

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS-AAS/14/8642

Dated 11 Aug 2014

**Additional diffusion site for Signal conditioning
products in HF5CMOS technologies in ST Crolles**

Table 1. Change Implementation Schedule

Forecasted implementation date for change	04-Aug-2014
Forecasted availability date of samples for customer	04-Aug-2014
Forecasted date for STMicroelectronics change Qualification Plan results availability	04-Aug-2014
Estimated date of changed product first shipment	10-Nov-2014

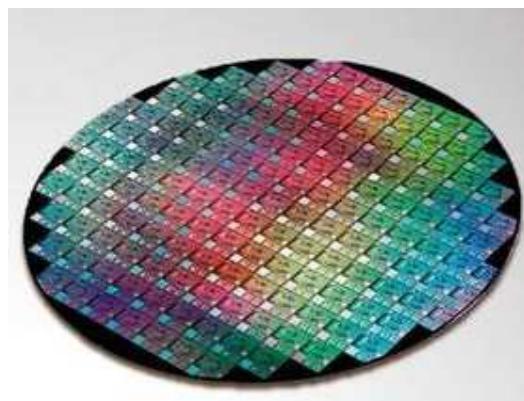
Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	See attached product list
Type of change	Waferfab additional location
Reason for change	To expand capacity and improve service to ST customers
Description of the change	Progressing on the activities related to HCMOS5 and HF5CMOS technologies manufacturing expansion, ST is glad to announce an additional production site in ST Crolles (France) for some selected signal conditioning products. For reference, a first PCN has been sent in February 2010 (ref : APM-MHD/10/5340) to announce the qualification of the HCMOS5 diffusion process in ST crolles on 2 products. Then another PCN has been released in October 2012 to announce the qualification of a second selection of products in ST Crolles in both HCMOS5 & HF5CMOS technologies (ref : AMS-APD/12/7204). This new PCN is the continuity of this second sourcing activity process.
Change Product Identification	The trace code on the label of the packaging will be changed from LE to VJ
Manufacturing Location(s)	

DOCUMENT APPROVAL

Name	Function
Ferri, Simone	Marketing Manager
Onetti, Andrea Mario	Product Manager
Bugnard, Jean-Marc	Q.A. Manager

**PRODUCT/PROCESS
CHANGE NOTIFICATION**



PCN AMS-AAS/14/8642

**Analog, MEMS and Sensor Group (AMS)
Analog and Audio Systems Division (AAS)**

**Additional diffusion site for Signal conditioning products
in HF5CMOS technologies in ST Crolles**

WHAT:

Progressing on the activities related to HCMOS5 and HF5CMOS technologies manufacturing expansion, ST is glad to announce an additional production site in ST Crolles (France) for some selected signal conditioning products.

For reference, a first PCN has been sent in February 2010 (ref : APM-MHD/10/5340) to announce the qualification of the HCMOS5 diffusion process in ST Crolles on 2 products. Then another PCN has been released in October 2012 to announce the qualification of a second selection of products in ST Crolles in both HCMOS5 & HF5CMOS technologies (ref : AMS-APD/12/7204).

This new PCN is the continuity of this second sourcing activity process.

Material	Current process	Modified process
Assembly location	UMC Taiwan	ST Crolles

For the complete list of the part numbers affected by the change, please refer to the attached Products list.

WHY:

To improve service to ST Customers and increase capacity for the affected technologies.

HOW:

The change that covers additional Signal conditioning products is already qualified through attached report.

The qualification program consists mainly of comparative electrical characterization and reliability tests. Please refer to Appendix 1 for all the details.

WHEN:

Production in ST Crolles France for these selected Signal conditioning products is forecasted by Q3'14.

Marking and traceability:

Unless otherwise stated by customer specific requirement, the traceability of the parts assembled with the new material set will be ensured by marking on label as per below description:

STMicroelectronics	Manufactured under patents or patents pending
Assembled in: COUNTRY	
PbFree	Second level interconnect
MSL: X	Bag sealed date: XX XXX XXXX
PBT: XXX°C	Category: ECOPACK/Rohs
TYPE	Commercial product
	Finished good
Total Qty: XXXX	
Trace codes	PPYWWLLL WX TF PPYWWLLL WX TF PPYWWLLL WX TF
Marking	MARKING
Bulk Id Number	<div style="border: 1px solid black; width: 150px; height: 20px; margin-top: 5px;"></div>
Bar code	
Please provide the bulk Id for any inquiry	

