

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPG-IPC/14/8673
Dated 29 Aug 2014

**ADDING GLOBAL FOUNDRIES WAFER FOUNDRY FOR
MANUFACTURING BCD6/20-40V AND BCD6S/20V-40V TECHNOLOGY**

Table 1. Change Implementation Schedule

Forecasted implementation date for change	20-Nov-2014
Forecasted availability date of samples for customer	22-Aug-2014
Forecasted date for STMicroelectronics change Qualification Plan results availability	22-Aug-2014
Estimated date of changed product first shipment	28-Nov-2014

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	see attached list
Type of change	Waferfab additional location
Reason for change	to increase Advanced BCD technology manufacturing flexibility and capacity
Description of the change	ST is pursuing the plan to rationalize the manufacturing processes to increase flexibility and capacity. Because of this, ST is announcing that the wafer foundry Global Foundries located in Singapore, will be used to manufacture BCD6 technology based products actually manufactured in M5 Wafer fab, Catania, Italy. Wafer Fab Global Foundries has been already qualified by ST. This change will not affect EWS (Electrical Wafer Sort) activities and sites.
Change Product Identification	see new FG's
Manufacturing Location(s)	

DOCUMENT APPROVAL

Name	Function
Borghi, Maria Rosa	Marketing Manager
Pioppo, Sergio Franco	Marketing Manager
Barbieri, Danilo	Product Manager
Moretti, Paolo	Q.A. Manager

ADDING GLOBAL FOUNDRIES WAFER FOUNDRY FOR MANUFACTURING BCD6/20-40V AND BCD6S/20V-40V TECHNOLOGY

WHAT is the change?

ST is pursuing the plan to rationalize the manufacturing processes to increase flexibility and capacity. Because of this, ST is announcing that the wafer foundry Global Foundries located in Singapore, will be used to manufacture BCD6 technology based products actually manufactured in M5 Wafer fab, Catania, Italy.

Wafer Fab Global Foundries has been already qualified by ST. This change will not affect EWS (Electrical Wafer Sort) activities and sites.

Technology Family	Technology Sub family	Products line Codes	Package/ASSY SITES
BCD6	BCD6 40v	UM90	QFN/CARSEM PowerSO/ST MUAR
	BCD6 20V	UM85	QFN/CARSEM HSOP/AMKOR-FUJTSU
	BCD6 20V	UM87	QFN/CARSEM
BCD6S	BCD6S 20V	UA27	QFN/CARSEM SO8/ST SHENZHEN
	BCD6S 40V	UA28	QFN/CARSEM

WHY:

In order to increase Advanced BCD technology manufacturing flexibility and capacity.

WHEN will this change occur?

The added use of the Global Foundries capacity will start from Q4-2014 for the above mentioned products.

HOW will the change be qualified?

- This change will be qualified using the standard STMicroelectronics procedures for quality and reliability.

Specific activities, included a full set of evaluations on selected test vehicles (TVs) will cover both : process qualification and product qualification. These include Wafer Level Reliability evaluation, Wafer Parametric comparison (T84), EWS comparison, Electrical characterization, die and package oriented reliability stress test.

Other products manufactured with same technology will be qualified mainly by similarity (generic data).

This transfer to Global Foundries will not modify the electrical, dimensional and thermal parameters for the product affected, keeping unchanged current description on relevant data sheets.

Qualification Program and results availability

See the attached Product Reliability Reports with the test done on the Test Vehicles (Product Reliability and ESD/LU on UA27). Qualification Reports for the other TVs will be available as by schedule.

Samples availability

Samples availability is: since wk34 for UA27, after wk34 for all others.

Change Implementation schedule

The production start and first shipments will be implemented according to the reported time line, as summarized below

Test Vehicles by Line codes	Product Family Code	Product family Description	PCN date	Qualification report availability	Forecasted First shipments
UA27	92	Power Conversion	WK34	WK34	WK46
UA28	I3	Hand Held PM	WK34	WK38	WK46
UM90	I3	Hand Held PM	WK34	WK38	WK50
UM85	92	Power Conversion	WK34	WK38	WK50
UM87	92	Power Conversion	WK34	WK38	WK50

IPG (Industrial and Power Group)

IPC (Industrial Power Conversion)

Handheld & Computer

life.augmented

Quality and Reliability

RER6088-181-W-14

Reliability Report

Front-End Qualification:

