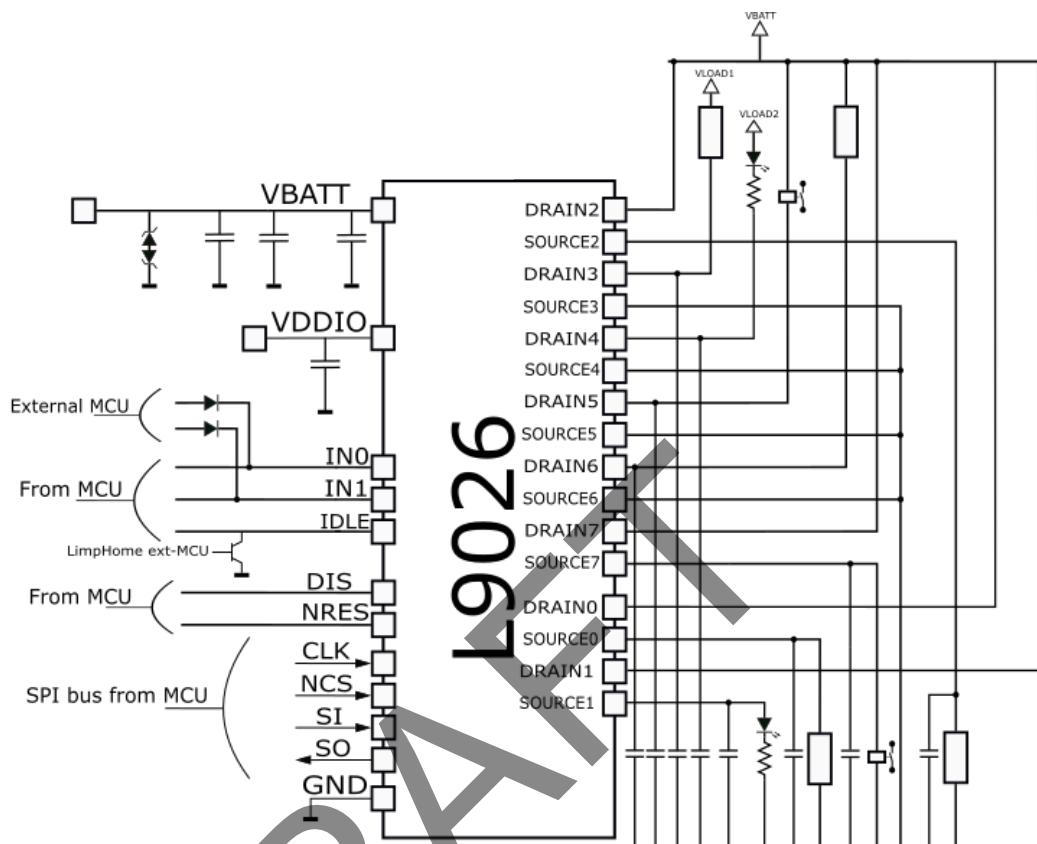


Table 1. External components list for L9026 application circuit

Pin	External components					Requirement	Comment
	Type	Min	Typ	Max	Unit		
VBATT	Capacitor	-	120	-	nF	(2), (3)	Tolerance $\pm 20\%$ 50 V
	Capacitor	-	100	-	μ F	(2)	50 V, Transient and load dump protection
	TVS	-15	-	38	V	(4)	Transient voltage suppressor
	Capacitor	-	10	-	μ F	(2), (3)	Tolerance $\pm 20\%$ 50 V, Transient and load dump protection
VDDIO	Capacitor	-	100	-	nF	(2)	Tolerance $\pm 10\%$ 50 V
DRAIN2 DRAIN7	Capacitor	-	-	12	nF	(3)	Maximum total capacitance value at output load (channel configured as low side)
DRAIN0 DRAIN7		47	-	-		(4)	Minimum capacitance value at load supply (channel configured as high side, DRAIN0 and DRAIN1 if available)
SOURCE0 SOURCE7	Capacitor	-	-	12	nF	(3)	Maximum total capacitance value as output load (channel configured as high side)

3 Pins description

Figure 4. HTSSOP-24 pinout diagram

positive	negative	pin name		pin name	negative	positive
42V	-0.3 V	VBATT	1			
VOUT_D + 0.3V	-16 V	SOURCE0	2			
42V	-0.3 V	DRAIN7	3			
VOUT_D + 0.3V	-16 V	SOURCE7	4			
42V	-0.3 V	DRAIN6	5			
VOUT_D + 0.3V	-16 V	SOURCE6	6			
42V	-0.3 V	DRAIN5	7			
VOUT_D + 0.3V	-16 V	SOURCE5	8			
VDDIO + 0.3	-0.3 V	IN1	9			
20V	-0.3 V	IN0	10			
0.3 V	-0.3 V	GND	11			
20V	-0.3 V	IDLE	12			
				24	SOURCE1	-16 V
				23	SOURCE2	-16 V
				22	DRAIN2	-0.3 V
				21	SOURCE3	-16 V
				20	DRAIN3	-0.3 V
				19	SOURCE4	-16 V
				18	DRAIN4	-0.3 V
				17	SI	-0.3 V
				16	NCS	-0.3 V
				15	CLK	-0.3 V
				14	SO	-0.3 V
				13	VDDIO	-0.3 V
						20V

DRAFT

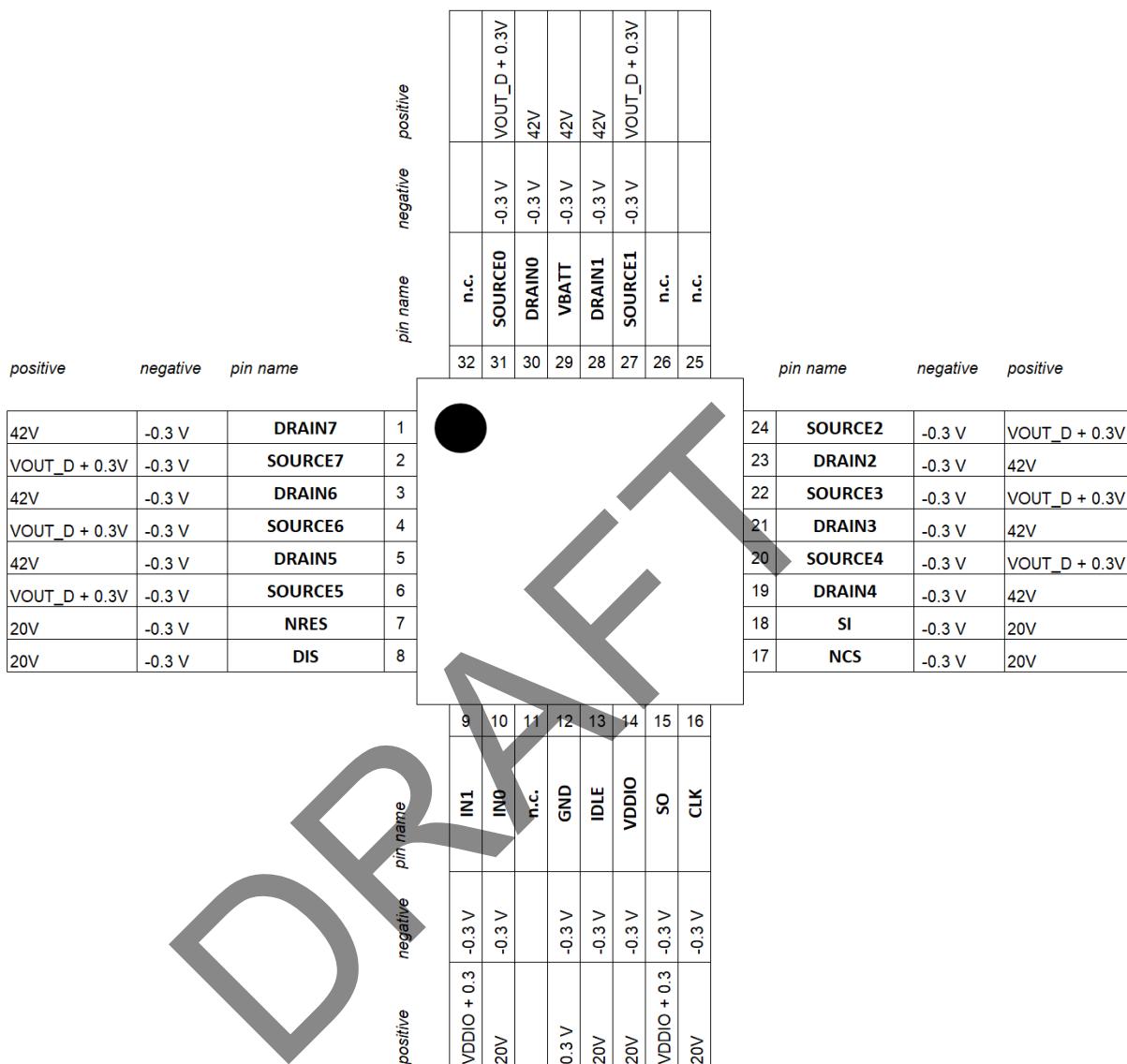

Figure 5. VFQFPN32 pinout diagram

Table 2. HTSSOP-24 pins list

Pin number	Symbol	Function
1	VBATT	Battery voltage
2	SOURCE0	HS Source 0
3	DRAIN7	LS/HS Drain 7
4	SOURCE7	LS/HS Source 7
5	DRAIN6	LS/HS Drain 6
6	SOURCE6	LS/HS Source 6
7	DRAIN5	LS/HS Drain 5
8	SOURCE5	LS/HS Source 5
9	IN1	Parallel command input 1
10	IN0	Parallel command input 0
11	GND	Ground pin
12	IDLE	Idle function
13	VDDIO	IO supply
14	SO	SPI output stream
15	CLK	SPI clock
16	NCS	SPI Chip Select
17	SI	SPI input stream
18	DRAIN4	LS/HS Drain 4
19	SOURCE4	LS/HS Source 4
20	DRAIN3	LS/HS Drain 3
21	SOURCE3	LS/HS Source 3
22	DRAIN2	LS/HS Drain 2
23	SOURCE2	LS/HS Source 2
24	SOURCE1	HS Source 1

Table 3. VFQFPN32 pins list

Pin number QFN32	Symbol	Function
1	DRAIN7	LS/HS Drain 7
2	SOURCE7	LS/HS Source 7
3	DRAIN6	LS/HS Drain 6
4	SOURCE6	LS/HS Source 6
5	DRAIN5	LS/HS Drain 5
6	SOURCE5	LS/HS Source 5
7	NRES	NRES function – available only in VFQFPN32 package
8	DIS	Channel disable – available only in VFQFPN32 package
9	IN1	Parallel command input 1
10	IN0	Parallel command input 0
11	N.C.	-
12	GND	Ground pin
13	IDLE	Idle function
14	VDDIO	IO supply
15	SO	SPI output stream
16	CLK	SPI clock
17	NCS	SPI Chip Select
18	SI	SPI input stream
19	DRAIN4	LS/HS Drain 4
20	SOURCE4	LS/HS Source 4
21	DRAIN3	LS/HS Drain 3
22	SOURCE3	LS/HS Source 3
23	DRAIN2	LS/HS Drain 2
24	SOURCE2	LS/HS Source 2
25	N.C.	-
26	N.C.	-
27	SOURCE1	HS Source 1
28	DRAIN1	HS Drain 1
29	VBATT	Battery voltage
30	DRAIN0	HS Drain 0
31	SOURCE0	HS Source 0
32	N.C.	-

Note:

- In case of VFQFPN32 package, *CFG_0.DIS_EN* and bit *CFG_0.NRES_N* need to be set through SPI.
- In case of HTSSOP24 package, NRES and DIS pins are not available; *CFG_0.DIS_EN* and bit *CFG_0.NRES_N* must be considered as reserved, kept at '0'.
- For both package options the exposed pad must be left floating to guarantee the reverse battery protection feature.

4 Product characteristics

4.1

Absolute maximum ratings

This part may be irreparably damaged if taken outside the specified Absolute Maximum Ratings. Operation above the absolute maximum ratings may also cause a decrease in reliability.

The operating junction temperature range is -40 °C to +150 °C. The maximum junction temperature must not be exceeded. All voltages are referred to analog ground pin GND.

Table 4. Absolute maximum rating capability

Symbol	Type	Test condition	Min	Typ	Max	Unit	Pin type
VBATT	Global	$t_{ON} = 400$ ms; $t_{ON}/t_{OFF} = 10$ %; limited to 100 pulses	-0.3	-	42	V	S
VDDIO	Local	-	-0.3	-	20	V	S
-VBATT _(REV)	Global	Reverse polarity voltage $T = 25$ °C, $t < 2$ min, $RL = 70$ Ω on all channels, with exposed pad floating	-	-	16	V	S
V _{OUT_S}	Global	Power transistor source voltage	-16	-	Min[V _{OUT_D} + 0.3, 42]	V	O
V _{OUT_D}	Global	Power transistor drain voltage ($V_{OUT_S} \geq 0$ V)	V _{OUT_S} - 0.3	-	42	V	O
V _{IDLE}	Local	-	-0.3	-	20	V	I
V _{IN0}	Local	-	-0.3	-	20	V	I
V _{IN1}	Local	-	-0.3	-	Min[V _{DIO} + 0.3, 20]	V	I
V _{NCS}	Local	-	-0.3	-	20	V	I
V _{CLK}	Local	-	-0.3	-	20	V	I
V _{SI}	Local	-	-0.3	-	20	V	I
V _{SO}	Local	-	-0.3	-	Min[V _{DIO} + 0.3, 20]	V	O
V _{IN}	Local	Applies to : V _{NRES} V _{DIS}	-0.3	-	20	V	I

4.2

Latchup trials

Latch-up tests performed according to JEDEC 78 class 2 Level A

4.3 Temperature range

Table 5. Temperature range

Symbol	Description	Test condition	Min	Typ	Max	Unit
T _a	Operating ambient temperature	-	-40	-	125	°C
T _j	Junction temperature	-	-40	-	150	°C
T _{stg}	Storage temperature	-	-55	-	150	°C
RTH _{j-a}	Thermal resistance junction to ambient	- Package: HTSSOP - 2s2p (4L) board ⁽¹⁾ - Natural convection	-	38	-	°C/W
RTH _{j-c}	Thermal resistance junction to case		-	1	-	
RTH _{j-b}	Thermal resistance junction to board		-	20	-	
RTH _{j-a}	Thermal resistance junction to ambient	- Package: VFQFPN - 2s2p (4L) board ⁽¹⁾ - Natural convection	-	36	-	°C/W
RTH _{j-c}	Thermal resistance junction to case		-	4	-	
RTH _{j-b}	Thermal resistance junction to board		-	18	-	

1. JESD51-7

All parameters are guaranteed, and tested, in the temperature range T_j -40 ÷ 150 °C (unless otherwise specified).

DRAFT

5 Input/Output

5.1 Parallel inputs (IN0, IN1)

The L9026 has two input pins, IN0 e IN1. By default IN0 is connected to channel 2, IN1 is connected to channel 3. It is possible through programming MAP_IN0 and MAP_IN1 (input mapping registers) to link different channels to each input IN0 or IN1 with priority assigned to MAP_IN0.

The channels are driven by the signals that are the OR combination between PWM_SPI_register status, PWM generators (PWM generator output mapping status), IN0 and IN1. The STA_0 (status register) shows the logic level of the input pins.

See [Section 11 SPI](#) for further details.

The status monitor works also when the device is in limp home mode. If one of the input pins (IN0 or IN1) is asserted to "High" and the IDLE pin is set to "Low", L9026 enters in limp home mode.

5.2 Idle pin (IDLE)

The device enters in sleep state through IDLE pin when it is setted to "low" together with IN0 and IN1. Instead if IDLE pin is in "low" state and one of the two inputs are in "high" state the device is brought in Limp home mode. In order to ensure a correct transition IDLE pin should be set at least for a time duration of $t_{IDLEFLT_max}$.

Setting the IDLE pin to "low", with both IN0 and IN1 also at "low" value, has the following consequences:

- Device goes in SLEEP MODE
- The SPI registers are reset to default value
- in order to decrease the current consumption the voltage detection circuits on VDDIO and VBATT are disabled.
- SO pin remains in "HighZ" even if NCS pin is active and the SPI communication is not allowed

5.3

Reset pin (NRES, only in VFQFPN32 package option)

The NRES pin, available only for VFQFPN32 version, is the reset input for the device. The function uses the inverse logic, if the NRES pin is low, the device is held in an internal reset state, all outputs channels are disabled, and all registers are reset to their default values. An internal pull down will hold the NRES pin asserted in case of pin open. As default, the state of NRES pin is masked by the logic. The user must send a specific SPI frame to force the logic to take into account the state of NRES pin.

5.4

Enable (DIS, only in VFQFPN32 package option)

The DIS pin, available only for VFQFPN32 version, is used to enable / disable the output stages. When DIS pin is high, all channels are disabled if the pin is not masked. An internal pull up will hold the DIS pin asserted in case of pin open.

When DIS pin is set low, all channels are enabled based on their configuration settings. As default, the DIS pin is masked by the logic. The user needs to send a specific SPI frame to force the logic to take into account the state of DIS pin. The status of DIS pin can be monitored reading the STA_0 register.

The DIS pin can be connected to a general purpose output pin of the microcontroller or to an alternative safety circuit.

5.5

SPI communications (NCS, CLK, SI & SO)

The NCS, CLK, SI & SO pins provide serial communications between the device and the microcontroller. See [Section 11 SPI](#) for details on SPI features, device register functions and electrical characteristics.