WX code will change
from LE to VJ

MSL: Moisture sensitivity level as per Jedec J-std-020C

PBT: Peak body temperature (maximum temperature for reflow soldering)

ECOPACK: present if leadfree component

TYPE: product name

Trace codes: PP: assembly plant code

Y: last digit of the year of assembly

WW: Week of assembly

LL1: lot number

WX: Diffusion plant code

TF : Test&finishing plant code

Bulk ID number: 1: Product level (T for tested product)

Y: last digit of the year

P: Plant code

WW: Week of labeling

LOT: Sequential number for lot

BOXX: Sequential number for box

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all information reported on the relevant datasheets.

There is as well no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

In any case, first shipments may start earlier with customer's written agreement.

Reliability Report

*H5/HF5 Technologie Additional Front End plant
Qualification to CRO200 plant*

General Information		Locations
Product Line	3021 & V632	CRO200
Product Description	Rail to rail high speed comparator & Dual Rail to rail operational amplifier	
P/N	TS3021ILT & TSV632IDT	
Product Group	AMS	
Product division	Analog	
Package	SOT23-5 & SO8	Carsem (SOT23-5) & BSK (SO8)
Silicon Process technology	HF5 & H5	
Production mask set rev.	1	
Maturity level step	from 10 to 30	Grenoble

DOCUMENT INFORMATION

Report ID 2012-W16 H5/HF5

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	16-Apr-2012	24	X. Gagnard		First issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.
This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	7
2	GLOSSARY	7
3	RELIABILITY EVALUATION OVERVIEW	7
3.1	OBJECTIVES	7
3.2	CONCLUSION	7
4	DEVICE CHARACTERISTICS	8
4.1	DEVICE DESCRIPTION	8
4.2	CONSTRUCTION NOTE	10
5	TESTS RESULTS SUMMARY	11
5.1	TEST VEHICLE	11
5.2	TEST PLAN AND RESULTS SUMMARY	11
6	ANNEXES	12
6.1	DEVICE DETAILS	12
6.2	TESTS DESCRIPTION	17

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	Stress test qualification for automotive grade integrated circuits
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
JESD46	Customer notification of product process changes by semiconductors suppliers

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Through this qualification plan, the H5 & HF5 technology transfer is evaluated, to be diffused at CROLLES 200mm plant instead of UMC subcontractor.

This qualification plan is divided in 3 steps:

- 1st step: qualification of standard technology
- 2nd step: H5 automotive technology qualification
- 3rd step: HF5 automotive technology qualification

This report concerns the 1st step, concerning the qualification of the standard uses of the H5 & HF5 technology.

Based on similarity analysis, linked to qualification plan, 2 tests vehicles are used:

- 3021 line for HF5 technology
- V632 line for H5 technology

These 2 lines are also evaluated for automotive market, and will be considered for 2nd step.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

The H5 & HF5 technology are qualified to address standard market.

4 DEVICE CHARACTERISTICS

4.1 Device description

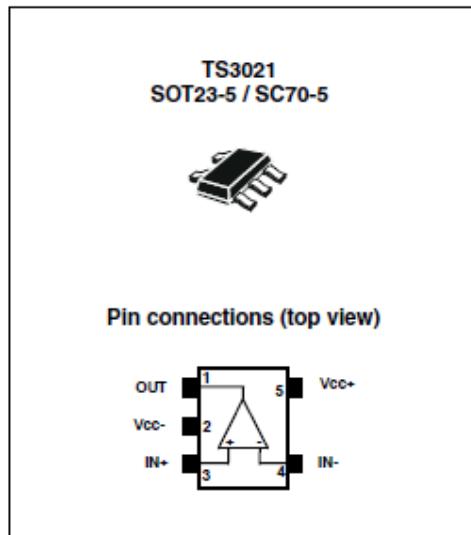
TS3021

Rail-to-rail 1.8 V high-speed comparator

Features

- Propagation delay: 38 ns
- Low current consumption: 73 μ A
- Rail-to-rail inputs
- Push-pull outputs
- Supply operation from 1.8 to 5 V
- Wide temperature range: -40° C to +125° C
- High ESD tolerance: 5 kV HBM / 300 V MM
- Latch-up immunity: 200 mA
- SMD packages

Applications


- Telecom
- Instrumentation
- Signal conditioning
- High-speed sampling systems
- Portable communication systems

Description

The TS3021 single comparator features high-speed response time with rail-to-rail inputs. With a supply voltage specified from 2 to 5 V, this comparator can operate over a wide temperature range: -40° C to +125° C.