BCD6 diffused in GLOBAL FOUNDRY

**TV: ST1S40IPUR-UA2701
VFDFPN 4X4X1.0 8L PITCH 0.8**

General Information		Locations	
Product Line	UA2701	Wafer fab	Global Foundries Fab 2 + AMK6 8"
Product Description	3A DC step down switching regulator	Assembly plant	CARSEM S
P/N	ST1S40IPUR	Reliability Lab	IPG Catania Reliability Lab
Product Group	IPG	Reliability assessment	Pass
Product division	IPC		
Package	Power Conversion VFDFPN 4X4X1.0 8L PITCH 0.8		
Silicon Process technology	BCD6 SHRINK		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	Jun-2014	10	Vito Gisabella Giuseppe Giacopello	Giovanni Presti	Final report
1.1	July-2014				ESD/LU test on UA27DDF version

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
2	GLOSSARY.....	3
3	RELIABILITY EVALUATION OVERVIEW.....	4
3.1	OBJECTIVES	4
3.2	CONCLUSION.....	4
4	DEVICE CHARACTERISTICS.....	5
4.1	DEVICE DESCRIPTION.....	5
4.2	CONSTRUCTION NOTE	5
5	TESTS RESULTS SUMMARY.....	6
5.1	TEST VEHICLE.....	6
5.2	TEST PLAN AND RESULTS SUMMARY.....	6
6	ANNEXES	7
6.1	DEVICE DETAILS.....	7
6.2	TESTS DESCRIPTION.....	10

life.augmented

IPG (Industrial and Power Group)

IPC (Industrial Power Conversion)

Handheld & Computer

Quality and Reliability

RER6088-181-W-14

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Front-End Qualification: BCD6 diffused in GLOBAL FOUNDRY.
TV1 : ST1S40IPUR – UA2701 – VFDFPN 4X4X1.0 8L Pitch 0.8

The complete evaluation plan includes three different TVs in order to cover the main technological fixtures:

- TV1: ST1S40IPUR – UA2701 – VFDFPN 4X4X1.0 8L Pitch 0.8
- TV2: LNBH25 – UA28 – QFN4X4
- TV3: LNBH23 – UM90 – PSSO24

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description

The ST1S40 device is an internally compensated 850 kHz fixed-frequency PWM synchronous stepdown regulator. The ST1S40 operates from 4.0 V to 18 V input, while it regulates an output voltage as low as 0.8 V and up to VIN. The ST1S40 integrates a 95 m Ω high side switch and 69 m Ω synchronous rectifier allowing very high efficiency with very low output voltages. The peak current mode control with internal compensation delivers a very compact solution with a minimum component count. The ST1S40 is available in HSOP-8, VFQFPN 4 mm x 4 mm - 8 lead, and standard SO8 package.

4.2 Construction note

ST1S40IPUR	
Wafer/Die fab. information	
Wafer fab manufacturing location	Global Foundries Fab 2+AMK6 8"
Technology	BCD6 SHRINK
Die finishing back side	Cr/NiV/Au
Die size	1725, 1840 micron
Passivation type	TEOS / SiN/Polymide
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Ang Mo Kio EWS
Tester	ASL1K
Tester Program	UA27_ST1S40_rev2
Assembly information	
Assembly site	CARSEM S
Package description	VFQFPN 4X4X1.0 8L PITCH 0.8
Molding compound	Epoxy
Frame material	CDA 194 128X97 Mils Ni/Pd/Au
Die attach material	Epoxy
Wires bonding materials/diameters	1.3 mils Au wire
Final testing information	
Testing location	CARSEM S
Tester	ASL1K
Test program	UA27_ST1S40_CARSEM_rev6

life.augmented

IPG (Industrial and Power Group)

IPC (Industrial Power Conversion)

Handheld & Computer

Quality and Reliability

RER6088-181-W-14

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Technical Code	Package	Product Line	Comments
1	F2331222	SGC*ENGD4805,SG	MY3I*UA27DCF	VFDFPN 8L 4X4X1.0 PITCH 0.8	UA27	
2	F2330309	SGC*ENGD4905,S				
3	F2330310	ENGE04A1				