5.6

Input / output electrical specifications

$3 \text{ V} \leq \text{VDDIO} \leq 5.5 \text{ V}$; $6 \text{ V} \leq \text{VBATT} \leq 18 \text{ V}$; $-40^\circ\text{C} \leq \text{Tj} \leq 150^\circ\text{C}$ unless otherwise specified. All voltages are referred to GND pin.

Table 6. Digital input/output electrical performance

Parameter	Description	Test condition	Min	Typ	Max	Unit	Pin
$V_{\text{IDLE(L)}}$	L-input level	-	-	-	0.8	V	IDLE
$V_{\text{IDLE(H)}}$	H-input level	-	2	-		V	IDLE
R_{IDLE}	Input pull-down resistor at IDLE pin	$\text{VDDIO} = 5 \text{ V}; V_{\text{DIS}} = 2 \text{ V}$	60		125	k Ω	IDLE
$V_{\text{IN(L)}}$	L-input level	-	-	-	0.8	V	IN0-IN1
$V_{\text{IN(H)}}$	H-input level	-	2			V	IN0-IN1
R_{IN}	Input pull-down resistor at IN0 and IN1 pin	$\text{VDDIO} = 5 \text{ V}; V_{\text{DIS}} = 2 \text{ V}$	60	-	125	k Ω	IN0-IN1
$V_{\text{NRES(L)}}$	L-input level	-	-	-	0.8	V	NRES
$V_{\text{NRES(H)}}$	H-input level	-	2	-		V	NRES
R_{NRES}	Input pull-down resistor at NRES pin	$\text{VDDIO} = 5 \text{ V}; V_{\text{DIS}} = 2 \text{ V}$	50	-	140	k Ω	NRES
$V_{\text{DIS(L)}}$	L-input level	-	-	-	0.8	V	DIS
$V_{\text{DIS(H)}}$	H-input level	-	2	-		V	DIS
R_{DIS}	Input pull-up resistor at DIS pin	$\text{VDDIO} = 5 \text{ V}; V_{\text{DIS}} = 0.8 \text{ V}$	40	-	95	k Ω	DIS

6 Power supply

6.1 Overview

The L9026 is fed by two supply voltages:

- VBATT (general supply for analog and digital part)
- VDDIO (supply for digital and output buffers)

The supply lines are monitored against under voltage: in case under voltage condition is detected the IC reacts as per the following:

- An under voltage on VBATT supply voltage prevents the activation of the power stages.
- An under voltage on VDDIO supply prevents any SPI communication and SPI read/write registers are reset to default values.

The combination of the different under voltage conditions is reported in [Table 7](#).

Table 7. Supply ranges

	$VDDIO \leq VDDIO_{(UV)}$	$VDDIO > VDDIO_{(UV)}$
VBATT \leq VBATT _{UV}	channels cannot be controlled	channels cannot be controlled
	SPI registers reset	SPI registers available
	SPI communication not available	SPI communication possible
	Limp Home mode not available	Limp Home mode available(channels are OFF)
VBATT $>$ VBATT _{UV}	channels cannot be controlled by SPI (INn functionality still available)	channels can be switched ON and OFF
	SPI registers reset	SPI registers available
	SPI communication not available	SPI communication possible

6.2 Battery supply (VBATT)

This pin is the general supply for analog and digital part unless an undervoltage condition is detected on VBATT. In this case, provided VDDIO is still in range, the logic is supplied by the VDDIO itself. The [Table 8](#) summarizes the functional ranges dependent on battery supply voltage.

Table 8. VBATT electrical performance

Symbol	Parameter	Test condition	Min	Typ	Max	Unit
VBATT	Supply Voltage Range for normal operations	$3 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	6	-	18	V
VBATT	Upper Supply Voltage Range for extended operations	$3 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	18	-	28	V
VBATT Low Voltage	Low Voltage Range Cranking ⁽¹⁾	$3 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3	-	6	V

1. Possible degradation of electrical parameters linked to battery line. Full functional operation will resume without operator intervention when battery voltage returns to Normal Operating Voltage Range.

The device operates on 12 V system. Transient operation for these systems can reach 40 V maximum. Particular care has to be taken in PCB manufacturing to keep thermal dissipation to a reasonable level.

- For $\text{VBATT} < \text{VBATT}_{(UV)}$ the device is in a safety state (internal circuitries are on but all the outputs are off).
- For VBATT up to 40 V all the functions are granted with increased power dissipation and no reset is asserted during transient.

6.3

Operating modes

The L9026 has four operative states:

- Sleep mode
- Idle mode
- Active mode
- Limp Home mode

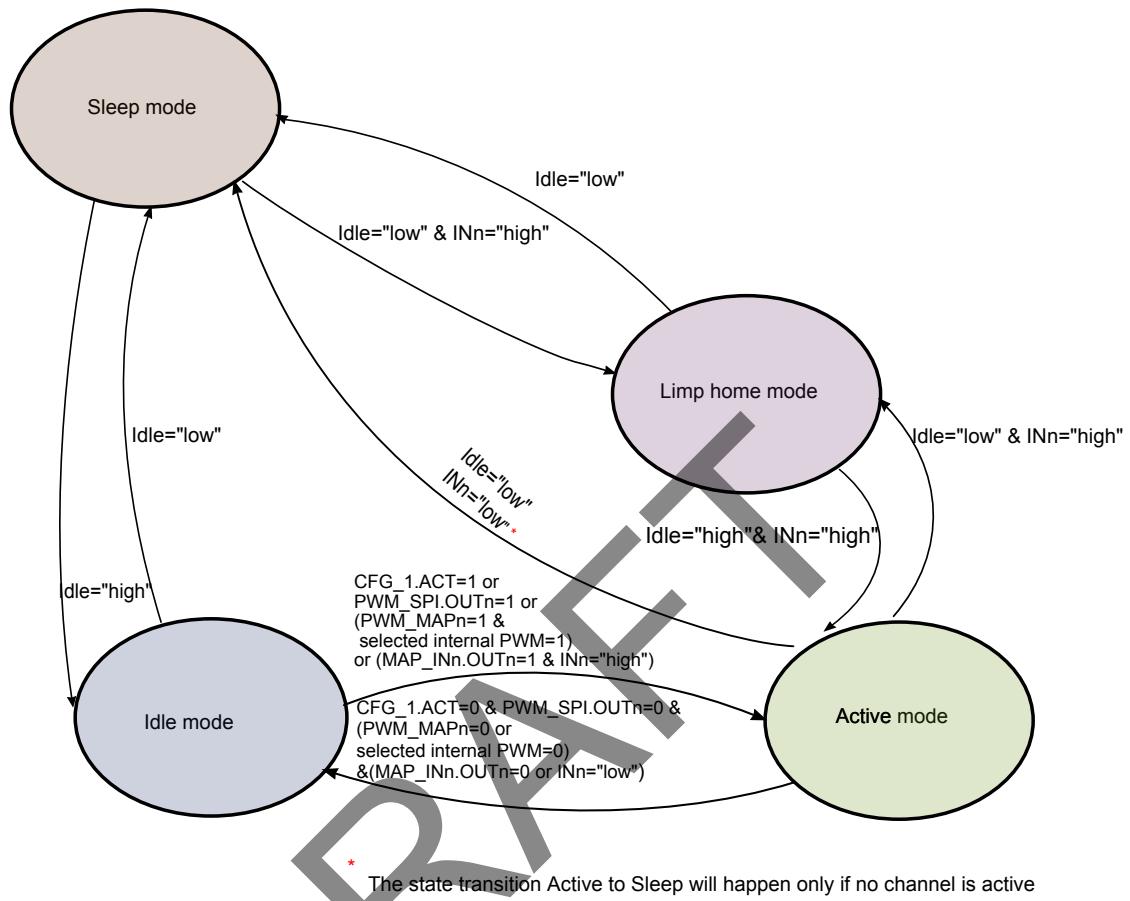
The transition between operation modes is determined according to the following levels and states:

- logic level at IDLE pin
- logic level at INn pins
- PWM_SPI.OUTn bits state
- CFG_1.ACT bit state
- MAP_PWM.OUTn and PWM_SEL.OUTn bits state

The [Figure 6](#) represents the possible transitions in the state diagram. The description is valid if the digital POR signal is de-asserted (indicated as POR_N in the register map). In case of POR = 0 transitions from active to idle and from Limp Home to sleep do not guarantee switch off behavior with functional timings. A POR condition is traced in a clear on read register in the STA_1.POR bit.

The operating mode of the device has effect on the parameters and on the behavior of L9026.

In addition, certain changes within the same operation mode can occur due to the circuitry for undervoltage detection that monitors VBATT and VDDIO.


In case of $VBATT < VBATT(UV_L)$ and $IDLE = IN0 = IN1 = \text{high}$ device does not go from IDLE state to ACTIVE state.

Starting from active state the conditions to reach sleep state are $IDLE = '0'$ and $INn = '0'$ and drivers turn OFF that is guaranteed through SW reset.

There are different options to observe the operation mode of the device:

- status of output channels
- status of SPI registers
- current consumption at VBATT pin (IVBATT)

Figure 6. State diagram

The active mode is the default operation for the switching on of the loads. If L9026 is not in active mode and it happens a request to switch on outputs through SPI or Input pins, the device enters in active mode or limp home mode, Based on the state of the IDLE pin. The turn on time t_{ON} increases due to the transitions latency.

Table 9. Functions availability in different supply conditions shows the links among the device operation modes, the channels operability, SPI communications, registers and supply voltages.

Table 9. Functions availability in different supply conditions

Function	Undervoltage condition on VBATT		VBATT not in undervoltage		Operating modes
	VDDIO \leq VDDIOUV	VDDIO > VDDIOUV	VDDIO \leq VDDIOUV	VDDIO > VDDIOUV	
Channels	u	u	u	u	Sleep
	u	u	u	u	Idle
	u	u	a ⁽¹⁾	a	Active
	u	u	a ⁽¹⁾	a ⁽¹⁾	Limp Home
SPI communication	u	u	u	u	Sleep
	u	a	u	a	Idle
	u	a	u	a	Active
	u	a ⁽²⁾	u	a ⁽²⁾	Limp Home
SPI registers	r	r	r	r	Sleep
	r	a	r	a	Idle
	r	a	r	a	Active
	r	a ⁽²⁾	r	a ⁽²⁾	Limp Home

1. IN pins only.

2. Read only.

where:

- "a" stands for available
- "u" stands for unavailable
- "r" stands for reset

6.4 Analog & Digital supply (VBATT)

The VBATT is used to supply the internal logic, analog and digital, in normal condition (no under voltage on VBATT) and the output loads.

In case the voltage drops below $VBATT_{(UV_L)}$ the under voltage mechanism is triggered and the bit STA_1.VS_UV is reported via SPI. Once the faulty condition disappears ($VBATT > VBATT_{(UV_H)}$), the bit remains latched until its status is acknowledged by the microcontroller via SPI.

Under voltage condition on VBATT influences the status of the channels as described in Table 7.

6.5 I/O Supply (VDDIO)

VDDIO is the supply for all pins that interface with the external microcontroller and also work as feed for the internal logic if VBATT is in under voltage condition.

In case the voltage drops below $VDDIO_{(UV)}$ the under voltage mechanism is triggered and the bit STA_1.VDD_UV is reported via SPI. This is valid if digital POR_N is '1'. For all conditions that generate a POR_N=0, a dedicated clear on read STA_1.POR_N bit is set. Once the faulty condition disappears, the bit remains latched until its status is acknowledged by the microcontroller via SPI.

6.6 Power up

The IC performs Power-up procedure when VBATT is applied to the device and the INn or IDLE pins are set to "high".

To complete power-up procedure $VBATT > 6$ V (min Supply Voltage Range for normal operations) shall be applied, no matter which voltage is present on VDDIO, that may also be left disconnected.

Only after power completion, the device is fully able to guarantee the behavior as described in the Table 7 and Section 6.3 .

6.7 Sleep mode

In Sleep mode, the outputs of L9026 are OFF and the SPI registers are reset to default values. The current consumption is reduced to the IVDDIO(SLEEP) and IVBATT(SLEEP).

6.8 Idle mode

In Idle mode, the current consumption of the device reaches the parameters IVDDIO(IDLE) and IVBATT(IDLE). ON diagnosis functions are not available. During IDLE mode the output channels are disabled. The SPI communication is properly working, when the VDDIO is present.

6.9 Active mode

The Active mode is needed when there are loads to drive. The current consumption is described through these two parameters: IVDDIO(ACTIVE) and IVBATT(ACTIVE).

In case CFG_1.ACT is set to “1”, the device enters in Active mode and remains in this state independently on the status of input pins, of internal PWM generators and PWM_SPI.OUTn bits.

Otherwise, in case the bit CFG_1.ACT is not set, in order to move the device in Active mode all conditions below are needed:

- the IDLE pin set to “high”
- the outputs configured as driven either by external pins (through MAPIN0, MAPIN1 registers) or by SPI (at least one PWM_SPI.OUTn bit is set to “1”) or by the internal PWM generators (through MAP_PWM)
- at least one channel enabled

In this scenario, the device returns to Idle mode as soon as IDLE pin is set to “low”, all inputs pins are set to “low”, all PWM_SPI.OUTn bits are set to “0” and all the internal pwm generators are OFF.

Being the IDLE pin asserted high, an under voltage condition on VDDIO supply brings the device into Idle mode once all INn input pins are set to “low”, on top of the setting of the bit CFG_1.ACT.

DR

6.10 Limp Home mode

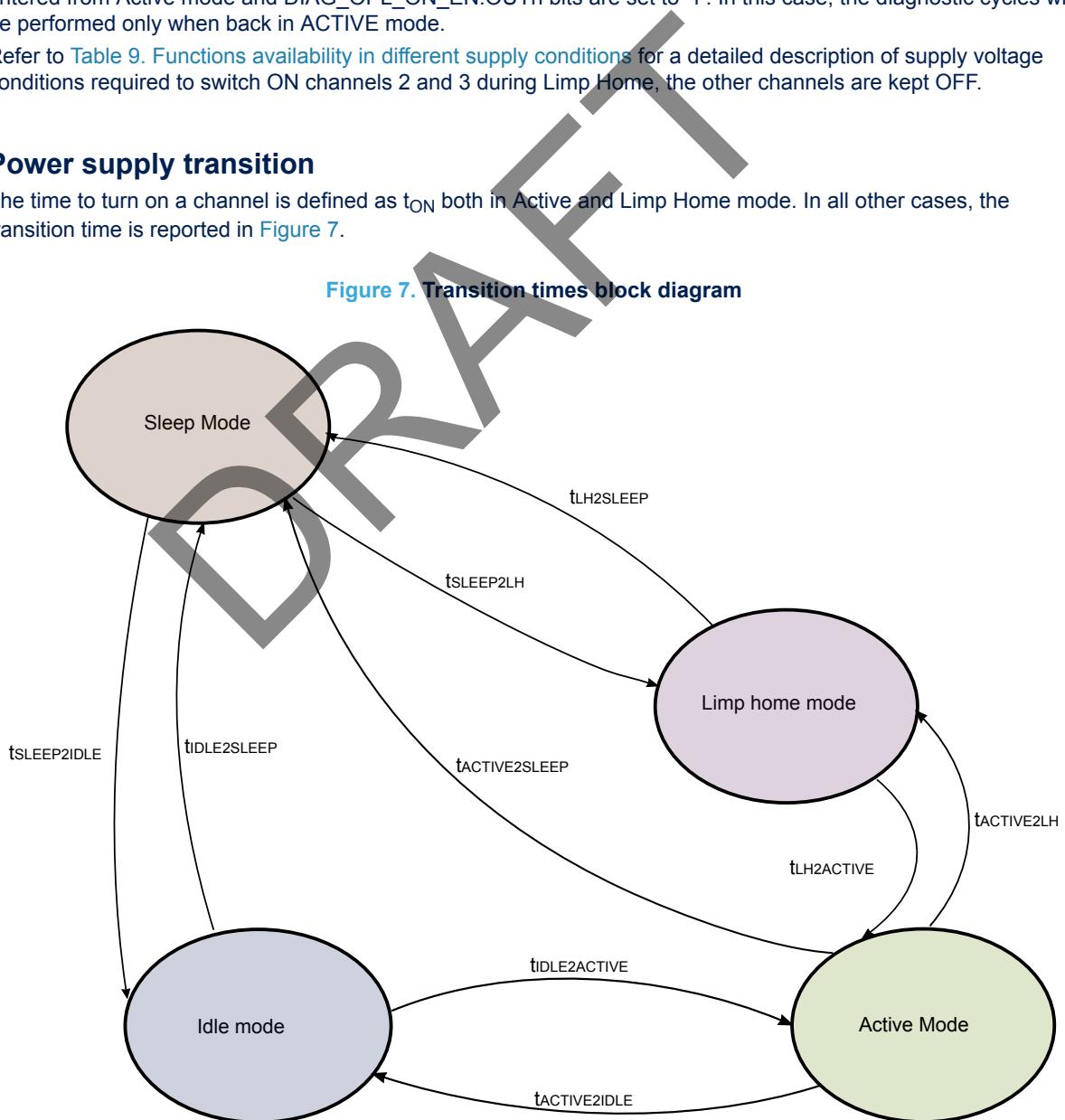
L9026 is brought into Limp Home mode when one of the two input pins is asserted (this means the enabling of the channel connected to it) and also the idle pin is set to "low". SPI communication is possible but in read-only mode (SPI registers can be read but it is not possible write into them).

Limp Home mode has the following effects:

- IN0 is mapped as channel 2 input command, IN1 is mapped as channel 3 input command.
- Overload and overtemperature diagnostics on channel 2 and 3 are available and the related DIAG_OVC_OVT bits can be read.

During the transition from Limp-Home mode to Sleep, the complete set of L9026 registers is not accessible for writing until it remains in the Limp Home state and are set to their default values.