The TS3021 comparator offers micropower consumption as low as a few tens of microamperes thus providing an excellent ratio of power consumption current versus response time.

The TS3021 includes push-pull outputs and is available in small packages (SOT23-5 and SC70-5).

TSV632, TSV632A, TSV633, TSV633A TSV634, TSV634A, TSV635, TSV635A

Dual and quad rail-to-rail input/output
60 μ A 880 kHz operational amplifiers

Features

- Rail-to-rail input and output
- Low power consumption: 60 μ A typ at 5 V
- Low supply voltage: 1.5 V - 5.5 V
- Gain bandwidth product: 880 kHz typ
- Unity gain stability
- Low power shutdown mode: 5 nA typ
- Low offset voltage: 800 μ V max (A version)
- Low input bias current: 1 pA typ
- EMI hardened op-amps
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40° C to +125° C

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV63x series of dual and quad operational amplifiers offers low voltage operation and rail-to-rail input and output.

This family features an excellent speed/power consumption ratio, offering a 880 kHz gain-bandwidth product while consuming only 60 μ A at 5 V supply voltage. The devices also feature an ultra-low input bias current and have a shutdown mode (TSV633, TSV635).

These features make the TSV63x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

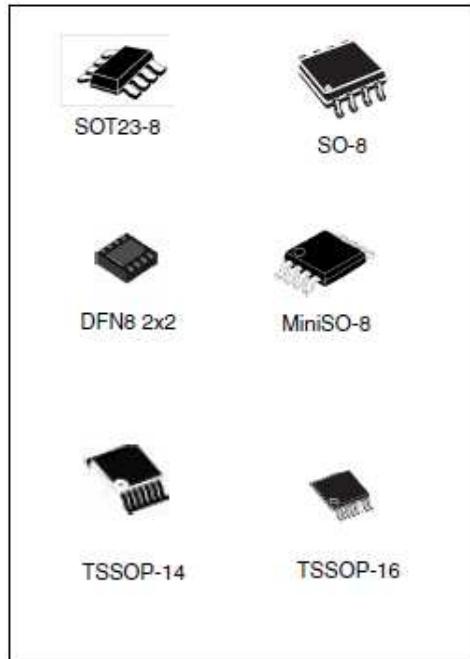


Table 1. Device summary

Reference	Dual version		Quad version	
	Without standby	With standby	Without standby	With standby
TSV63x	TSV632	TSV633	TSV634	TSV635
TSV63xA	TSV632A	TSV633A	TSV634A	TSV635A

4.2 Construction note

Site Xfer AMJ9		
	P/N TS3021ILT	P/N TSV632IDT
Wafer/Die fab. information		
Wafer fab manufacturing location	CROLLES 200mm	
Technology	HF5CMOS	HCMOS5LA
Process family	HF5	H5
Die finishing back side	Lapped Silicon	Raw Silicon
Die size	720 x 820 μm^2	1020 x 1090 μm^2
Bond pad metallization layers	AlCu	AlCu
Passivation type	PSG + Nitride	PSG+Nitride+PIX
Poly silicon layers	NA	NA
Wafer Testing (EWS) information		
Electrical testing manufacturing location	Singapore	Singapore
Tester	ASL1000	ASL1000
Test program	T3021AW1	TV632PW2
Assembly information		
Assembly site	CARSEM	BSK
Package description	SOT23-5	SO8
Molding compound	CEL8240HF	EME-G700K
Frame material	Cu	Cu
Die attach process	Glue	Glue
Die attach material	QMI519	8601S-25
Die pad size	75 x 75 μm^2	75 x 75 μm^2
Wire bonding process	Wire	Wire
Wires bonding materials/diameters	Au 1mil	Cu 1mil
Lead finishing process	Pre metallised	Pre metallised
Lead finishing/bump solder material	NiPdAu	NiPdAu
Substrate supplier for BGA	NA	NA
Final testing information		
Testing location	CARSEM	BSK
Tester	ASL1000	ASL1000
Test program	T3021AF3	TV632BF

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Trace Code	Process/ Package	Product Line	Comments
1	J135BPT	CA1145N60	1146ZRY	SOT23-5	3021	RL: IYWY*3021BTJ
2	J131MAC	CA1146N30	CZ1480EB	SO8	V632	RL: ID07*V632BTJ
3						

Detailed results in below chapter will refer to P/N and Lot #.