5.2 Test plan and results summary

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS			Note
						1 st LOT	2 nd LOT	3 rd LOT	
Die Oriented Tests									
HTOL	N	JESD22 A-108	T _j = 125°C Vin= +20V, Vfb= +2.5V			168 H	0/77	0/77	0/77
						500 H	0/77	0/77	0/77
						1000 H	0/77	0/77	0/77
HTSL	N	JESD22 A-103	Ta = 150°C			168 H	0/45	0/45	0/45
						500 H	0/45	0/45	0/45
						1000 H	0/45	0/45	0/45
E.L.F.R.	N	JESD22 A-108	T _j = 125°C, Vin= +20V, Vfb= +2.5V		48H		0/800		
Package Oriented Tests									
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times		Final	Pass	Pass	Pass	Go no go
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	0/25	0/25	0/50	
					168 H	0/25	0/25	0/50	Eng. evaluation
TC	Y	JESD22 A-104	Ta = -65°C to 150°C		100 CY	0/25	0/25	0/50	
					200 CY	0/25	0/25	0/50	
					500 CY	0/25	0/25	0/50	
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, Vin= +16V, Vfb= +2V		168 H	0/25	0/25	0/50	
					500 H	0/25	0/25	0/50	
					1000 H	0/25	0/25	0/50	
Other Tests									
ESD	N	JEDEC JS001-2012 AEC Q101- 002 and 005	HBM	3	+/-2KV	PASS	PASS		
				3	+/-500V	PASS	PASS		All Pins
				3	+/-750V	PASS	PASS		Corner Pin
			CDM	3	+/-100V	PASS			
				3	+/-200V	PASS			
LU	N	EIA/JESD78D	CURRENT INJ. OVERVOLTAGE	6	+/- 100mA		PASS		

6 ANNEXES

6.1 Device details

6.1.1 Pin connection

Figure 2. Pin connection (top view)

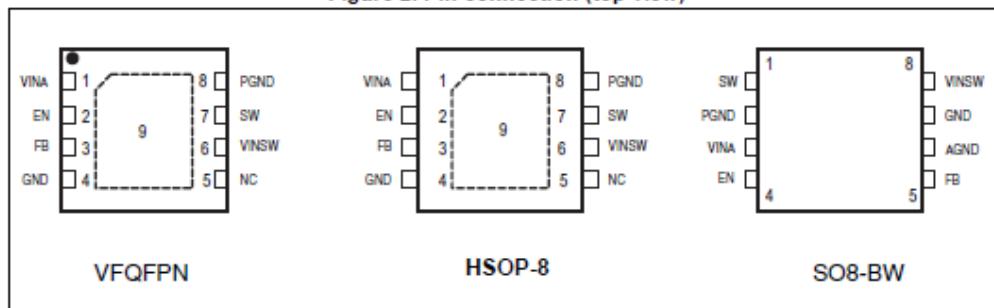
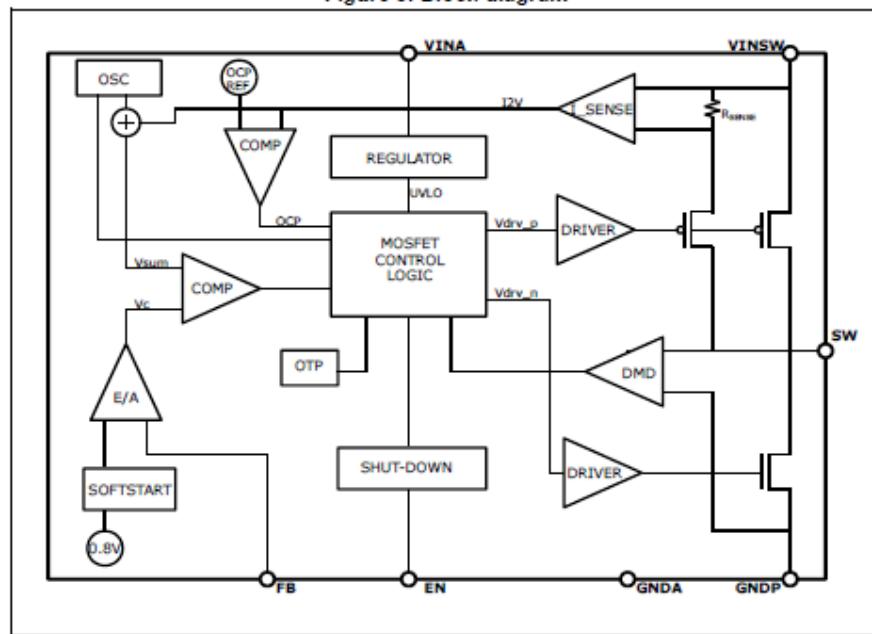