The SPI works only in read mode, in this case a special feature is performed for channel 2 and 3 and the channels can be configured as HS or LS depending on the external load.


Open in ON diagnosis is not performed in Limp Home mode. This is true also if Limp Home mode has been entered from Active mode and DIAG_OPL_ON_EN.OUTn bits are set to '1'. In this case, the diagnostic cycles will be performed only when back in ACTIVE mode.

Refer to [Table 9. Functions availability in different supply conditions](#) for a detailed description of supply voltage conditions required to switch ON channels 2 and 3 during Limp Home, the other channels are kept OFF.

6.11 Power supply transition

The time to turn on a channel is defined as t_{ON} both in Active and Limp Home mode. In all other cases, the transition time is reported in Figure 7.

Figure 7. Transition times block diagram

6.12 Reset

The following four conditions reset the SPI register (r/w) to the default value.

- VDDIO not present or below the undervoltage threshold VDDIO(UV)
- IDLE pin is set to "low" with both INn "low"
- A software reset (CFG_1.RST set to "1") is applied
- NRES pin is asserted (only available in VFQFPN32 package option and configured to sense the pin status)

When the SPI registers are reset, all channels (except 2,3) are switched OFF and the Input Mapping configuration is also reset. This means channels 2, 3 are still commanded by IN0, IN1 respectively.

For functional safety register DIAG_OVC_OVT and STA_1. VDDIO_UV, STA_1.VBATT_UV bits are not cleared by a reset command.

One of the following conditions resets the whole internal logic;

- General internal supply failure (internal supply 3.3 V in UV or bandgap reference not correct)
- VDDIO < VDDIO(UV) and IN1 = 0 and IN0 = 0

6.13 Power supply electrical specifications

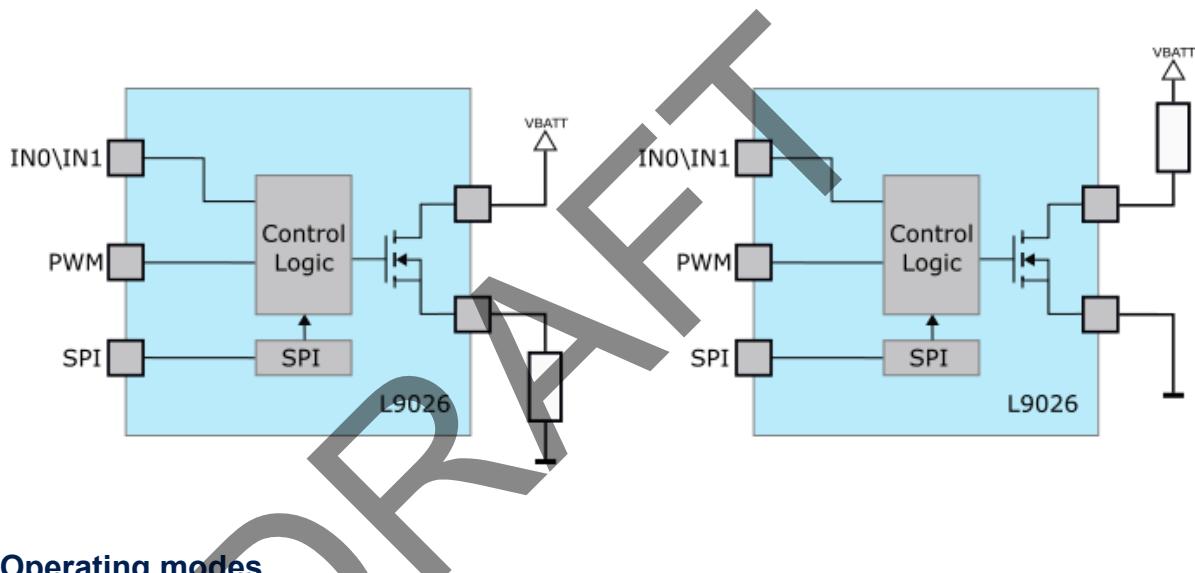
3V \leq VDDIO \leq 5.5 V; 6 V \leq VBATT \leq 18 V; $-40^{\circ}\text{C} \leq T_j \leq 150^{\circ}\text{C}$ unless otherwise specified. All voltages are referred to GND pin.

Table 10. Power supply electrical parameters

Parameter	Description	Test condition	Min	Typ	Max	Unit
VBATT pin						
VBATT(UV_L)	Analog supply undervoltage low threshold	-	2.65	2.8	3	V
VBATT(UV_H)	Analog supply undervoltage high threshold	-	2.7	2.85	3.1	V
I _{VBATT(SLEEP)}	Analog supply current consumption in Sleep mode	V _{IDLE} = 0; V _{INn} = 0; VDDIO = 5 V; TJ \leq 85 °C	-	-	12	µA
I _{VBATT(SLEEP)}	Analog supply current consumption in Sleep mode	V _{IDLE} = 0; V _{INn} = 0; VDDIO = 5 V; TJ \leq 175 °C	-	-	14	µA
I _{VBATT(IDLE)}	Analog supply current consumption in Idle mode	V _{IDLE} = 5 V; V _{INn} = 0; VDDIO = 5 V; f _{CLK} = 0 MHz; CFG_1.ACT = 0 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B	-	-	20	mA
I _{VBATT(IDLE_COR)}	Analog supply current consumption in Idle Mode with VBATT lower than VDDIO (device supplied by VDDIO)	V _{IDLE} = 5 V; V _{INn} = 0; VDDIO = 5 V; f _{CLK} = 0 MHz; CFG_1.ACT = 0 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B ; VBATT = VDDIO - 1 V	-0.1	-	0.1	mA
I _{VBATT(ACTIVE)}	Analog supply current consumption in Active mode - channels OFF	V _{IDLE} = 5 V; V _{INn} = 0; VDDIO = 5 V; f _{CLK} = 0 MHz; CFG_1.ACT = 1 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B	-	14	20	mA
I _{VBATT(ACTIVE_COR)}	Analog supply current consumption in Active mode - channels OFF with VBATT lower than VDDIO (device supplied by VDDIO)	V _{IDLE} = 5 V; V _{INn} = 0; VDDIO = 5 V; f _{CLK} = 0 MHz; CFG_1.ACT = 1 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B ; VBATT = VDDIO - 1 V	0	-	0.6	mA
t _{VBATTUVFLT}	VBATT undervoltage filter	Covered by SCAN	9	14	19	µs

Parameter	Description	Test condition	Min	Typ	Max	Unit
VDDIO pin						
VDDIO _(OP)	Logic Supply Operating range voltage	$f_{CLK} = 8$ MHz	3	-	5.5	V
VDDIO _(UV_RECOVERY)	Analog supply threshold for recovery after battery undervoltage	MISO from “low” to high impedance	2.7	2.85	3	V
VDDIO _(UV)	Undervoltage shutdown	MISO from “low” to high impedance	2.65	2.8	2.95	V
I _{VDDIO(SLEEP)}	Logic supply current in Sleepmode	$V_{IDLE} = 0$; $V_{INn} = 0$; $VDDIO = 5$ VTJ ≤ 85 °C	-	-	1	µA
I _{VDDIO(SLEEP)}	Logic supply current in Sleep mode	$V_{IDLE} = 0V$; $V_{INn} = 0$ V; $VDDIO = 5$ VTJ ≤ 150 °C	-	-	2	µA
I _{VDDIO(IDLE)}	Logic supply current in Idle Mode	$V_{IDLE} = 5$ V; $V_{INn} = 0$ V; $VDDIO = 5$ V; $f_{CLK} = 0$ MHz; CFG_1.ACT = 0 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B	-	-	1.2	mA
I _{VDDIO(IDLE)}	Logic supply current in Idle mode (COR)	$V_{IDLE} = 5$ V; $V_{INn} = 0$ V; $VDDIO = 5$ V; $f_{CLK} = 0$ MHz; CFG_1.ACT = 0 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B ; VBATT = VDDIO - 1 V	2	-	16	mA
I _{VDDIO(ACTIVE)}	Logic supply current in Active mode – channels OFF	$V_{IDLE} = 5$ V; $V_{INn} = 0$ V; $VDDIO = 5$ V; $f_{CLK} = 0$ MHz; CFG_1.ACT = 1 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B	-	0.95	1.5	mA
I _{VDDIO(ACTIVE_COR)}	Logic supply current in Active mode – channels OFF (COR)	$V_{IDLE} = 5$ V; $V_{INn} = 0$ V; $VDDIO = 5$ V; $f_{CLK} = 0$ MHz; CFG_1.ACT = 1 _B ; PWM_SPI.OUTn = 0 _B ; DIAG_OFF_EN.OUTn = 0 _B ; VBATT = VDDIO - 1 V	12	-	20	mA
t _{VDDIOUVFLT}	VDDIO undervoltage filter	Covered by SCAN	9	14	19	µs
Timings						
t _{IDLEFLT}	Idle filter time	-	5	7	10	µs
t _{SLEEP2IDLE}	Sleep to Idle delay	-	-	-	10	µs
t _{IDLE2SLEEP}	Idle to Sleep delay	from IDLE pin to sleep External pull-down MISO to GND required	-	-	10	µs
t _{IDLE2ACTIVE}	Idle to Active delay	from INn or NCS pins to MODE = 11 _B	-	-	1	µs
t _{ACTIVE2IDLE}	Active to Idle delay	from INn or NCS pins to MODE = 10 _B	-	-	150	µs
t _{SLEEP2LH}	Sleep to Limp Home delay	from INn pins to VDS = 10 % VBATT	-	-	10+t _{ON}	µs
t _{LH2SLEEP}	Limp Home to Sleep delay	from INn pins to MODE = 00 _B External pull-down MISO to GND required.	-	-	150	µs
t _{LH2ACTIVE}	Limp Home to Active delay	from IDLE pin to MODE = 11 _B	-	-	10	µs
t _{ACTIVE2LH}	Active to Limp Home delay	from IDLE pin to MODE = 01 _B	-	-	10	µs
t _{ACTIVE2SLEEP}	Active to Sleep delay	from IDLE pin to MODE = 00 _B External pull-down MISO to GND required.	-	-	150	µs

7 Power stages

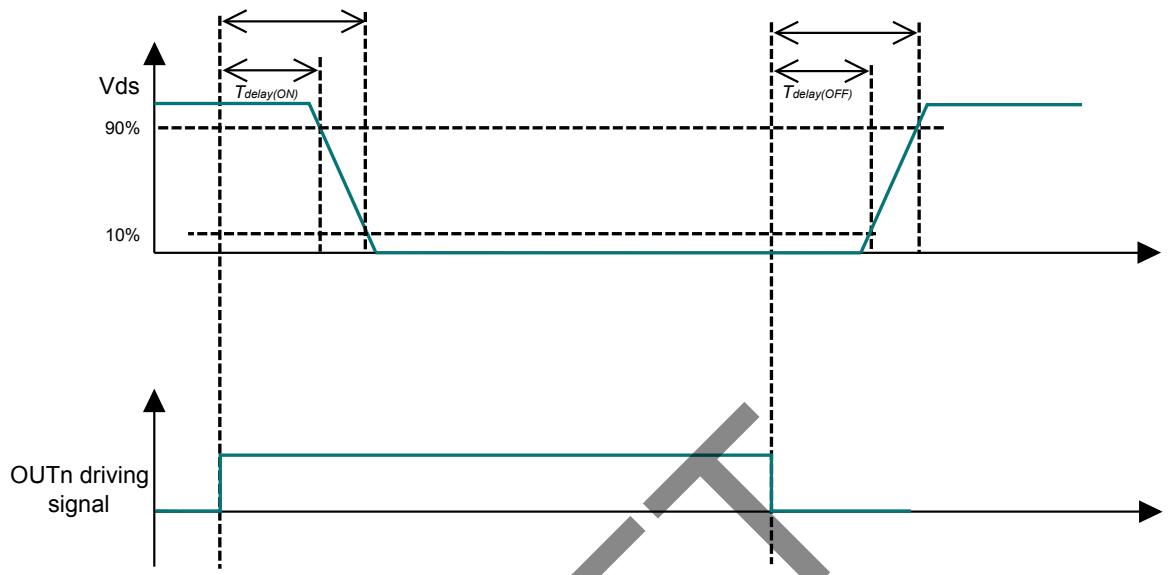

There are two fixed high-side channels and six channels which can be used either as low-side or as high-side switches. During the diagnosis in OFF State, the sequences of operations (pull-up or pull-down current source activation) are determined according to the SPI settings of CFG_0 register.

For the configurable channels, when in high-side configuration, the load is connected between ground and source of the power transistor (pins SOURCEn, n = 2...7) while the drains (pins DRAINn, n = 2...7) can be connected to any potential between ground and VBATT.

The source of the power transistors in case of low side configuration is connected to ground pin (or directly or via a reverse current blocking diode).

For each channels the configuration can be selected through SPI.

Figure 8. HS driver (left) and LS driver (right) configuration


7.1 Operating modes

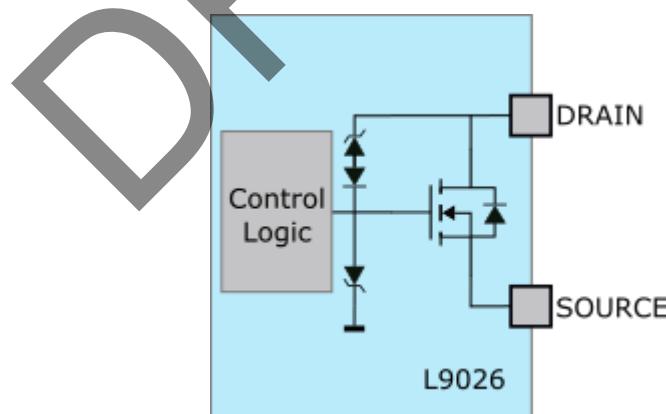
The $R_{DS(ON)}$ (on-state resistance), depends on the T_j (junction temperature) and on the supply voltage.

7.1.1 Switching resistive modes

Refer to the following switching times and slew rates in case of switching of resistive loads.

Figure 9. Switching resistive loads

7.1.2 Inductive output clamp


Due to the fact that inductance still drives the current the voltage across the power switch increases until reaching $V_{DS(CL)}$ in case of switching off inductive loads.

The voltage clamping is necessary to prevent device destruction and protects the device in all operative modes.

The maximum allowed load inductance is limited by the max energy.

The clamping structure protects the device in all operative modes (Sleep, Idle, Active, Limp Home).

Figure 10. Output clamp concept

7.1.3 Maximum load inductance

The device needs to dissipate energy when the inductive loads are switched. [Eq. \(1\)](#) and [Eq. \(2\)](#) compute respectively the energy for low side and high side MOSFET.

$$E = V_{DS(CL)} \cdot \left[\frac{V_S - V_{DS(CL)}}{R_L} \cdot I_n \cdot \left(1 - \frac{R_L \cdot I_L}{V_S - V_{DS(CL)}} \right) + I_L \right] \cdot \frac{L}{R_L} \quad (1)$$

$$E = (V_S - V_{DS(CL)}) \cdot \left[\frac{V_{OUTS(CL)}}{R_L} \cdot I_n \cdot \left(1 - \frac{R_L \cdot I_L}{V_{OUTS(CL)}} \right) + I_L \right] \cdot \frac{L}{R_L} \quad (2)$$

The maximum energy that can be dissipated is constrained by the device package. the ear listed in [Table 14](#) consider that all channels dissipate the same energy switching off at the same time.

7.2

Inverse current behavior

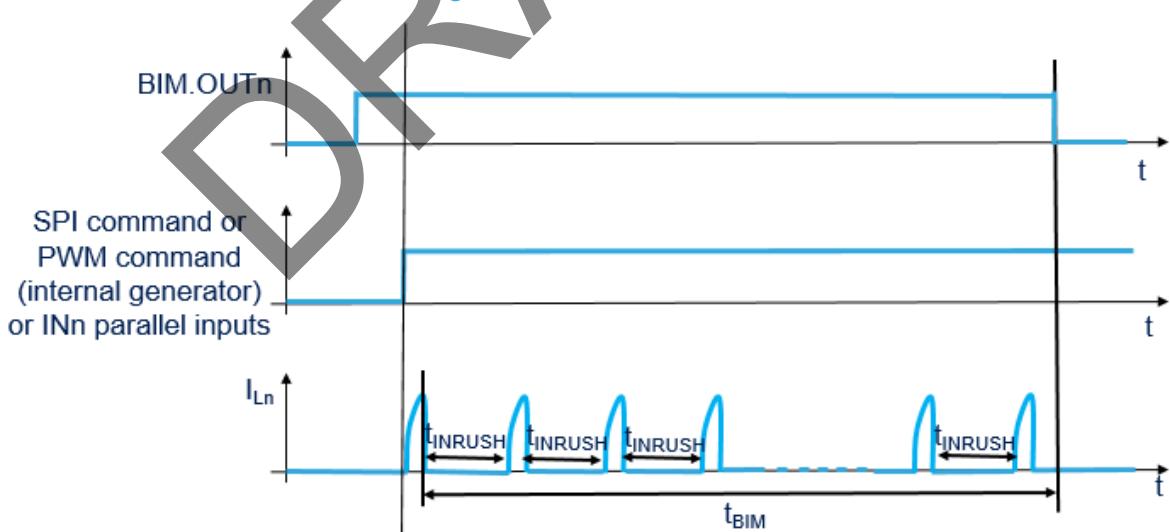
Inverse current ($V_{OUTn_S} > V_{OUTn_D}$) in high-side configuration may occur with channels in ON or in OFF state. A reverse current applied to a specific channel has no impact on the general functionality (switch ON and OFF, protection, diagnostic) of unaffected channels.