5.2 Test plan and results summary

P/N TS3021ILT & TSV632IDT

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS			Note
						Lot 1	Lot 2	Lot 3	
Die Oriented Tests									
HTB	N	JESD22 A-108	T _j = 125°C, BIAS	156	168 H 1000 H	0/78 0/78	0/78 0/78		
HTSL	N	JESD22 A-103	T _a = 150°C	156	168 H 1000 H	0/78 0/78	0/78 0/78		
ELFR	N	AEC Q100 - 008	T _j = 125°C, BIAS	1000	48H	0/800	0/200		
Package Oriented Tests									
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	Pass	Pass		
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C	234	96 H 168 H	0/78 0/78	0/156 0/78		
TC	Y	JESD22 A-104	T _a = -65°C to 150°C	156	100 cy 1000 cy	0/78 0/78	0/78 0/78		
THB	Y	JESD22 A-101	T _a = 85°C, RH = 85%, BIAS	156	168 H 1000 H	0/80 0/80	0/78 0/78		
Other Tests									
ESD	N	AEC Q101-001, 002 and 005	HBM CDM MM	6		2kV	4kV		
				6		1500V	tbd		(2)
				6		200V	300V		
LU	N	AEC Q100 - 004	Current Inj. Overvoltage	12	+200mA	In progress	Pass		(1)

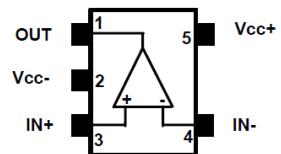
Note (1): Stress in progress, should be done by Hot stress for Automotive qualification

Note (2): CDM stress performed at Catania ST Plant

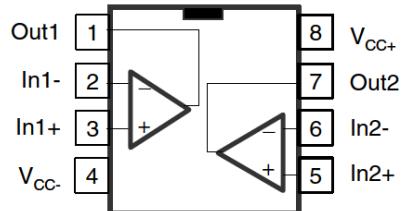
In case of rejects include a short description of the failure analysis and corrective actions.

6 ANNEXES

6.1 Device details


6.1.1 Pin connection

SOT23-5


TS3021
SOT23-5 / SC70-5

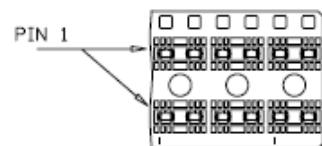
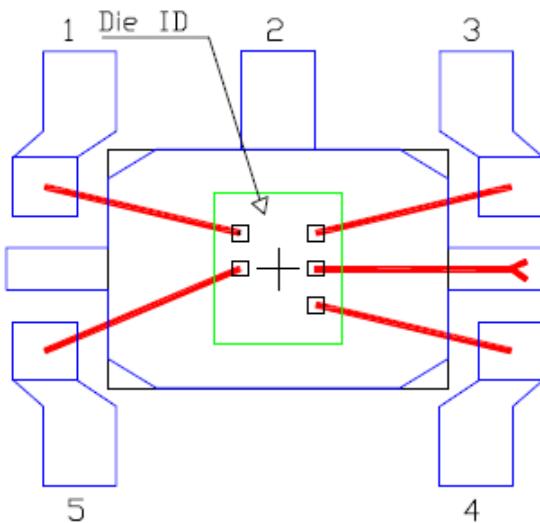
Pin connections (top view)