Table 1. Pin description

No.		Type	Description
VFQFPN and HSOP-8	S08-BW		
1	3	V _{INA}	Unregulated DC input voltage
2	4	EN	Enable input. With EN higher than 1.2 V the device is ON and with EN lower than 0.4 V the device is OFF (ST1S40lx).
3	5	FB	Feedback input. Connecting the output voltage directly to this pin the output voltage is regulated at 0.8 V. To have higher regulated voltages an external resistor divider is required from Vout to the FB pin.
4	6	AGND	Ground
5	-	NC	It can be connected to ground
6	8	VINSW	Power input voltage
7	1	SW	Regulator output switching pin
8	2	PGND	Power ground
-	7		Ground
9	-	ePad	Exposed pad mandatory connected to ground

6.1.2 Block diagram

Figure 3. Block diagram

6.1.3 Package outline/Mechanical data

Figure 19. VFQFPN8 (4 x 4 x 1.0 mm) package outline

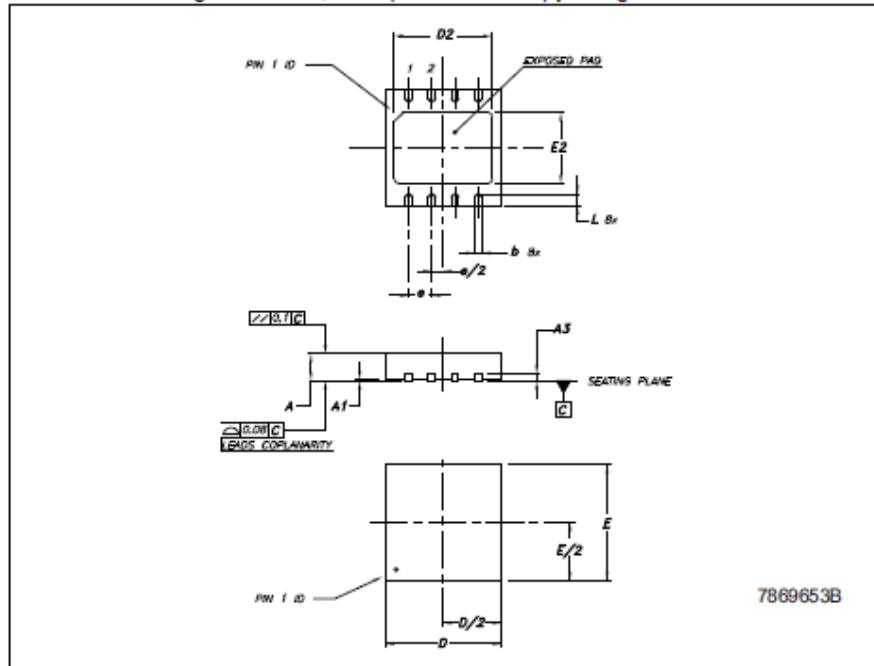


Table 10. VFQFPN8 (4 x 4 x 1.0 mm) package mechanical data

Symbol	Dimensions					
	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.80	0.90	1.00	0.0315	0.0354	0.0394
A1		0.02	0.05		0.0008	0.0020
A3		0.20			0.0079	
b	0.23	0.30	0.38	0.009	0.0117	0.0149
D	3.90	4.00	4.10	0.153	0.157	0.161
D2	2.82	3.00	3.23	0.111	0.118	0.127
E	3.90	4.00	4.10	0.153	0.157	0.161
E2	2.05	2.20	2.30	0.081	0.087	0.091
e		0.80			0.031	
L	0.40	0.50	0.60	0.016	0.020	0.024

6.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
ELFR Early Life Failure Rate	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	The objective of ELFR is to measure the failure rate in the first several months or year of operation.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up

Public Products List

PCN Title : ADDING GLOBAL FOUNDRIES WAFER FOUNDRY FOR MANUFACTURING BCD6/20-40V AND BCD6S/20V-40V TECHNOLOGY

PCN Reference : IPG-IPC/14/8673

PCN Created on : 02-SEP-2014

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change:

ST COMMERCIAL PRODUCT

LNBH23QTR	LNBH25LPQR	LNBH25PQR
ST1S06APUR	ST1S06PUR	ST1S06PUR/1LW
ST1S06PUR/MO	ST1S10BPHR	ST1S40IDR
ST1S40IPHR	ST1S40IPUR	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

©2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com