The channels affected by the current inversion can show driving capability degradation besides off diagnosis and overcurrent protection unavailability. The reliability in Limp Home condition for the unaffected channels remains unchanged.

7.3

Bulb inrush mode

The device is made especially for drives relays and LED but could happen that one or more output can be used as high-side switches to drive small lamps or electronic loads with a big capacitor. In such a case the inrush current at startup may trigger the overload diagnostic, switching the channel OFF.


In normal operation in order to re-engage the channels from an overload condition, an SPI command to clear the latches (register `DIAG_OVC_OVT`) is needed, to allow the channel turning ON again; for some applications this re-engagement procedure takes too long to transfer enough energy to activate the load.

The IC provides the means to overcome this issue by setting `BIM.OUTn` bit to "1".

Once this feature is enabled, in case the channel reaches the overload current threshold and latches OFF, it restarts automatically after a time t_{INRUSH} , allowing the load to go out of the inrush phase. The automatic re-engagement of the faulty channels lasts for a `BIM` time (t_{BIM}). Once the t_{BIM} counter is started, it is reset only once the t_{BIM} is expired, unless a reset condition occurs (`VDDIO_uv`, hardware or software reset).

A time diagram is shown in Figure 11. The channel configured with `BIM` option can be either driven by an SPI command, PWM command (internal generator) or `INn` parallel input. Once programmed to "1" via SPI, the `BIM.OUTn` bit is set back to "0" at the end of `BIM` time (t_{BIM}), unless a reset condition occurs (`VDDIO_uv`, hardware or software reset): an eventual switch off of the channel commanded by the user has no impact on `BIM.OUTn` configuration.

Figure 11. Bulb inrush mode

When `BIM.OUTn` are set to "1", eventual overcurrent/overtemperature conditions will flag `DIAG_OVC_OVT.OUTn` bit, but the affected channels will not be permanently switched OFF. Once asserted, eventual SPI attempt to clear `DIAG_OVC_OVT.OUTn` will be ignored, until the `BIM` counter is expired. In order to resume the normal behavior when the `BIM` counter is expired, the `DIAG_OVC_OVT.OUTn` shall be cleared in order to allow IC to perform open load ON diagnosis.

The bit `BIM.OUTn` is set to "0" by an internal timer sets after 40 ms (refer to parameter t_{BIM}) starting from the first overcurrent event latched to avoid the thermal stress of the channel in case of short circuit at the output.

7.4 PWM generators

Device has two independent PWM generators, which are defined as “PWM GEN” and “PWM LED” here below. The two PWM generators can be associated to one or more channels, is possible to configure it with various frequencies and duty cycle. Both refer to the same base frequency f_{INT} (8 MHz typ.) even if two separate pre-scalers can be defined.

7.4.1 PWM GEN

The first PWM generator is called PWM GEN. Its frequency pre-scaler can be adjusted using CFG_1.PWM_DIV_GEN bits to program target frequency and using CFG_2.FR_ADJ bits to modulate fine adjustments around the target. Configuration of fine adjustment is described in [Table 11](#) while target frequency setting is reported in [Table 12](#).

Table 11. Adjustment coefficients

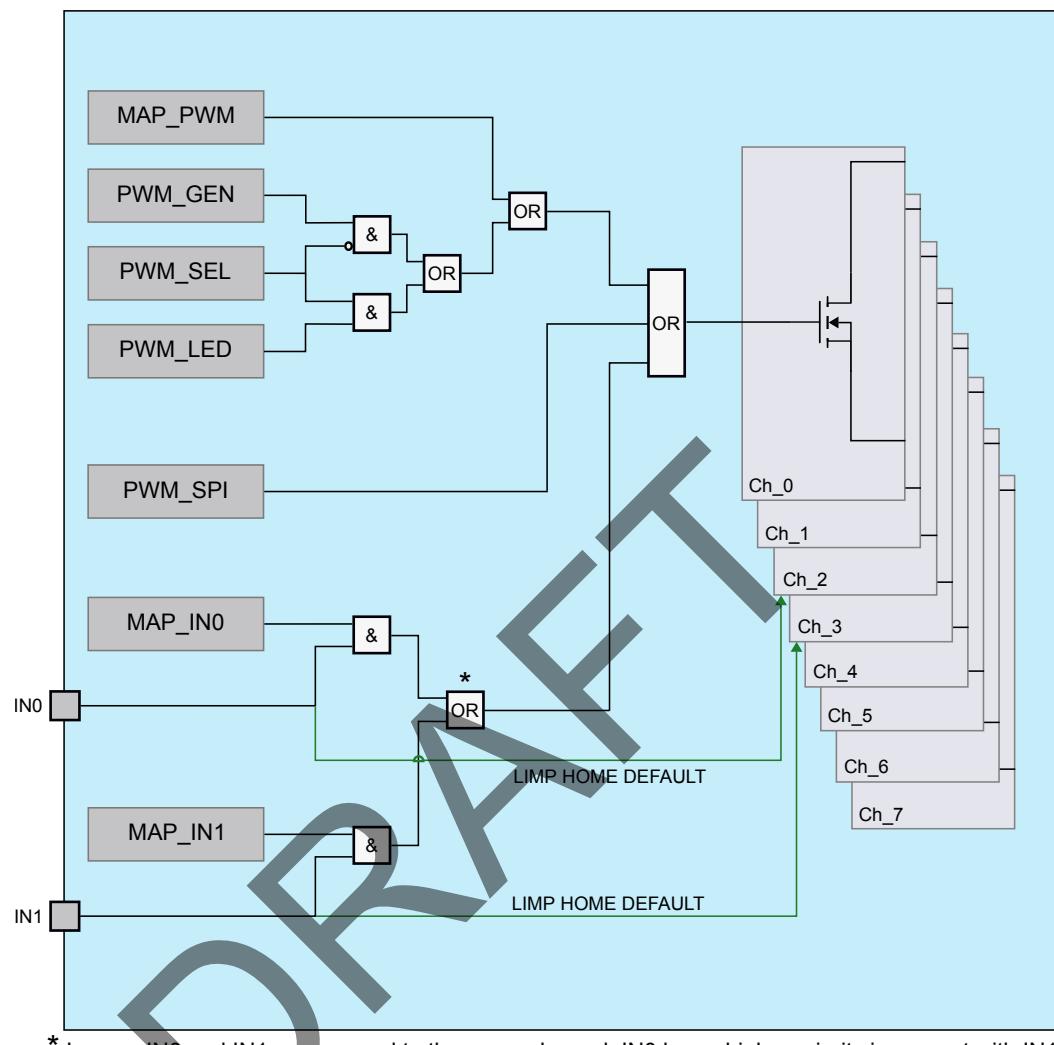
CFG_2.FR_ADJ	Absolute delta to f_{INT} divider
00 _B	0 %
01 _B	-15 %
10 _B	+15 %
11 _B	0 %

The user can set the following parameters to configure the PWM generator:

- duty cycle (bits PWM_GEN_DC.DUTY_CYCLE)
 - 8 configuration bits are available, with 100/255 duty cycle resolution for each LSB
 - The maximum duty cycle achievable is 100% (PWM_GEN_DC.DUTY_CYCLE set to “1111111B”)
 - In case the duty cycle is changed, the next target is applied once the previous PWM period is over and the new one is started. Once a new target is programmed, the behavior above is valid also if the current duty is 100% while when the current duty is 0% the new target value is applied immediately.
- frequency (bits CFG_1.PWM_DIV_GEN)
 - 2 configuration bits are available to select the frequency among 4 target values

Table 12. PWM GEN generator available frequencies

CFG_1.PWM_DIV_GEN	PWM frequency
00 _B	122.5 Hz
01 _B	245.1 Hz
10 _B	490.2 Hz
11 _B	980.4 Hz


- Channels driven by PWM GEN (PWM_SEL and PWM_MAP registers)

The correct sequence to use the PWM generator is:

- define the frequency divider through CFG_1.PWM_DIV_GEN bit.
- define duty cycle control register through PWM_GEN_DC register.
- set up channel output control through PWM_SEL register (PWM GEN corresponds to 0)
- define channels driven by PWM selected in PWM_SEL through mapping register PWM_MAP

In order to clarify how to select the source that can drive the channels command, the driving tree with all possible sources (ie PWM generators, SPI and parallel inputs) is reported in [Figure 12](#).

Figure 12. Driving tree

7.4.2 PWM LED

The second PWM generator is named PWM LED. Its frequency prescaler can be adjusted using CFG_2.PWM_DIV_LED bits (see Table 13) while the modulation around the defined target is actually shared with PWM GEN, using CFG_2.FR_ADJ bits described in Table 11.

The user can set the following parameters to configure the PWM generator:

- duty cycle (bits PWM_LED_DC.DUTY_CYCLE)
 - 8 configuration bits are available, with 100/255 duty cycle resolution for each LSB
 - The maximum duty cycle achievable is 100% (PWM_LED_DC.DUTY_CYCLE set to “1111111B”)
 - In case the duty cycle is changed, the next target is applied once the previous PWM period is over and the new one is started. Once a new target is programmed, the behavior above is valid also if the current duty is 100% while when the current duty is 0% the new target value is applied immediately.
- frequency (bits CFG_1.PWM_DIV_LED)
 - 2 configuration bits are available to select the frequency among 4 target values

Table 13. PWM LED generator available frequencies

CFG_2.PWM_DIV_LED	PWM frequency
00 _B	122.5 Hz
01 _B	245.1 Hz
10 _B	490.2 Hz
11 _B	980.4 Hz

- Channels driven by PWM LED (PWM_SEL and PWM_MAP registers)

The correct sequence to use the PWM LED generator is:

- define the frequency divider through CFG_1.PWM_LED_GEN bit.
- define duty cycle control register through PWM_LED_DC register.
- set up channel output control through PWM_SEL register (PWM LED corresponds to 0)
- define channels driven by PWM selected in PWM_SEL through mapping register PWM_MAP

7.5 Power stages electrical specifications

3 V ≤ VDDIO ≤ 5.5 V; 6 ≤ VBATT ≤ 18 V; -40 °C ≤ T_j ≤ 150 °C unless otherwise noted. All voltages are referred to GND pin.

Table 14. Power stages electrical parameters

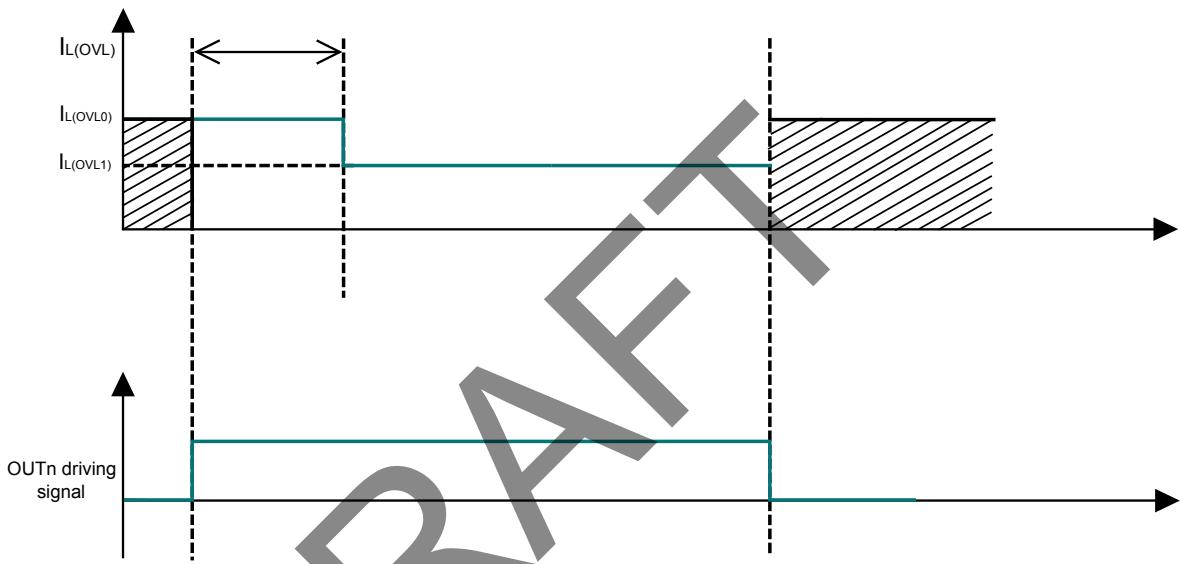
Parameter	Description	Test condition	Min	Typ	Max	Unit
R _{DS(ON)}	On-State Resistance	T _j = 25 °C	-	0.75	-	Ω
R _{DS(ON)}	On-State Resistance	T _j = 150 °C; I _L = 100 mA	-	-	1.5	Ω
I _{L(NOM)}	Nominal load current (all channels active)	T _j ≤ 150 °C; Design info	-	260	500	mA
E _{AS}	Maximum energy dissipation single pulse	T = 25 °C, IL = 2XIL(EAR)	-	-	50	mJ
E _{AS}	Maximum energy dissipation single pulse	T = 150 °C, IL = 400 mA	-	-	25	mJ
I _{L(EAR)}	Load current for maximum energy dissipation – repetitive (all channels active)	T _j ≤ 150 °C; Design info	-	220	-	mA
E _{AR}	Maximum energy dissipation repetitive pulses - 2*I _{L(EAR)} (two channels in parallel)	T _{j(0)} = 85 °C; I _{L(0)} = 2*I _{L(EAR)} ; 2*10 ⁶ cycles	-	-	15	mJ
E _{AR}	Maximum energy dissipation repetitive pulses - I _{L(EAR)}	T = 85 °C, 2*10 ⁶ cycles	-	-	10	mJ
V _{DS}	Voltage at power transistor	-	-0.3	-	V _{D(CL)}	V
V _{D(CL)}	Drain to GND Output clamping voltage LS	I _L = 10 mA; Low-Side Configuration	45	47	49	V

Parameter	Description	Test condition	Min	Typ	Max	Unit
$V_{S(CL)}$	Source to GND Output clamping voltage HS	$I_L = 10 \text{ mA}$; $V_{BATT} = V_{OUT_Dn} = 7 \text{ V}$; High-Side Configuration	-18	-17	-16	V
$I_{L(OFF)}$	Output leakage current (each channel) $T_J = 150 \text{ }^\circ\text{C}$	$V_{BATT} = 0 \text{ V}$; $V_{DDIO} = 0 \text{ V}$; $V_{SOURCE} = 0 \text{ V}$; $V_{DS} = 28 \text{ V}$; T_J up to $150 \text{ }^\circ\text{C}$	-3	0	3	μA
$I_{L(OFF)_HS}$	Output leakage current (each channel) $T_J = 150 \text{ }^\circ\text{C}$	$V_{BATT} = 28 \text{ V}$; $V_{DDIO} = 0 \text{ V}$; $V_{SOURCE} = 0 \text{ V}$; $V_{DS} = 28 \text{ V}$; T_J up to $150 \text{ }^\circ\text{C}$ – High side case	-3	-	3	μA
$I_{(OFF)_HS}$	Output current (each channel) in High side case	High side configuration, Power OFF, $V_{SOURCE} = 0 \text{ V}$	-70	-	-30	μA
$I_{(OFF)_HS}$	Output current (each channel) in High side case	High side configuration, Power OFF, $V_{SOURCE} = 2.5 \text{ V}$	-10	-	10	μA
Timing						
$t_{DELAY(ON)}$	Turn-ON delay (from INn pin or bit to $V_{OUT} = 90\%$ VBATT) (Channels used as Low-Side)	$RL = 50 \Omega$ $VBATT = 14 \text{ V}$ Active or Limp Home mode	3	5	7	μs
$t_{DELAY(OFF)}$	Turn-OFF delay (from INn pin or bit to $V_{OUT} = 10\%$ VBATT) (Channels used as Low-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	2.5	10	21	μs
t_{ON}	Turn-ON time (from INn pin or bit to $V_{OUT} = 10\%$ VBATT) (Channels used as Low-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	7	15	35	μs
t_{OFF}	Turn-OFF time (from INn pin or bit to $V_{OUT} = 90\%$ VBATT) (Channels used as Low-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	4	-	40	μs
dV/dt_{ON}	Turn-ON slew rate $V_{DS} = 70\%$ to 30% VBATT (Channels used as Low-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	0.35	1	2.2	$\text{V}/\mu\text{s}$
$-dV/dt_{OFF}$	Turn-OFF slew rate $V_{DS} = 30\%$ to 70% VBATT (Channels used as Low-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	0.15	1.3	3.4	$\text{V}/\mu\text{s}$
$-dV/dt_{OFF}$	Turn-OFF slew rate $V_{DS} = 30\%$ to 70% VBATT Gate kill condition (Channels used as Low-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	12	-	35	$\text{V}/\mu\text{s}$
$t_{DELAY(ON)}$	Turn-ON delay (from INn pin or bit to $V_{OUT} = 10\%$ VBATT) (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	1.2	3.5	7.5	μs
$t_{DELAY(OFF)}$	Turn-OFF delay (from INn pin or bit to $V_{OUT} = 90\%$ VBATT) (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	2	10	21	μs
t_{ON}	Turn-ON time (from INn pin or bit to $V_{OUT} = 90\%$ VBATT) (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	7	16	25	μs
t_{OFF}	Turn-OFF time (from INn pin or bit to $V_{OUT} = 10\%$ VBATT) (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	5	19	35	μs
dV/dt_{ON}	Turn-ON slew rate $V_{DS} = 30\%$ to 70% VBATT (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	0.25	1	1.9	$\text{V}/\mu\text{s}$
$-dV/dt_{OFF}$	Turn-OFF slew rate $V_{DS} = 70\%$ to 30% VBATT (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	0.25	-	2.5	$\text{V}/\mu\text{s}$
$-dV/dt_{OFF}$	Turn-OFF slew rate $V_{DS} = 70\%$ to 30% VBATT Gate kill condition (Channels used as High-Side)	$RL = 50 \Omega$; $VBATT = 14 \text{ V}$; Active or Limp Home mode	6	-	30	$\text{V}/\mu\text{s}$
t_{INRUSH}	Bulb Inrush Mode restart time	Active mode; Covered by SCAN	29	40	51	μs