SO8

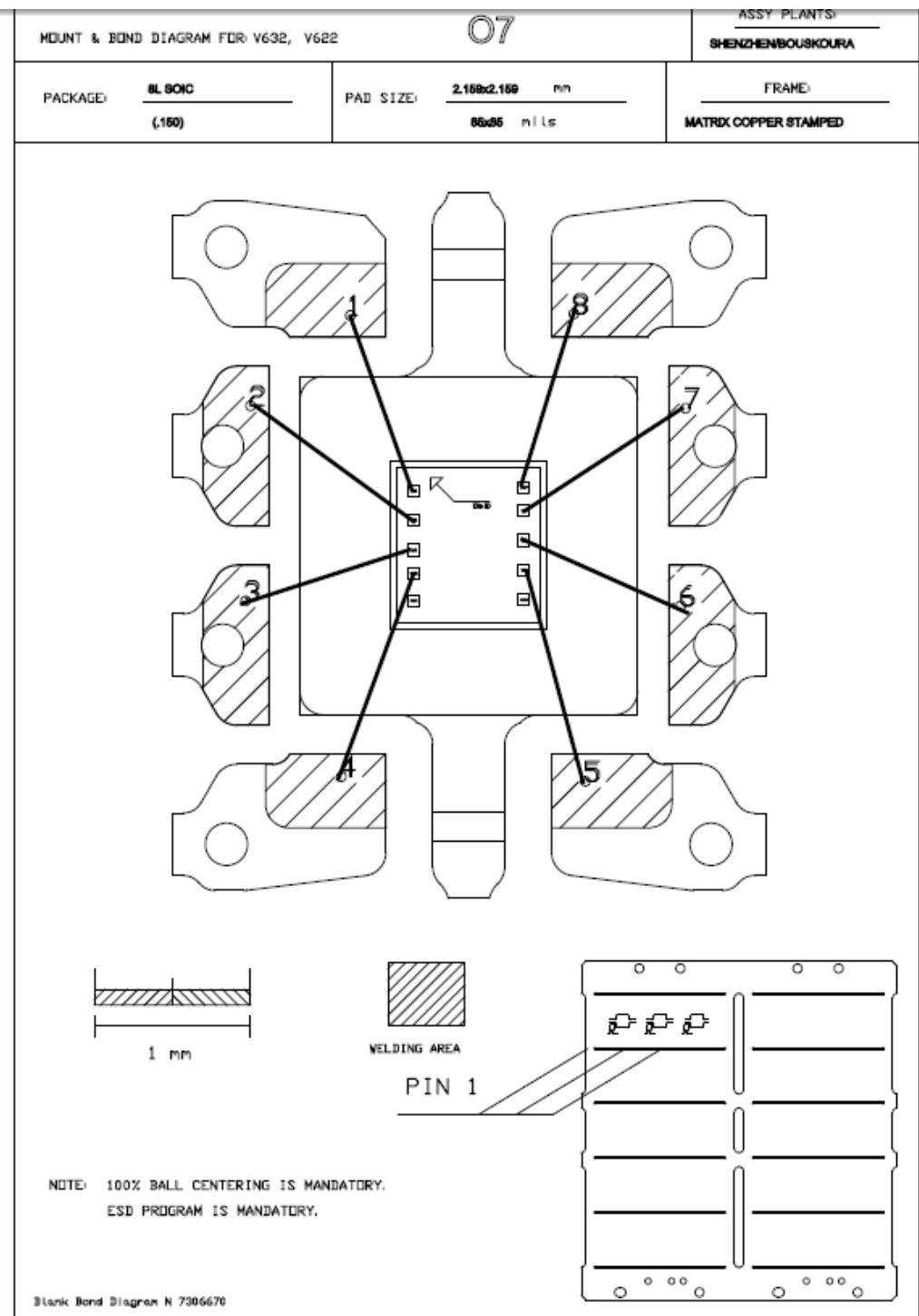
TSV632IDT/IST/ILT/IQ2T
SO8/Mini-SO8/SOT23-8/DFN8

6.1.2 Block diagram

Not available



6.1.3 Bonding diagram

For SOT23-5 package


BONDING DIAGRAM FOR LINE : 3021

PACKAGE : W Y

FRAME PAD : $.064 \times .045$ inch
1,626 x 1,143 mm

SOT23 5L
BLANK BOND. DIAG. REF. : SFT1848

6.1.4 Package outline/Mechanical data

For SOT23-5 :