Parameter	Description	Test condition	Min	Typ	Max	Unit
t_{BIM}	Bulb Inrush Mode reset time	Active mode; Covered by SCAN	29	41	52	ms

Table 15. PWM electrical parameters

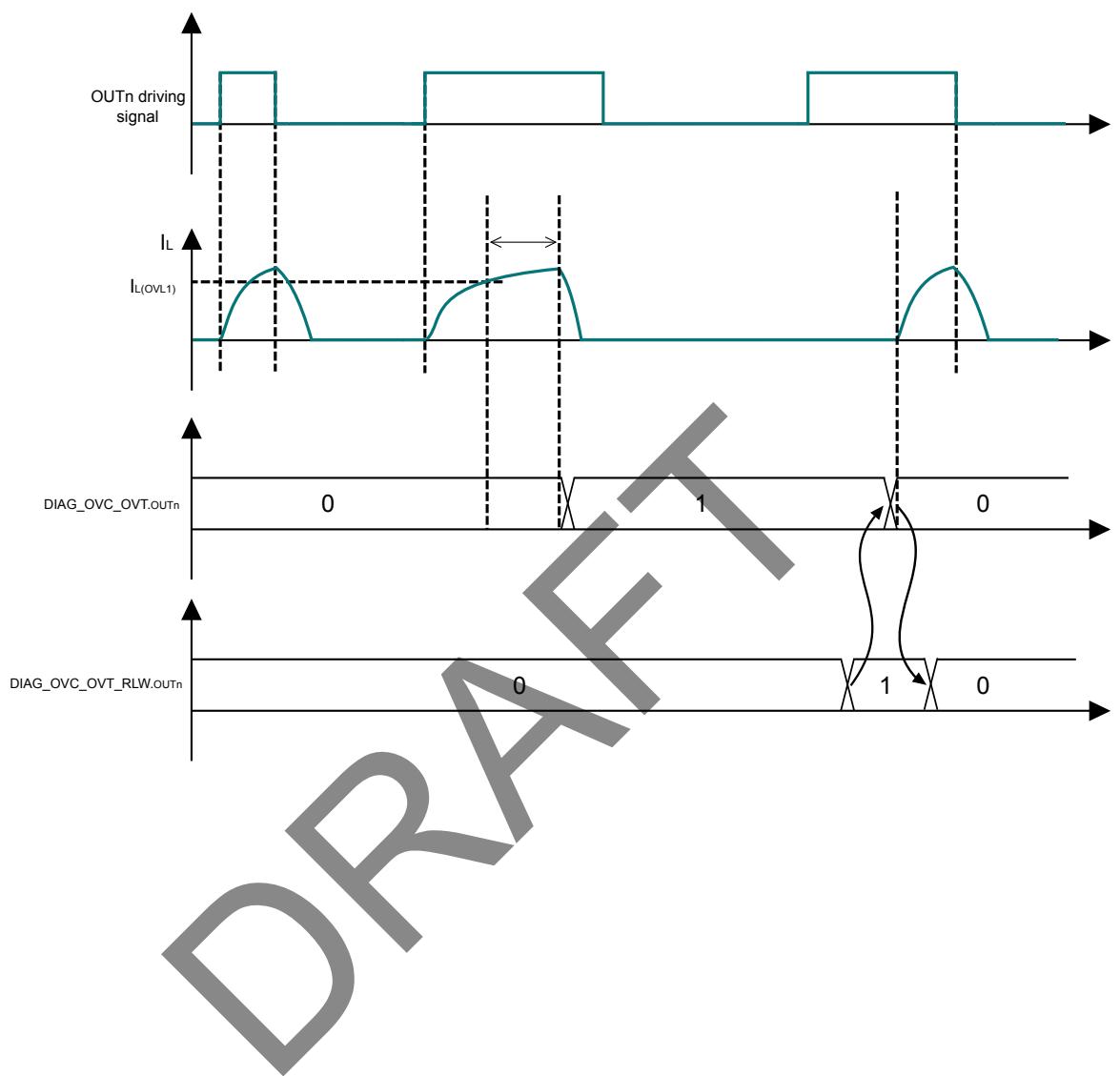
Parameter	Description	Test condition	Min	Typ	Max	Unit
f_{INT}	Internal reference frequency	Covered by SCAN	-	8	-	MHz
$f_{INT(VAR)}$	Internal reference frequency variation		-15	-	15	%
t_{SYNC}	Internal reference frequency synchronization time	Covered by SCAN	-	-	10.5	ms


DRAFT

8 Protection functions

8.1 Overload protection

The L9026 has two different over load current thresholds that preserve it in case of overload or short-circuit of the load. This protection is present for every High side and Low side.


Figure 13. Overload thresholds

Every time the channel is switched OFF the overload current threshold is set back to $I_{L(OVL0)}$.

If the load current is higher than $I_{L(OVL0)}$ or $I_{L(OVL1)}$, after time $t_{OFF(OVL)}$ the overloaded channel is switched OFF and the corresponding diagnosis bit `DIAG_OVC_OVT.OUTn` is set to "1". The channel can be switched ON after clearing the protection latch by setting the corresponding `DIAG_OVC_OVT_RLW.OUTn` bit to "1." This bit is set back to "0" internally after de-latching the channel. Refer to Figure 14 for details.

Figure 14. Latch off in overload condition

8.2

Overtemperature protection

A temperature sensor is integrated for each channel. Totally 8 temperature sensors are present, which switch OFF the channel in overtemperature in order to prevent destruction.

Once a channel overtemperature is detected, the corresponding diagnosis bit DIAG_OVC_OVT is set (combined with Over Load protection). The channel can be switched ON after clearing the protection latch by setting the corresponding DIAG_OVC_OVT_RLW.OUTn bit to "1". This bit is set back to "0" internally after de-latching the channel.

8.3

Overtemperature and overload in Limp Home mode

In Limp Home mode, through the input pin In0 and In1, the channels 2 and 3 can be switched ON. In case of overload, short-circuit or overtemperature the channels are switched OFF. If In0 and In1 remain "high", the channel remains on, in case of overload the channels restart at every t_{RETRY} .

8.4

Reverse polarity protection

In case of reverse polarity (battery) condition, the body diode of each DMOS cause the power dissipation. The reverse current through the channels has to be limited by the connected loads.

In order to sustain the Reverse polarity condition the exposed pad of device must be left electrically floating.

8.5

Electrical characteristics

$3 \text{ V} \leq \text{VDDIO} \leq 5.5 \text{ V}$; $6 \text{ V} \leq \text{VBATT} \leq 18 \text{ V}$; $-40 \text{ }^{\circ}\text{C} \leq T_j \leq 150 \text{ }^{\circ}\text{C}$ unless otherwise noticed. All voltages are referred to GND pin.

Table 16. Over temperature and over load electrical parameters

Symbol	Description	Test condition	Min	Typ	Max	Unit
$I_{L(OVL0_LS)}$	Over Load detection current (Channels used as Low-Side)	$T_J = -40 \text{ }^{\circ}\text{C}$	1	-	1.9	A
$I_{L(OVL0_LS)}$	Over Load detection current (Channels used as Low-Side)	$T_J = 25 \text{ }^{\circ}\text{C}$	1	-	1.7	A
$I_{L(OVL0_LS)}$	Over Load detection current (Channels used as Low-Side)	$T_J = 150 \text{ }^{\circ}\text{C}$	1	-	1.7	A
$I_{L(OVL1_LS)}$	Over Load detection current (Channels used as Low-Side)	$T_J = -40 \text{ }^{\circ}\text{C}$	0.6	-	1	A
$I_{L(OVL1_LS)}$	Over Load detection current (Channels used as Low-Side)	$T_J = 25 \text{ }^{\circ}\text{C}$	0.6	-	1	A
$I_{L(OVL1_LS)}$	Over Load detection current (Channels used as Low-Side)	$T_J = 150 \text{ }^{\circ}\text{C}$	0.6	-	1	A
$I_{L(OVL0_HS)}$	Over Load detection current (Channels used as High-Side)	$T_J = -40 \text{ }^{\circ}\text{C}$	1.2	-	2.1	A
$I_{L(OVL0_HS)}$	Over Load detection current (Channels used as High-Side)	$T_J = 25 \text{ }^{\circ}\text{C}$	1.2	-	1.9	A
$I_{L(OVL0_HS)}$	Over Load detection current (Channels used as High-Side)	$T_J = 150 \text{ }^{\circ}\text{C}$	1	-	1.7	A
$I_{L(OVL1_HS)}$	Over Load detection current (Channels used as High-Side)	$T_J = -40 \text{ }^{\circ}\text{C}$	0.7	-	1.4	A
$I_{L(OVL1_HS)}$	Over Load detection current	$T_J = 25 \text{ }^{\circ}\text{C}$	0.7	-	1.3	A

Symbol	Description	Test condition	Min	Typ	Max	Unit
	(Channels used as High-Side)					
$I_{L(OVL1_HS)}$	Over Load detection current (Channels used as High-Side)	$T_J = 150 \text{ }^{\circ}\text{C}$	0.7	-	1.2	A
t_{OVLIN}	Over Load threshold switch delay time	Covered by SCAN	110	170	260	μs
$t_{OFF(OVL)}$	Over Load shut-down delay time	$BIM.\text{OUTn} = 0_B$	4	7	11	μs
$T_{J(SC)}$	Thermal shut-down temperature	-	182	192	202	$^{\circ}\text{C}$
t_{RETRY}	Restart time in Limp Home mode	Covered by SCAN	29	41	52	ms
t_{OVC}	Restart time in Limp Home mode	Covered by SCAN	-	-	50	μs

DRAFT

9 Diagnosis

The diagnosis information about the load status and the device is provided by the SPI, this information related to each channel is independent, a fault condition detected on one channel, has no effect on the other.

9.1 Overload and overtemperature

The diagnosis bit `DIAG_OVC_OVT` is set when both overload and overtemperature happens. In order to reactivate the channels `DIAG_OVC_OVT_RLW` bit must be set to "1." The writing operation is necessary to remove the fault as a consequence of the fact that `DIAG_OVC_OVT` register is clear on write.

9.2 OFF diagnosis

This diagnosis is available only in Active mode.

The device is able to detect two kind of faults in OFF, open load and short (to battery in HS configuration or to ground in LS configuration).

This diagnosis is available upon SPI request; Once the diagnosis has been started on one or more channels, a new eventual diagnosis request is ignored until the ongoing cycle is finished.

The diagnosis strategy is implemented over two different phases:

- First the IC distinguishes between faulty and no faulty condition.
- In case of trouble found in the previous step, a specific procedure is put in place to detect the nature of the fault.

The diagnosis is slightly different depending on a LS or HS configured output.

The strategy in LS configuration is reported below and referred to [Figure 15](#); the HS case is quite similar, except for the order in which pull-up and pull-down current generators are activated and for the pin involved (SOURCEn for a HS configured channel, DRAINn for a LS).

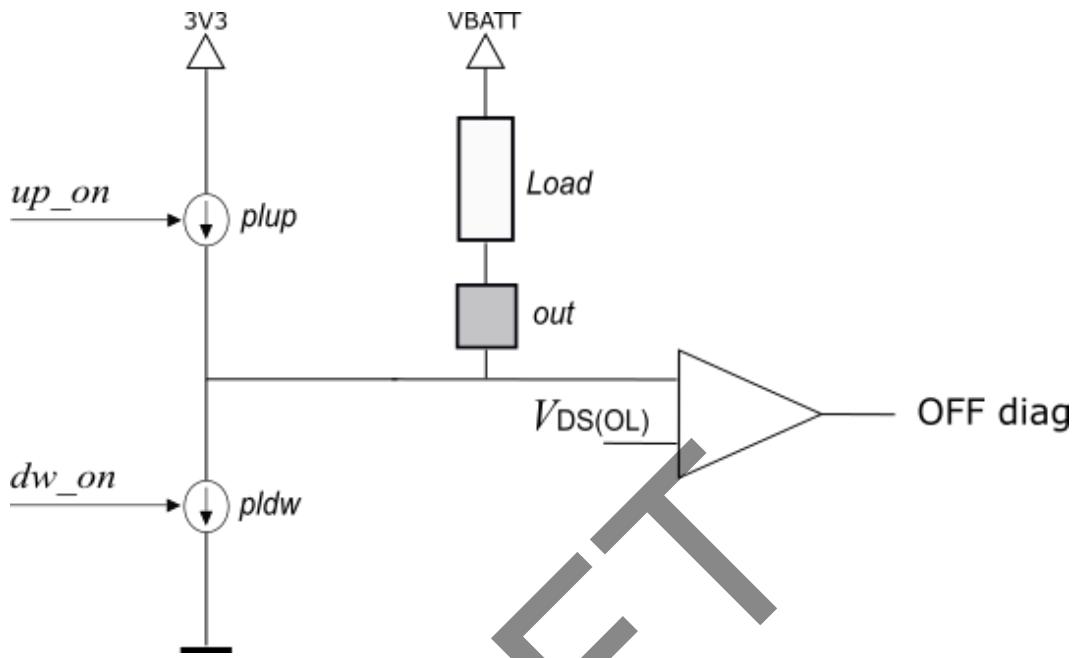
- This first phase lasts for t_{OFF1LS} .

The current generator marked with 'pldw' (driven by `dw_on`) is active while the current generator marked as 'plup' is off..

In this condition, if the drain voltage remains above the threshold $V_{DS(OL)}$, the comparator output is low which means that a load is present.

If the drain voltage decreases below the threshold, instead, the comparator flags the presence of a fault.

- This second phase lasts for t_{OFF2LS} .


After the first diagnosis step the output of the comparator is set to '1' if a faulty condition has been found.

The current generator marked with 'plup' (driven by the signal `up_on`) is activated while 'pldw' is off.

In case, after the pull-up activation, the drain voltage rises and overcomes the comparator threshold again, an Open Load fault is reported.

If the voltage remains constant and equal to zero for the whole diagnosis time, instead, a Short to ground fault is recognized.

Figure 15. OFF diagnosis circuit

9.3

Open load at ON

On each channel it is possible to request the open load at on diagnosis.

This diagnosis is designed having in mind a specific case of high side channels driving LEDs kept fully ON.

Moreover, the device will ignore the request of an open load at on diagnosis in case the channel is configured as low side. This means that the request diagnosis register will not be updated in case it is requested the diagnosis on a low side configured channel.

Such a diagnosis is not applicable in case of loads driven in PWM mode (to avoid eventual interferences with the PWM driving signal) and inductive loads (to avoid unwanted power dissipations during switch OFF transients).

9.3.1

Open load at ON (diagnosis mechanism)

The diagnosis cannot be run on more channels simultaneously, but it can work only on one channel at a time.

This can be activated by setting the bit corresponding to the desired channel in the `DIAG_OPL_ON_EN` register.

During the diagnostic loop the channel is switched off every t_{OPLCYC} for a maximum time of t_{OPLLEN} .

Such a time is designed to be short enough to result in a negligible variation of the luminescence of LED during the test.

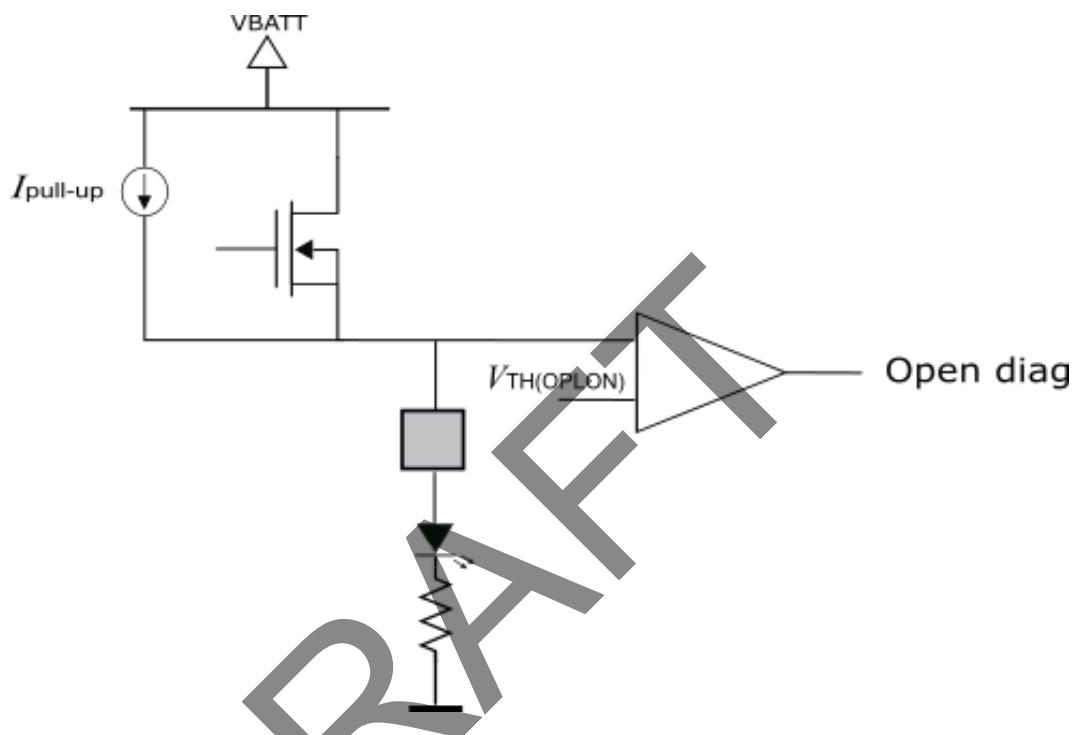
During the short switch-off time required to perform the diagnosis a pull-up current generator $I_{L(OL)}$ is applied to the source of the channel, as it can be seen in Figure 16.

If the load is present the source voltage drops suddenly, the output of the comparator is set and channel immediately restarts.

If an open load condition exists, instead, the pull-up current $I_{L(OL)}$ is capable of keeping the source voltage to battery and the V_{DS} value remains stable for the whole diagnosis time interval.

In this case once t_{OPLLEN} is elapsed, the comparator output is still low and the flag related to the fault is set; the channel is anyway restarted.

The OPL ON diagnosis lasts just a t_{OPLLEN} time in the worst case scenario, i.e. when the open load is detected.


Once an SPI frame commanding the diagnostic is received, the diagnosis will start a T_{oplcyc} time after the corresponding request has been accepted.

As long as the diagnosis request bit remains high the open load test will be performed every T_{oplcyc} and the results of the diagnosis will be reported in the register `DIAG_OPL_ON`: if an open load on channel 'n' is detected, the corresponding bit `DIAG_OPL_ONn` is set.

The OPL ON diagnosis can be performed only if the DIAG_OVC_OVT.OUTn flag is not asserted and can be run only on a single channel for each diagnostic cycle: an eventual diagnostic cycle performing OPL ON on multiple channels will not be executed and SPI command will have no effect.

Once the current diagnostic cycle is over, a new cycle can be started with OPL ON diagnosis requested for a different channel.

Figure 16. Open load at ON circuit

9.3.2 Open load at ON bit

In the DIAG_OPL_ON register there are 8 bits that can assume the following values:

- “0” = no Open Load at ON state detected, or the channel is OFF when the diagnosis is performed
- “1” = Open Load at ON state detected

This register is clear on read. An SPI read is necessary to clear the faulty information.

Once the DIAG_OPL_ON flag is set, it remains asserted until a new diagnostic cycle is completed when the fault is no longer present, and the diagnostic register is read through SPI.

9.4

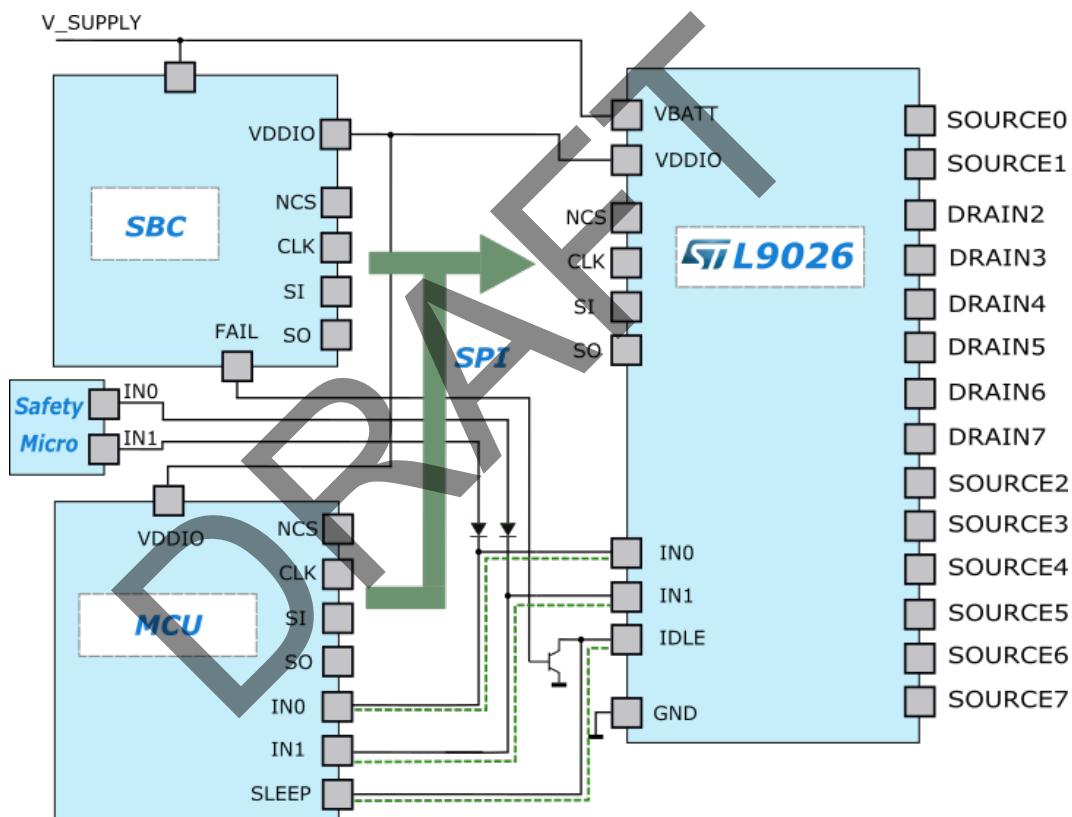
Electrical parameters

$3 \text{ V} \leq \text{VDDIO} \leq 5.5$; $6 \text{ V} \leq \text{VBATT} \leq 18 \text{ V}$; $-40 \text{ }^{\circ}\text{C} \leq \text{Tj} \leq 150 \text{ }^{\circ}\text{C}$ unless otherwise noticed. All voltages are referred to GND pin.

Table 17. Output status and open load ON electrical parameters

Symbol	Description	Test condition	Min	Typ	Max	Unit
Output status monitor						
$V_{DS(OL)}$	Output Status Monitor threshold voltage	$\text{VBATT} = 14 \text{ V}$; Active	1.7	1.95	2.2	V
I_{OLD_LS}	Output diagnosis pull down current (channels used as Low Side)	$V_{DRAIN} = 14 \text{ V}$ (channels used as Low Side)	290	-	550	μA
I_{OLU_LS}	Output diagnosis pull up current (channels used as Low Side)	$V_{DRAIN} = 0 \text{ V}$ (channels used as Low Side)	-260	-	-140	μA
I_{OLD_HS}	Output diagnosis pull down current (channels used as High Side)	$V_{SOURCE} = 14 \text{ V}$ (channels used as High Side)	320	-	520	μA
I_{OLU_HS}	Output diagnosis pull up current (channels used as High Side)	$V_{SOURCE} = 0 \text{ V}$ (channels used as High Side)	-310	-	-160	μA
Open load at ON						
t_{OPLCYC}	Open Load at ON Diagnosis cycle time	Covered by SCAN	120	160	210	ms
t_{OPLEN}	Open Load at ON Diagnosis time	Covered by SCAN	30	45	55	μs
t_{OFF1LS}	Diag OFF LS first window	Covered by SCAN	0.96	1.03	1.28	ms
t_{OFF2LS}	Diag OFF LS second window	Covered by SCAN	210	250	290	μs
t_{OFF1HS}	Diag OFF HS first window	Covered by SCAN	210	250	290	μs
t_{OFF2HS}	Diag OFF HS second window	Covered by SCAN	0.96	1.03	1.28	ms
$V_{TH(OPLON)}$	Voltage threshold for HS OPL ON Diagnosis at VS pin	Active mode	VDrain-1.3	VDrain-1.2	VDrain-1.1	V
$I_{TH(OPLON)}$	Current provided by the source while forcing $\text{VBAT}-3\text{V}$ on Source pin	$\text{VS} = \text{VBAT}-3\text{V}$; Active mode	1.2	-	2	mA

10 Limp Home mode


The Limp is intended to handle limited functionality of the device in critical faulty situations.

A typical application scenario is reported in [Figure 17](#), with a system which is reconfigured during Limp Home as shown in [Figure 18](#).

Shall the micro that controls the device fail, an external safety micro takes over controlling parallel inputs IN0 and IN1. The SBC will force the IDLE signal low which brings the device in Limp Home. Once the switching activity on IN0, IN1 is over, being the IDLE pin still de-asserted, the device will reach Sleep mode.

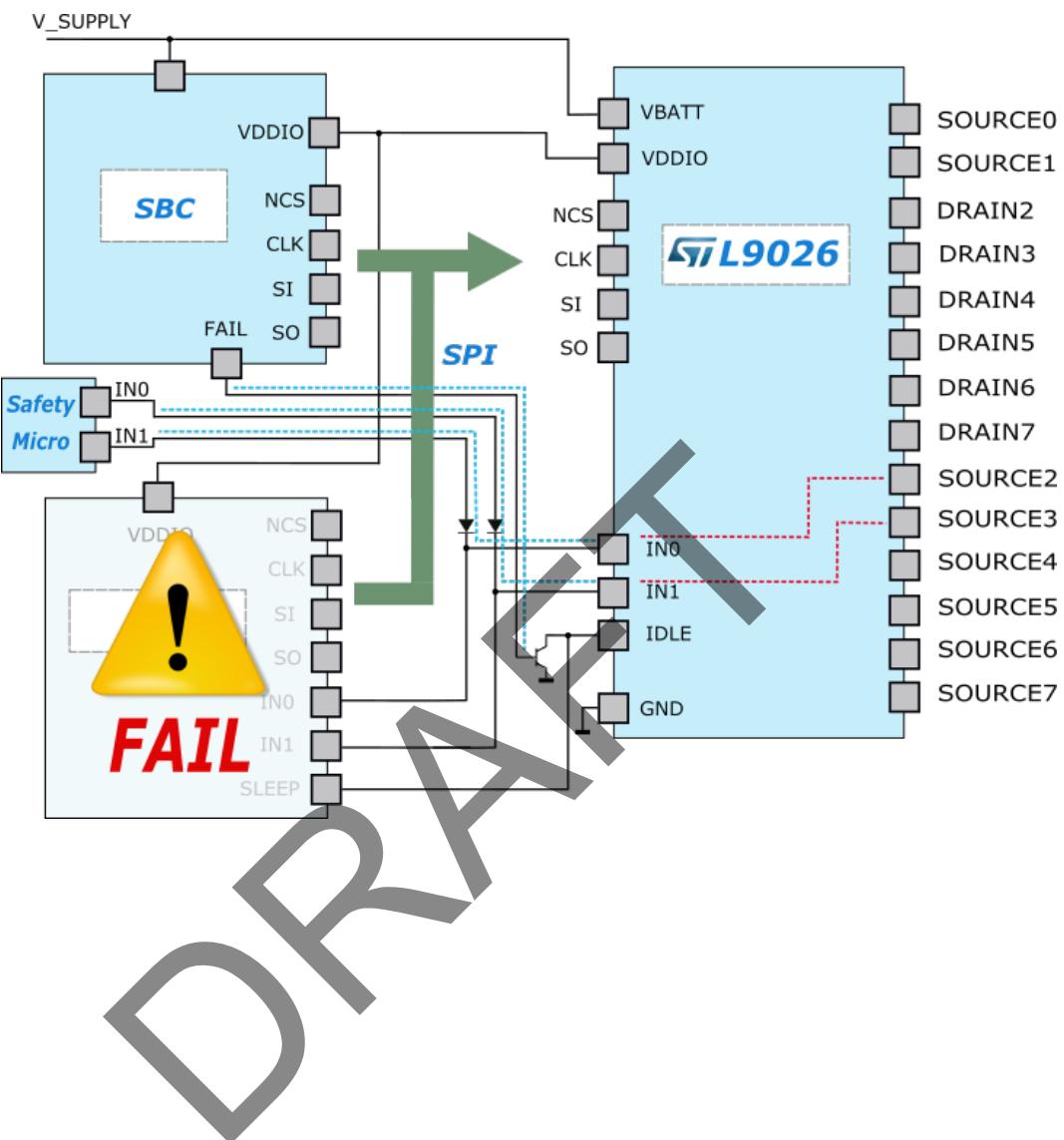

During this mode active, L9026 is only capable of driving two outputs i.e. OUT2 through IN0 and OUT3 through IN1; such a mapping is fixed and overcomes an eventual different mapping programmed via SPI once the Limp Home is reached.

Figure 17. Possible system configuration during normal operating conditions

In [Figure 17](#) the dotted green lines mark the signals path when the device is operating in normal mode, IDLE, IN0, IN1 are provided by the main MCU. [Figure 18](#) shows a possible Limp Home configuration where the dotted blue lines mark the signals path.

Figure 18. Possible system configuration during Limp mode

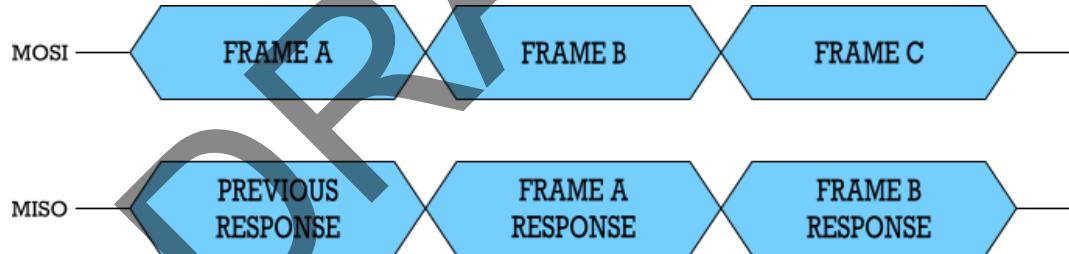
11 SPI

The SPI interface is used to configure the device, control the outputs and read diagnostic and status registers.

11.1 SPI protocol

The SPI (serial peripheral interface) is a full duplex serial out of frame slave interface made of four lines SO, SI, CLK and NCS. MOSI and MISO are the lines through which the data is transferred.

Considering the out-of-frame protocol implemented, it is important to ignore the first MISO received at the start of communication because it is meaningless.

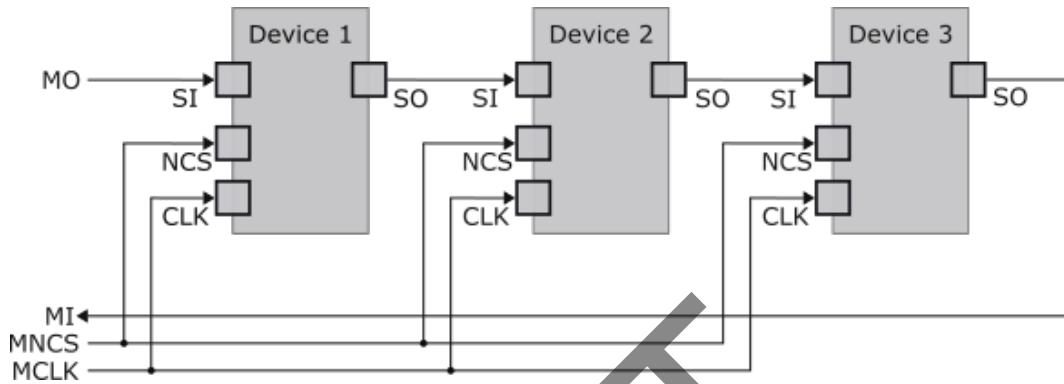

The falling edge of NCS defines the start of the SPI frames. L9026 samples the MOSI line (SI) at the rising edge of CLK while the output data is shifted out on line MISO (SO) at the falling edge of CLK. (CPOL='0', CPHA = '0'). End of SPI access is defined by a rising edge of NCS.

L9026 implements feature to guarantee that SPI frame is considered valid when at least 16 bits have been transferred: in case of transaction with less than 16 bits is received, the frame will be discarded and ERR bit is asserted in the next SPI frame. An SPI access with frame longer than 16 bits will not be discarded in order to allow daisy chain operation.

As additional safety feature, the protocol is also equipped with 1 PARITY bit (odd parity) and a 1 bit frame counter: the frame counter value to be considered at the beginning of a new communication session after a reset action is "0". In case an incorrect frame counter value is detected, ERR bit is asserted in the next SPI frame. The detailed structure of MOSI and MISO frames is shown in [Section 11.5 SPI frame structure](#).

The relationship between MOSI and MISO content during SPI communication is shown in [Figure 19](#): the protocol implements an out-of-frames strategy.

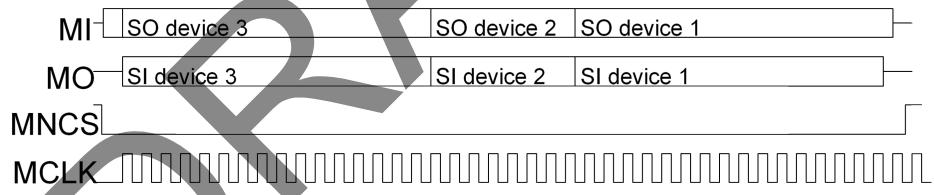
Figure 19. SPI out-of-frame protocol


During the Limp Home the SPI is in read only mode while no SPI access is possible during device Sleep Mode: eventual frames are ignored and MISO pin remains in high impedance.

11.2

Daisy chain capability

L9026 implements SPI with daisy chain capability where a single master can address multiple slaves by driving a single NCS and MOSI lines, getting back data from a single MISO line as reported in the Figure 20.


Figure 20. SPI Daisy chain configuration

In order to gain flexibility, the daisy chain approach can be used not only to address multiple L9026 but the IC allows addressing also mixed configurations, provided that all the elements of the chain work with $CPOL = 0$, $CPHA = 0$.