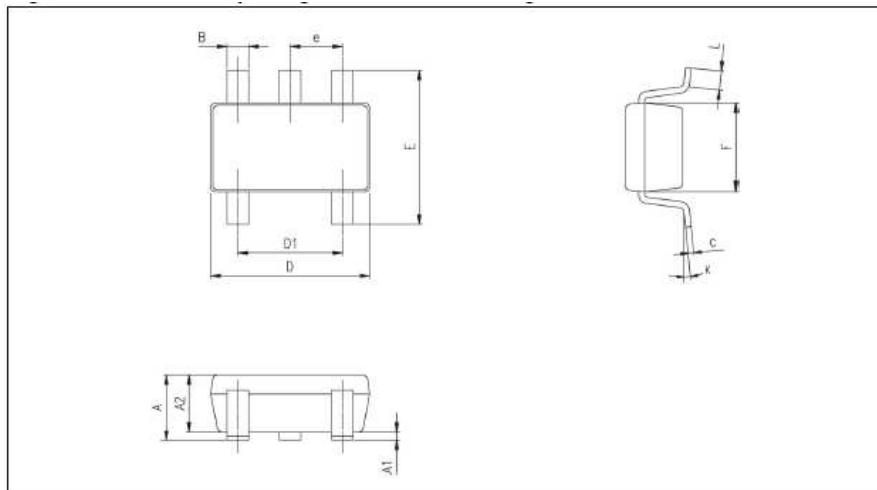


Table 6. SOT23-5L package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.90	1.20	1.45	0.035	0.047	0.057
A1			0.15			0.006
A2	0.90	1.05	1.30	0.035	0.041	0.051
B	0.35	0.40	0.50	0.013	0.015	0.019
C	0.09	0.15	0.20	0.003	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
D1		1.90			0.075	
e		0.95			0.037	
E	2.60	2.80	3.00	0.102	0.110	0.118
F	1.50	1.60	1.75	0.059	0.063	0.069
L	0.10	0.35	0.60	0.004	0.013	0.023
K	0 degrees		10 degrees			

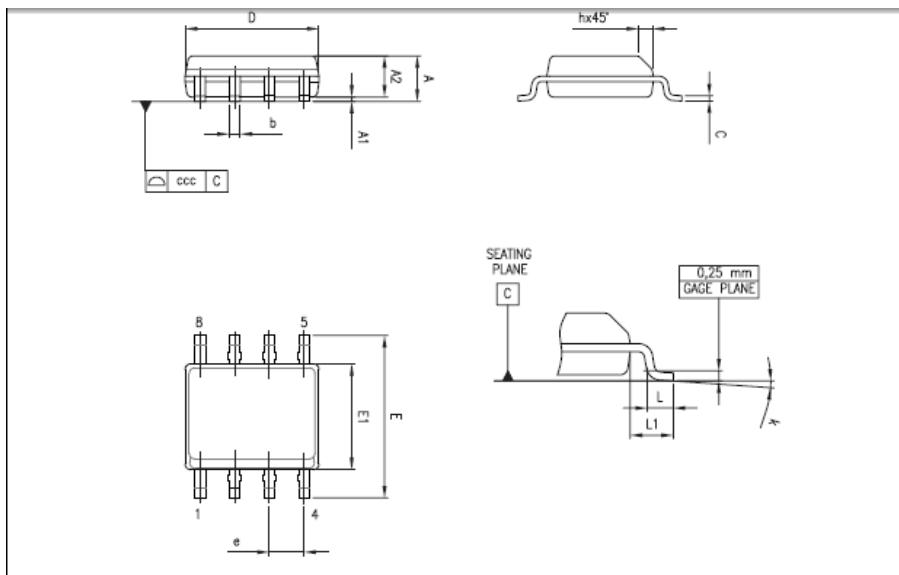


Table 11. SO-8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
c	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
e		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	

6.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTB High Temperature Bias		
HTRB High Temperature Reverse Bias	The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.
HTFB / HTGB High Temperature Forward (Gate) Bias		To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
TF / IOL Thermal Fatigue / Intermittent Operating Life	The device is submitted to cycled temperature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.

Test name	Description	Purpose
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

This qualification follow announcement done in 2010 (PCN APM/MHD/10/5340), see on following page qualification results raised at that time.

Qualification Report

On HCMOS5 Products

General Information		Locations	
Product Line	201201	Wafer fabrication location	CROLLES 8"
Product Description	3W filter-free class D stereo audio power amplifier	UBM plant location	Tours France
Commercial Product	TS2012EIJT	Assembly plant location	Shenzhen China
Product Group	LINEAR & INTERFACE	Final test plant location	Shenzhen China
Product Division	IMS - APM GROUP		
Package Description	CSP500 (flip chip)		
Silicon Process Technology	HCMOS5		

General Information		Locations	
Product Line	496201	Wafer fabrication location	CROLLES 8"
Product Description	3W filter-free class D mono audio power amplifier	UBM plant location	Tours France
Commercial Product	TS4962MEIJT	Assembly plant location	Shenzhen China
Product Group	LINEAR & INTERFACE	Final test plant location	Shenzhen China
Product Division	IMS - APM GROUP		
Package Description	CSP500 (flip chip)		
Silicon Process Technology	HCMOS5		

DOCUMENT HISTORY

Version	Date	Pages	Author	Comment
0.1	January 2010	6	F.Murillon O. Girard F. Paccard	Original document

Reliability is the attitude of element to satisfy required function in fixed conditions during established time.

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.
This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objectives

Aim of this report is to present the results of the reliability evaluations performed on 2012 device used as test vehicle in order to qualify HCMOS5 diffused in Crolles 8". And to present product performances comparison for 4962. These products are assembled as flip chip in ST plant in Shenzhen (China)

1.2 Conclusion

The final reliability results are positive for all stressed lots.
All product performances comparisons are compliant with ST rules.

2 DEVICE CHARACTERISTICS

2.1 Device description

* The TS2012 is a differential Class-D BTL stereo power amplifier. It is able to drive up to 2.3W into a 4 Ohms load and 1.4W into a 8 Ohms load at 5V. It achieves outstanding efficiency (88%typ.) compared to classical Class-AB audio amps.

The gain of the device can be controlled via two external gain-setting resistors. Pop & click reduction circuitry provides low on/off switch noise while allowing the device to start within 5ms. A standby function (active low) allows the reduction of current consumption to 10nA typ.

* The TS4962M is a differential Class-D BTL mono power amplifier. It is able to drive up to 2.3W into a 4 Ohms load and 1.4W into a 8 Ohms load at 5V. It achieves outstanding efficiency (88%typ.) compared to classical Class-AB audio amps.

The gain of the device can be controlled via two external gain-setting resistors. Pop & click reduction circuitry provides low on/off switch noise while allowing the device to start within 5ms. A standby function (active low) allows the reduction of current consumption to 10nA typ.

2.2 Traceability

2.2.1 Wafer fabrication information

- Wafer fabrication manufacturing location: Crolles 8" in France
- Technology: HCMOS5
- Die size 4962 : 1.63 mm x 1.63 mm
- Die size 2012 : 2.15 mm x 2.15 mm
- Passivation type: PSG / SiN

2.2.2 Assembly information

Assembly site	Shenzen China
Package description	CSP 500 (flip chip)
Bumps material	SnAgCu 300 microns / pitch 500 microns

3 RELIABILITY TESTS RESULTS

3.1 Bump shear test results

	Ball shear : mean lot	Ball diameter : mean lot	Tearing out : Mode 1
J920FZJ_2012	361g	309µm	OK
J924BKE_2012	351g	309µm	OK
J935CAW_4962	358g	311µm	OK
	Min spec 240g	Min spec 284µm	
	Max spec 520g	Max spec 334µm	

3.2 Electrical performances comparison

TS2012EIJT

Test parameter	Mean Comparison (J920FZJ)				Cpk comparison	
	UMC	CROLLES	Shift	Datas sheet	UMC	Crolles
Iccstby(nA)	508	520	2%	< 2µA	12.3	9.7
Fpwm(kHz)	290	289	0%	< 370 kHz	2.7	3.4
Icc(mA)	3.1	3.0	2%	< 5.5mA	4.9	4.4
VooL(mV)	1.4	2.1	0.7mV	< 25mV	3.7	3.9
VooR(mV)	1.7	1.8	0.1mV		3.7	2.1
ZinLp(Ohms)	27.4	29.7	8%	< 36 Ohms	2.0	2.6
ZinLn(Ohms)	27.5	30.0	9%		2.0	3.9
THD(%)	0.3	0.4	19%	typ 0.35	2.1	1.6
Gain6dB	6.1	6.0	0%	typ 6dB	14.1	12.2
Po4R(mW)	484	491	1%	typ 450mW	12.5	8.0
Po8R(mW)	296	298	1%	typ 300mW	6.8	7.2
CmrrR(dB)	68.6	68.1	1%	typ 62dB	1.5	2.2

TS4962MEIJT

Mean Comparison (J935CAW)				
Test parameter	UMC	CROLLES	Shift	Datas sheet
Iccstby(µA)	0.021	0.017	19.0%	< 0.5µA
Rstby(kOhms)	153	150	1.8%	typ 150 kOhms
Fpwm(kHz)	239	242	1.3%	< 370 kHz
Icc(mA)	1.63	1.57	3.7%	< 2.4mA
Voo(mV)	0.84	1.40	0.56 mV	< 25mV
THD(%)	0.6	0.6	0.0%	< 1%
Gain6dB	5.8	5.6	4.0%	typ 6dB
Po8R(mW)	0.33	0.32	3.0%	typ 400mW

Icc standby current is 20% lower which is an improvement.

3.3 Reliability test plan and results summary

Die oriented test

HTB	Test short description : High Temperature Bias				
	Batch_product	Conditions	Sample size	Duration	Fail/ tested
	J920FZJ_2012	Tj=150°C Vs=absolute max rating	78 x 1 Lot	1000 H	0/78
	J935CAW_4962	Tj=150°C Vs=absolute max rating	78 x 1 Lot	1000 H	0/78

Package oriented test

TMC	Test short description : Thermal Cycle				
	Batch_product	Conditions	Sample size	Duration	Fail/ tested
	J920FZJ	Ta =-65°C to 150°C thermal cycle	78 x 1 Lot	1000 cycles	0/78

ESD tests

ESD Model	Batch_product	Stress voltage (V)	Fail / tested
HBM	J920FZJ_2012	2000	0 / 3
	J935CAW_4962	2000	0 / 3
MM	J920FZJ_2012	200	0 / 3
	J935CAW_4962	200	0 / 3
CDM	J920FZJ_2012	750	0 / 3

All test above are compliant with below standards:

- MIL883C
- JEDEC JESD22
- ANSI ESD STM 5.1

ESD results on samples from receiving plant are aligned with results obtained on sending plant samples.

3.4 Bench test :

All below curves are conform to curves reported in TS2012EIJT datasheet.

REJECTION	
CMRR VS Common Mode Voltage	X
CMRR VS Frequency	X
PSRR VS Common Mode Voltage	X
PSRR VS Frequency	X
CONSUMPTION	
Current Consumption VS Power Supply Voltage	X
Output Power VS Power Supply Voltage	X
Efficiency VS Output Power	X
ELECTRICAL CHARACTERISTICS	
Input Impedance	X
Noise VN	X
Offset Output Voltage	X
Gain VS Frequency	X
PWM Frequency	X
DISTORSION	
THD+N VS Frequency	X
THD+N	X
TIME	
Rise-Fall Time	X
CROSSTALK	
Crosstalk VS Frequency	X
SHORTCUT	
Shortcut without Inductor VoH-Gnd	X
Shortcut without Inductor VoH-VoL	X
Shortcut with Inductor VoH-VoL 33µH	X
Shortcut with Inductor VoH-Gnd 33µH	X
TEMPERATURE TEST	
150°C	X

3.5 Die oriented tests

These tests are performed in order to demonstrate the quality and reliability of devices subjected to an elevated temperature and reverse biased.

The purpose of this test is to detect surface defects such as poor passivation, presence of contaminants, metal corrosion, etc

3.6 Package oriented tests

These tests are performed in order to check device life in various environmental conditions in an accelerated way.

Detectable failure mechanisms are metal corrosion and molding defect, cracking of die, breaking of wire bonding, and mechanical damage to the device case.

4 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	Stress test qualification for integrated circuits
SOP 2610	General product qualification procedure
Internal ST specification	Reliability Tests and criteria for qualifications (Corporate Q&R rules)
...	

5 GLOSSARY

ESD	Electro Static Discharge
HTB	High Temperature Bias
T.C.	Thermal Cycle

Public Products List

PCN Title : Additional diffusion site for Signal conditioning products in HF5CMOS technologies in ST Crolles

PCN Reference : AMS-AAS/14/8642

PCN Created on : 08-AUG-2014

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change:

ST COMMERCIAL PRODUCT

TSV912AIDT	TSV912AIST	TSV912IDT
TSV912IQ2T	TSV912IST	TSV914AIDT
TSV914AIPT	TSV914IDT	TSV914IPT
TSV992AIDT	TSV992AIST	TSV992IDT
TSV992IST	TSV994AIDT	TSV994AIPT
TSV994IDT	TSV994IPT	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

©2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com