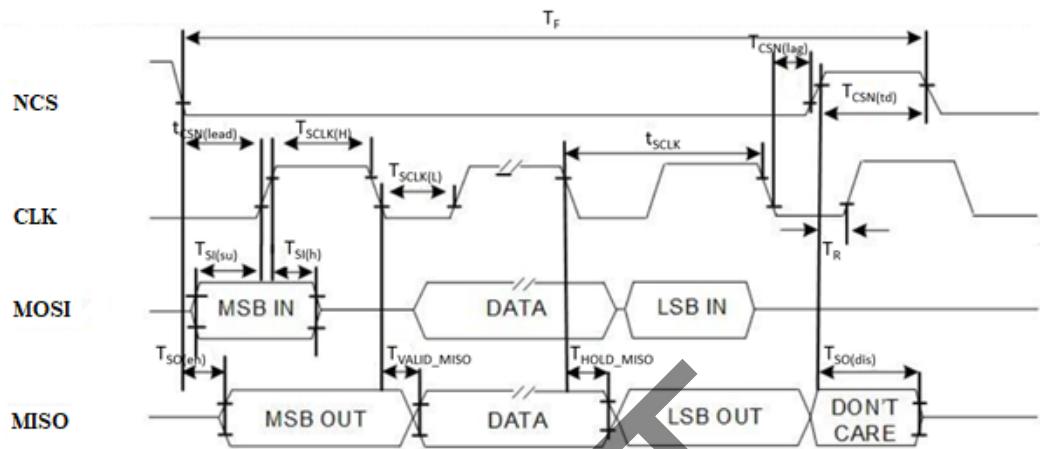
As reported in Figure 21, the only condition to be met is that the frame loaded inside each device of the chain is consistent and error free once the MNCS is de-asserted.

Figure 21. SPI message in daisy chain configuration

11.3

SPI electrical specifications

$3 \text{ V} \leq \text{VDDIO} \leq 5.5 \text{ V}$; $6 \text{ V} \leq \text{VBATT} \leq 18 \text{ V}$; $-40^\circ \text{C} \leq \text{Tj} \leq 150^\circ \text{C}$ unless otherwise noticed. All voltages are referred to GND pin.


Table 18. SPI electrical parameters

Parameter	Description	Test condition	Min	Typ	Max	Unit
Input SPI pins – low level						
$V_{NCS(L)}$	NCS	-	-	-	0.8	V
$V_{CLK(L)}$	CLK	-	-	-	0.8	V
$V_{SI(L)}$	SI	-	-	-	0.8	V
Input SPI pins – high level						
$V_{NCS(H)}$	NCS	-	2	-	-	V
$V_{CLK(H)}$	CLK	-	2	-	-	V
$V_{SI(H)}$	SI	-	2	-	-	V

Parameter	Description		Test condition		Min	Typ	Max	Unit
Input pull up resistor at NCS pin								
R_{NCS}	L-input pull-up resistor at NCS pin	$V_{NCS} = 0.8 \text{ V}$			40	58	95	$\text{K}\Omega$
Input pull down resistor at pin								
R_{CLK}	Input pull-down resistor on CLK	$V_{CLK} = 2 \text{ V}$			50	-	140	$\text{K}\Omega$
R_{SI}	Input pull-down resistor on SI	$V_{SI} = 2 \text{ V}$			50	-	140	$\text{K}\Omega$
Output characteristics								
$V_{SO(L)}$	L level output voltage	$I_{SO} = -1.5 \text{ mA}$			0	-	0.4	V
$V_{SO(H)}$	H level output voltage	$I_{SO} = 1.5 \text{ mA}$			$V_{DDIO} - 0.4$	-	V_{DDIO}	V
$I_{SO(OFF)}$	Output tristate leakage current	$V_{NCS} = V_{DDIO}$ $VBATT = 0 \text{ V}$			-1	-	1	μA
$I_{SO(OFF)}$	Output tristate leakage current	$V_{NCS} = V_{DDIO}$ $VBATT = V_{DDIO}$			-1	-	1	μA
Timings								
$t_{CSN(lead)}$	Enable lead time (falling NCS to rising CLK)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			200	-	-	ns
$t_{CSN(lag)}$	Enable lag time (falling CLK to rising NCS)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			200	-	-	ns
$t_{CSN(td)}$	Transfer delay time (rising NCS to falling NCS)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			650	-	-	ns
$t_{SO(en)}$	Output enable time (falling NCS to SO valid)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$; $C_L = 20 \text{ pF}$ at MISO pin			-	-	200	ns
$t_{SO(dis)}$	Output disable time (rising NCS to SO tristate)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$; $C_L = 20 \text{ pF}$ at MISO pin			-	-	200	ns
f_{CLK}	Serial clock frequency	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			-	-	8	MHz
$t_{CLK(H)}$	Serial clock "high" time	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			45	-	-	ns
$t_{CLK(L)}$	Serial clock "low" time	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			45	-	-	ns
$t_{SI(su)}$	Data setup time (required time MOSI to falling CLK)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			30	-	-	ns
$t_{SI(h)}$	Data hold time (falling CLK to SI)	$V_{DDIO} = 4.5 \text{ V}$ or $VBATT > 7 \text{ V}$			30	-	-	ns

11.4 SPI timing diagram

Figure 22. SPI timing diagrams

11.5 SPI frame structure

11.5.1 MOSI frame structure

Each MOSI frame has 16 bits with the following structure:

- 1 command bit R/W, '1' for write, '0' for read
- 5 ADDRESS bits
- 8 DATA bits
- 1 PARITY bit, odd parity, calculated on bit [2:15]
- 1 FR_CNT frame counter bit

11.5.2 MISO frame structure

Each MISO frame has 16 bits with the following structure:

- 1 ERR error bit, '1' if an error happened in the previous transmission, '0' otherwise
- 5 ADDRESS bits
- 8 DATA bits
- 1 PARITY bit, odd parity, calculated on bit [2:15]
- 1 FR_CNT frame counter bit

11.6 SPI register

11.6.1 Register structure

CHIP_ID

Register name:	CHIP_ID				
Address:	Global Base Address + 0x00				
Description:	Chip ID register				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
CHIP_ID	RO	0	8	AA Bit 0->7 00100010 BA Bit 0->7 00101010 BB Bit 0->7 01010101	X	8 bit chip identifier

CFG_0

Register name:	CFG_0				
Address:	Global Base Address + 0x01				
Description:	Configuration 0				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	2	6	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:2], MSB refers to channel 7 0: (default) OUTn low side 1: OUTn high side
DIS_EN	RW	1	1	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	0: (default) DIS pin masked 1: DIS pin not masked
NRES_EN	RW	0	1	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	0: (default) NRES pin masked 1: NRES pin not masked

CFG_1

Register name:	CFG_1				
Address:	Global Base Address + 0x02				
Description:	Configuration 1				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
RST	WO	7	1	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Reset 0: (default) Normal operation 1: Execute Reset command (self clearing)
ACT	RW	6	1	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	active mode 0: (default) Normal operation or device leaves Active Mode 1: device enters and hold in Active Mode
NU	RO	2	4	0x00	X	-

PWM_DIV_LED	RW	0	2	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	00: (default) PWM_FRQ=122.5Hz 01: PWM_FRQ=245.1Hz 10: PWM_FRQ=490.2Hz 11: PWM_FRQ=980.4Hz
-------------	----	---	---	------	---	---

CFG_2

Register name:	CFG_2
Address:	Global Base Address + 0x03
Description:	Configuration 2

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
NU	RO	4	4	0x00	X	-
FR_ADJ	RW	2	2	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	00: NO FREQ ADJUSTMENT 01: -15% ON SELECTED FREQUENCY 10: +15% ON SELECTED FREQUENCY 11: NO FREQ ADJUSTMENT
PWM_DIV_GEN	RW	0	2	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	00: (default) PWM_FRQ=122.5Hz 01: PWM_FRQ=245.1Hz 10: PWM_FRQ=490.2Hz 11: PWM_FRQ=980.4Hz

BIM

Register name:	BIM
Address:	Global Base Address + 0x04
Description:	Bulb Inrush Mode register configuration

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: (default) no BIM active 1: BIM active

RESERVED_1

Register name:	RESERVED_1
Address:	Global Base Address + 0x05
Description:	Reserved

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
UNUSED	RO	0	8	0x00	X	-

PWM_SPI

Register name:	PWM_SPI
Address:	Global Base Address + 0x06
Description:	Power output control register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: (default) Output OFF 1: Output ON

MAP_IN0

Register name:	MAP_IN0
Address:	Global Base Address + 0x07
Description:	IN0 input mapping register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x04 OUT2 mapped on IN0	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: OUTn not driven by IN0 1: OUTn driven by IN0

MAP_IN1

Register name:	MAP_IN1
Address:	Global Base Address + 0x08
Description:	IN1 input mapping register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x08 OUT3 mapped on IN1	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: OUTn not driven by IN1 1: OUTn driven by IN1

MAP_PWM

Register name:	MAP_PWM
Address:	Global Base Address + 0x09
Description:	Internal PWM generator mapping register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: OUTn not driven by internal PWM generator 1: OUTn driven by internal PWM generator

PWM_SEL

Register name:	PWM_SEL
Address:	Global Base Address + 0x0A
Description:	Internal PWM generator selection register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: (default) PWM_GEN selected for OUTn 1: PWM_LED selected for OUTn

PWM_GEN_DC

Register name:	PWM_GEN_DC				
Address:	Global Base Address + 0x0B				
Description:	PWM GEN duty cycle setting				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
DUTY_CYCLE	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	b00000000, PWM GEN OFF b11111111, PWM GEN fully ON duty = 100/255*LSB

PWM_LED_DC

Register name:	PWM_LED_DC				
Address:	Global Base Address + 0x0C				
Description:	PWM LED duty cycle setting				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
DUTY_CYCLE	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	b00000000, PWM GEN OFF b11111111, PWM GEN fully ON duty = 100/255*LSB

DIAG_OFF_EN

Register name:	DIAG_OFF_EN				
Address:	Global Base Address + 0x0D				
Description:	OFF Diagnostic enable register				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: (default) OFF diagnosis not active 1: OFF diagnosis active

DIAG_OPL_ON_EN

Register name:	DIAG_OPL_ON_EN				
Address:	Global Base Address + 0x0E				
Description:	Open Load in ON Diagnostic enable register				

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RW	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: (default) OL diagnosis not active 1: OL diagnosis active

DIAG_OVC_OVT_RLW

Register name:	DIAG_OVC_OVT_RLW
Address:	Global Base Address + 0x0F
Description:	Overcurrent/overtemperature error Clear on write

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	WO	0	8	0x00	POR_N, NRES pin, CFG_1.RST bit, VDD_UV	Channel [7:0], MSB refers to channel 7 0: (default) clear on write not active 1: clear on write active

STA_0

Register name:	STA_0
Address:	Global Base Address + 0x10
Description:	Status Register 0

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
NU	RO	7	1	0x00	X	-
DIS	RO	6	1	0x00	POR_N	Echo status of DIS input (if properly configured)
X	-	5	1	X	X	-
IDLE	RO	4	1	0x00	POR_N	Echo status of IDLE input
IN1	RO	3	1	0x00	POR_N	Echo status of IN1 input
IN0	RO	2	1	0x00	POR_N	Echo status of IN0 input
OUT_ON_ERR	RLR	1	1	0x00	POR_N	0: normal 1: overcurr/overtemp detected on a whatever channel
OUT_OFF_ERR	RLR	0	1	0x00	POR_N	0: normal 1: OFF state diag fail on whatever channel

STA_1

Register name:	STA_1
Address:	Global Base Address + 0x11
Description:	Status Register 1

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
NU	RO	5	3	0x00	X	-
POR	RLR	4	1	0x01	POR_N	0: POR condition not detected 1: POR condition detected
VDDIO_UV	RLR	3	1	0x00	POR_N	0: no VDDIO undervoltage 1: VDDIO undervoltage detected
VBATT_UV	RLR	2	1	0x00	POR_N	0: no VBATT undervoltage 1: VBATT undervoltage detected
MODE	RO	0	2	0x00	POR_N	IC operating mode 00: Sleep Mode 01: Limp Home Mode 10: Idle Mode 11: Active Mode

DIAG_OVC_OVT

Register name:	DIAG_OVC_OVT
Address:	Global Base Address + 0x12
Description:	Overcurrent/overtemperature detection Register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RLW	0	8	0x00	POR_N	Channel [7:0], MSB refers to channel 7 0: (default) no fail 1: overcurr/overtemp detected

DIAG_OPL_OFF

Register name:	DIAG_OPL_OFF
Address:	Global Base Address + 0x13
Description:	Driver Open load detection in off state Register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RLR	0	8	0x00	POR_N	Channel [7:0], MSB refers to channel 7 0: (default) no fail 1: open load detected

DIAG_OPL_ON

Register name:	DIAG_OPL_ON
Address:	Global Base Address + 0x14
Description:	Driver Open load detection in on state Register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RLR	0	8	0x00	POR_N	Channel [7:0], MSB refers to channel 7 0: (default) no fail 1: open load detected

DIAG_SHG

Register name:	DIAG_SHG
Address:	Global Base Address + 0x15
Description:	Driver shorted load detection in OFF state Register

Field name	Type	Bit Offset	Bit Width	Reset Value	Reset Sources	Description
OUTn	RLR	0	8	0x00	POR_N	Channel [7:0], MSB refers to channel 7 0: (default) no fail 1: STG/STB detected

Note: Global Base Address to be considered as 0x00

DRAFT

12 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

12.1 VFQFPN32 (5x5x1 mm exp. pad down 3.5x3.5) package information

Figure 23. VFQFPN32 (5x5x1 mm exp. pad down 3.5x3.5) package outline

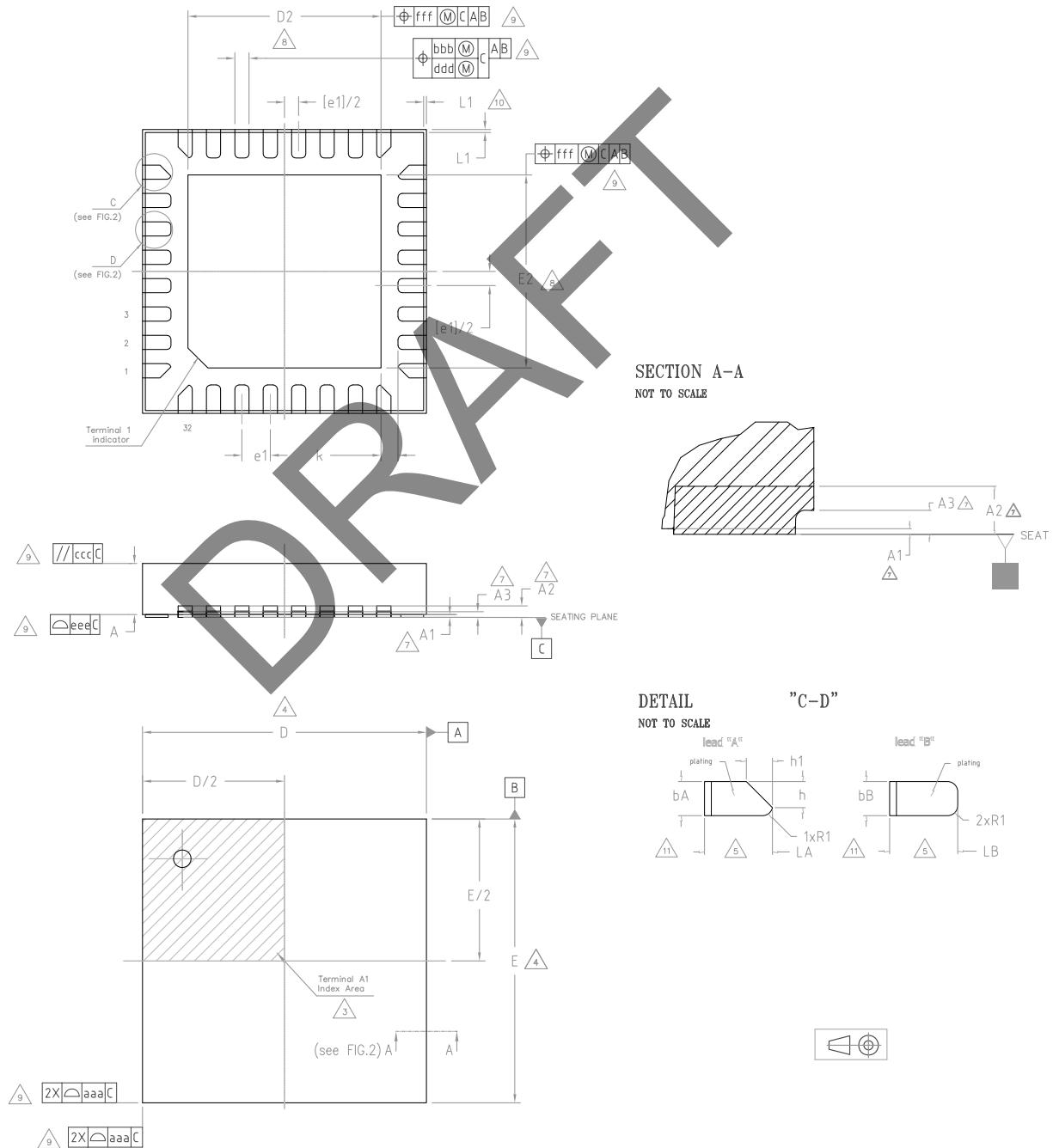


Table 19. VFQFPN32 (5x5x1 mm exp. pad down 3.5x3.5) mechanical data

Symbol	Dimensions			Note
	Min	Typ	Max	
A	0.80	0.90	1.00	
A1	0.00	-	0.05	
A2		0.2 REF		
A3	0.1	-	-	
D		5.00 BSC		4
D2	3.40	3.50	3.60	8
E		5.00 BSC		4
E2	3.40	3.50	3.60	8
e1		0.5 BSC		
k	0.20	-	-	
L1	-	-	0.05	10
La	0.40	0.50	0.60	11
bA	0.20	0.25	0.30	11
h		0.19 REF		11
h1		0.19 REF		11
LB	0.45	0.50	0.55	11
bB	0.20	0.25	0.30	11
N		32		6
R1	-	-	0.1	
Tolerance of form and position				
aaa		0.15		1, 2
bbb		0.10		
ccc		0.10		
ddd		0.05		
eee		0.08		
fff		0.10		

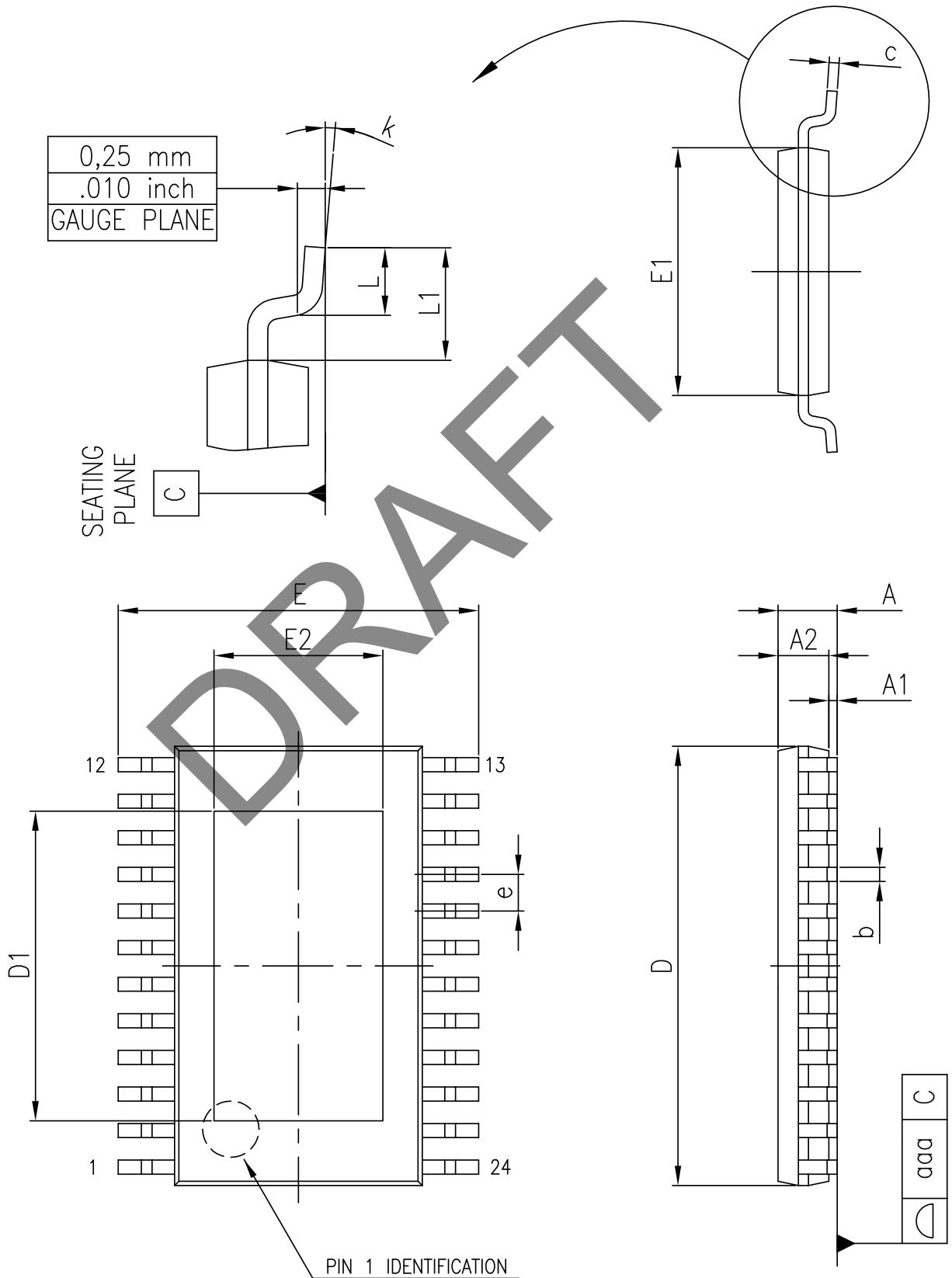
Notes:

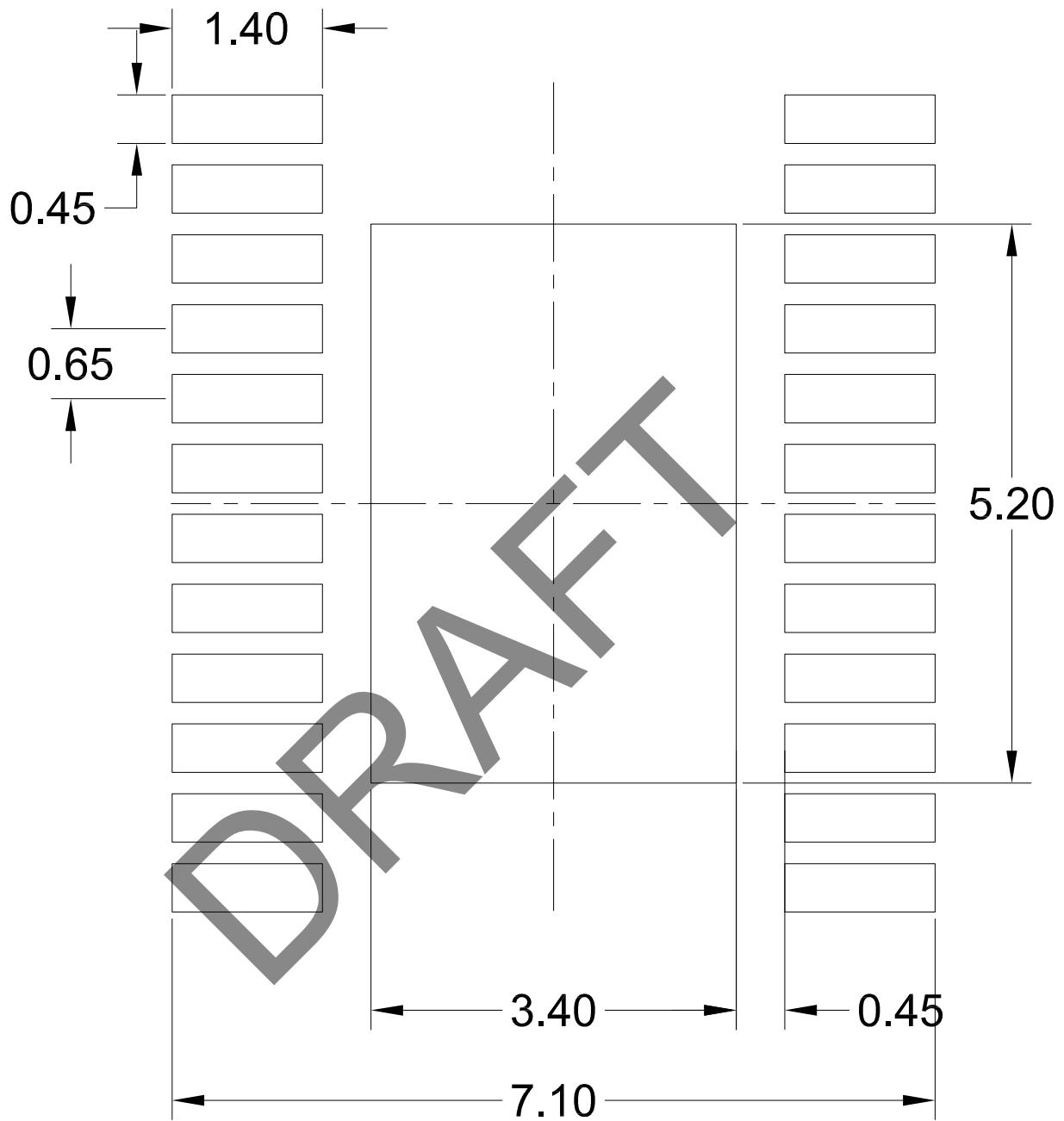
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. All Dimensions are in millimeters.
3. Terminal A1 identifier and terminal numbering convention shall conform to JEP95 SPP-002. Terminal A1 identifier must be located within the zone indicated on the outline drawing. Topside terminal A1 indicator may be a molded, or metallized feature. Optional indicator on bottom surface may be a molded, marked or metallized feature.
4. Outlines with "D" and "E" increments less than 0.5 mm should be registered as "stand alone" outlines. These outlines should use as many of the algorithms and dimensions states in the design standard as possible to insure predictability in manufacturing.
5. Inner edge of corner terminals may be chamfered or rounded in order to achieve minimum gap "k". This feature should not affect the terminal width "b", which is measured L/2 from the edge of the package body.
6. "N" is the maximum number of terminal positions for the specified body size. Depopulation is allowed, but only under the following conditions.
 - Depopulation scheme must be consistent in each quadrant of the package.
 - Non-symmetric variations should be broken out as separate mechanical outline variations, including depopulation graphics.
7. A1 is defined as the distance from the seating plane to the lowest point on the package body (standoff).
8. Dimension D2 and E2 refer to exposed pad.
9. For Tolerance of Form and Position see [Table 19](#).
10. Critical dimensions: 10.1 L1
11. Dimensions "b" and "L" are measured at terminal plating surface.

DRAFT

12.2 HTSSOP24 (7.8x6.4x1 mm exp. pad down 5.0x3.2) package information

Figure 24. HTSSOP24 (7.8x6.4x1 mm exp. pad down 5.0x3.2) package outline




Table 20. HTSSOP24 (7.8x4.4x1.1 mm exp. pad down 5.0x3.2) mechanical data

Symbol	Dimensions			Note
	Min	Typ	Max	
A	1.05	1.10	1.20	1
A1	0.05	-	0.15	
A2	0.80	1.00	1.2	
b	0.19	-	0.30	
D	7.70	7.80	7.90	
D1	4.80	5.00	5.20	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	2
E2	3.00	3.20	3.40	
e	0.65 BSC			
L	0.45	0.60	0.75	
L1	-	1.00	-	
K	0	-	8	Degrees
aaa	-	-	0.15	

Notes:

1. Very thin: $0.80 < A \leq 1.00$ mm / Fine pitch: $e < 1.00$ mm
2. The pin #1 identifier must be present on the top surface of the package by using indentation mark or other feature of package body. Exact shape and size of this feature are optional.

Figure 25. HTSSOP24 (7.8x4.4x1.1 mm exp. pad down 5.0x3.2) recommended footprint

Revision history

Table 21. Document revision history

Date	Version	Changes
06-Aug-2020	1	Initial release.
30-Sep-2020	2	<p>Updated:</p> <ul style="list-style-type: none">Order Code in <i>Product summary</i>;<i>Table 4. Absolute maximum rating capability</i>;<i>Table 5. Temperature range</i>;<i>Table 8. VBATT electrical performance</i>;<i>Table 9. Functions availability in different supply conditions</i>;<i>Table 16. Over temperature and over load electrical parameters</i>;<i>Table 17. Output status and open load ON electrical parameters</i>;<i>Table 18. SPI electrical parameters</i>. <p>Minor text changes.</p>
09-Oct-2020	3	Added Errata.
10-Nov-2020	4	Removed watermark "Restricted".
23-Mar-2021	5	<p>Updated:</p> <ul style="list-style-type: none"><i>Figure 2. HTSSOP24 Application schematic</i>;<i>Figure 3. VFQFPN32 Application schematic</i>;<i>Table 10. Power supply electrical parameters</i>. <p>Minor text changes in:</p> <ul style="list-style-type: none"><i>Table 6. Digital input/output electrical performance</i>;<i>Table 18. SPI electrical parameters</i>.
11-Jan-2022	6	Updated <i>Section 6.6 Power up</i> .
27-Oct-2022	7	<p>Updated:</p> <ul style="list-style-type: none"><i>Section Features</i>;<i>Figure 4. HTSSOP-24 pinout diagram</i>;<i>Figure 6. State diagram</i>;<i>Figure 12. Driving tree</i>.
19-Jan-2023	8	<p>Updated features and description in cover page.</p> <p>Updated:</p> <ul style="list-style-type: none"><i>Figure 6. State diagram</i><i>Figure 7. Transition times block diagram</i><i>Figure 9. Switching resistive loads</i><i>Figure 13. Overload thresholds</i><i>Figure 14. Latch off in overload condition</i><i>Table 9. Functions availability in different supply conditions</i> <p>Minor text changes to improve readability.</p>

Contents

1	Block diagram	2
2	Application circuit	3
3	Pins description	5
4	Product characteristics	9
4.1	Absolute maximum ratings	9
4.2	Latchup trials	9
4.3	Temperature range	10
5	Input/Output	11
5.1	Parallel inputs (IN0, IN1)	11
5.2	Idle pin (IDLE)	11
5.3	Reset pin (NRES, only in VFQFPN32 package option)	11
5.4	Enable (DIS, only in VFQFPN32 package option)	11
5.5	SPI communications (NCS, CLK, SI & SO)	11
5.6	Input / output electrical specifications	12
6	Power supply	13
6.1	Overview	13
6.2	Battery supply (VBATT)	13
6.3	Operating modes	14
6.4	Analog & Digital supply (VBATT)	16
6.5	I/O Supply (VDDIO)	16
6.6	Power up	16
6.7	Sleep mode	17
6.8	Idle mode	17
6.9	Active mode	17
6.10	Limp Home mode	18
6.11	Power supply transition	18
6.12	Reset	19
6.13	Power supply electrical specifications	19
7	Power stages	21

7.1	Operating modes	21
7.1.1	Switching resistive modes	21
7.1.2	Inductive output clamp	22
7.1.3	Maximum load inductance	22
7.2	Inverse current behavior	23
7.3	Bulb inrush mode	23
7.4	PWM generators	24
7.4.1	PWM GEN	24
7.4.2	PWM LED	25
7.5	Power stages electrical specifications	26
8	Protection functions	29
8.1	Overload protection	29
8.2	Overtemperature protection	31
8.3	Overtemperature and overload in Limp Home mode	31
8.4	Reverse polarity protection	31
8.5	Electrical characteristics	31
9	Diagnosis	33
9.1	Overload and overttemperature	33
9.2	OFF diagnosis	33
9.3	Open load at ON	34
9.3.1	Open load at QN (diagnosis mechanism)	34
9.3.2	Open load at ON bit	35
9.4	Electrical parameters	36
10	Limp Home mode	37
11	SPI	39
11.1	SPI protocol	39
11.2	Daisy chain capability	40
11.3	SPI electrical specifications	40
11.4	SPI timing diagram	42
11.5	SPI frame structure	42
11.5.1	MOSI frame structure	42

11.5.2	MISO frame structure	42
11.6	SPI register	43
11.6.1	Register structure	43
12	Package information.....	50
12.1	VFQFPN32 (5x5x1 mm exp. pad down 3.5x3.5) package information.....	50
12.2	HTSSOP24 (7.8x6.4x1 mm exp. pad down 5.0x3.2) package information	53
Revision history		56

DRAFT

List of tables

Table 1.	External components list for L9026 application circuit	4
Table 2.	HTSSOP-24 pins list	7
Table 3.	VFQFPN32 pins list	8
Table 4.	Absolute maximum rating capability	9
Table 5.	Temperature range	10
Table 6.	Digital input/output electrical performance	12
Table 7.	Supply ranges	13
Table 8.	VBATT electrical performance	13
Table 9.	Functions availability in different supply conditions	16
Table 10.	Power supply electrical parameters	19
Table 11.	Adjustment coefficients	24
Table 12.	PWM GEN generator available frequencies	24
Table 13.	PWM LED generator available frequencies	26
Table 14.	Power stages electrical parameters	26
Table 15.	PWM electrical parameters	28
Table 16.	Over temperature and over load electrical parameters	31
Table 17.	Output status and open load ON electrical parameters	36
Table 18.	SPI electrical parameters	40
Table 19.	VFQFPN32 (5x5x1 mm exp. pad down 3.5x3.5) mechanical data	51
Table 20.	HTSSOP24 (7.8x4.4x1.1 mm exp. pad down 5.0x3.2) mechanical data	54
Table 21.	Document revision history	56

DRAFT

List of figures

Figure 1.	Block diagram	2
Figure 2.	HTSSOP24 Application schematic	3
Figure 3.	VFQFPN32 Application schematic	4
Figure 4.	HTSSOP-24 pinout diagram	5
Figure 5.	VFQFPN32 pinout diagram	6
Figure 6.	State diagram	15
Figure 7.	Transition times block diagram	18
Figure 8.	HS driver (left) and LS driver (right) configuration	21
Figure 9.	Switching resistive loads	22
Figure 10.	Output clamp concept	22
Figure 11.	Bulb inrush mode	23
Figure 12.	Driving tree	25
Figure 13.	Overload thresholds	29
Figure 14.	Latch off in overload condition	30
Figure 15.	OFF diagnosis circuit	34
Figure 16.	Open load at ON circuit	35
Figure 17.	Possible system configuration during normal operating conditions	37
Figure 18.	Possible system configuration during Limp mode	38
Figure 19.	SPI out-of-frame protocol	39
Figure 20.	SPI Daisy chain configuration	40
Figure 21.	SPI message in daisy chain configuration	40
Figure 22.	SPI timing diagrams	42
Figure 23.	VFQFPN32 (5x5x1 mm exp. pad down 3.5x3.5) package outline	50
Figure 24.	HTSSOP24 (7.8x6.4x1 mm exp. pad down 5.0x3.2) package outline	53
Figure 25.	HTSSOP24 (7.8x4.4x1.1 mm exp. pad down 5.0x3.2) recommended footprint	55

DRIVE

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DRAFT

Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCI Title : L9026 (UR5V): Datasheet Update

PCI Reference : ADG/23/13897

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

L9026-YO-TR		
-------------	--	--

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved