

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN APG-MID/13/8205

Dated 06 Nov 2013

MANUFACTURING IMPROVEMENTS APPLIED TO MONACO FAMILY

Table 1. Change Implementation Schedule

Forecasted implementation date for change	15-May-2014
Forecasted availability date of samples for customer	15-Dec-2013
Forecasted date for STMicroelectronics change Qualification Plan results availability	15-Apr-2014
Estimated date of changed product first shipment	15-Jul-2014

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	MONACO FAMILY
Type of change	Waferfab additional location
Reason for change	Corporate Process Roadmap
Description of the change	Qualification of Crolles as additional diffusion plant and qualification of CuPd wire bonding in Malta. See details.
Change Product Identification	Dedicated marking traceability on products and labels
Manufacturing Location(s)	

DOCUMENT APPROVAL

Name	Function
Duncan, Martin Russell	Marketing Manager
Brambilla, Daniele Alfred	Product Manager
Mervic, Alberto	Q.A. Manager

MANUFACTURING IMPROVEMENTS APPLIED TO MONACO FAMILY

WHAT:

In order to meet the forecasted increase of demand for CMOSM10 products (90 nm), we are going to put in place the following initiatives:

- 1) Activate Crolles 12" plant as a second and high volumes manufacturing source beside Rousset R8 8". The above manufacturing plant activation has been already communicated through PCN APG-MID/13/7698 issued in March 2013.
- 2) Design Changes to improve performance.
- 3) Introduce the CuPd wire bonding as an alternative to Au wire bonding.

WHY:

Corporate Process Roadmap

On customer request the above mentioned PCNs has been split by product family keeping unchanged the overall Company strategy.

HOW:

Here attached are the qualification reports for the process test vehicles: FP50 (Pictus 512K) & FA80 (Andorra 4M cut 3.0).

We forecast to complete the two changes (qualification of the products in Crolles and the CuPd wire bonding) by end of Q1/2014.

Traceability will be granted by ST system. A dedicated code marked on the parts will enable to distinguish between diffusion sites (see attached document).

See below list of relevant commercial products with the changes to be applied.

WHEN:

Sampling: on customer request starting December 2013
PPAP in April 2014
Production & shipment progressively from Q2 2014

NEW BILL OF MATERIAL	
LQFP 144 20X20X1.4	LQFP 176 24X24X1.4
GLUE ABLEBOND 3280T	GLUE ABLEBOND 3280T
RESIN SUMITOMO EME-G700LS	RESIN SUMITOMO EME-G700LS
WIRE CuPd D0.7	WIRE CuPd D0.7

Involved products

	Activation of Crolles as high volume manufacturing source	Introduction of CuPd wire	Design changes
SPC563M64L5x	YES	YES	YES
SPC563M64L7x	YES	YES	YES

Design Changes Description

The design changes are listed below and reported in the attached table “Monaco cut 3.0 vs cut 2.x.xlsx”.

Monaco 1.5M cut 3.0 versus 2.2:

- StandBy IP
- Bond pad structure and layout was adjusted for compatibility with CuPd wire and OPM (Over Pad Metallization)
- updating the I/O ID code*

****No other changes to registers/memory maps which implies SW changes***

TITLE: Monaco 1.5M Design Changes from cut 2.2 to cut 3.0

Change	Description	ERRATA NUMBER	ERRATA NUMBER	Comment
StandBy IP	The StandBy IP has been changed rebuilding all the mask layers	not applicable	none	During Andorra characterization and simulation analysis have been confirmed that Stand-by module functionality strongly depends by process and can create production yield excursions. The issue is not described in cut 2.2 Errata since ST controlling the process anticipates possible yield drop during cut 2.2 production.
I/O Library	The I/O lib has been updated	not applicable	none	The same library used on Andorra 2M cut 2.1 and Andorra 4M cut 3.0
ID code	MCU ID Register: MASKNUM field in SIU_MIDR register is set to 0x30	ERR00xxxx	MPC563xM/SPC563M: MIDR MASKNUM field is set to 0x30	The ID code changed due to silicon revision changed from cut 2.2 to cut 3.0 - As soon as the Errata of cut 3.0 will be released the Errata Number will be added.

TITLE: Monaco 1.5M Design Changes from cut 2.1 to cut 2.2

Change	Description	ERRATA NUMBER	ERRATA NUMBER	Comment
ADC	ADC accuracy issue	ERR005128	eQADC: Some channels do not meet SNR specification	ADC accuracy issue was caused by internal noise generated by normal operation of the flash to be coupled with ADC power supplies. The accuracy was restored in cut 2.2 by executing a metal change to re-route the flash charge pump supply to an I/O power supply.
ID code	MCU ID Register: MASKNUM field in SIU_MIDR register is set to 0x22	ERR005909	MPC563xM/SPC563M: MIDR MASKNUM field is set to 0x22	The ID code changed due to silicon revision changed from cut 2.1 to cut 2.2

PCN APG-MID/13/8205

Monaco1.5M Ordering Code info

APG MID Microcontroller

Monaco1.5M codes for Cut 3.0

2

- No modification on Ordering Code (Commercial Product code)
- Codification of Cut 2.1/2.2 and Cut 3.0 are differentiated for:
 - Silicon code
 - Finish Good code
 - Marking

Ordering code	Code Flash / SRAM (Kbytes)	Package	Operating temp (°C)	Max Speed (MHz)	Packing	Min qty
SPC563M64L5COAR	1.5M /94Kb	LQFP144	-40 to +125	80	Tape&Reel	500
SPC563M64L5COAY	1.5M /94Kb	LQFP144	-40 to +125	80	Tray	400
SPC563M64L5COBR	1.5M /94Kb	LQFP144	-40 to +125	64	Tape&Reel	1000
SPC563M64L5COBY	1.5M /94Kb	LQFP144	-40 to +125	64	Tray	800
SPC563M64L7COAR	1.5M /94Kb	LQFP176	-40 to +125	80	Tape&Reel	500
SPC563M64L7COAY	1.5M /94Kb	LQFP176	-40 to +125	80	Tray	360
SPC563M64L7COBR	1.5M /94Kb	LQFP176	-40 to +125	64	Tape&Reel	1000
SPC563M64L7COBY	1.5M /94Kb	LQFP176	-40 to +125	64	Tray	720

Monaco1.5M codes for Cut 3.0

	Monaco 1.5M Cut2.1	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COAR
Finish Good code	563M64L5COAR-2	63M64L5C7OAR000
Silicon code	FM64BB2	FM64CAQ
Marking	BB SPC563M64L5	CA SPC563M64L5
	Monaco 1.5M Cut2.1	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COAY
Finish Good code	563M64L5COAY-2	63M64L5C7OAY000
Silicon code	FM64BB2	FM64CAQ
Marking	BB SPC563M64L5	CA SPC563M64L5
	Monaco 1.5M Cut2.1	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COBR
Finish Good code	563M64L5COBR-2	63M64L5C7OBR000
Silicon code	FM64BB2	FM64CAQ
Marking	BB SPC563M64L5	CA SPC563M64L5

Red digit: differentiation for new silicon cut

Monaco1.5M codes for Cut 3.0

	Monaco 1.5M Cut2.1	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COAR
Finish Good code	563M64L7COAR-2	63M64L7C7OAR000
Silicon code	FM64BB2	FM64CAQ
Marking	BB SPC563M64L7	CA SPC563M64L7
	Monaco 1.5M Cut2.1	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COAY
Finish Good code	563M64L7COAY-2	63M64L7C7OAY000
Silicon code	FM64BB2	FM64CAQ
Marking	BB SPC563M64L7	CA SPC563M64L7
	Monaco 1.5M Cut2.1	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COBR
Finish Good code	563M64L7COBR-2	63M64L7C7OBR000
Silicon code	FM64BB2	FM64CAQ
Marking	BB SPC563M64L7	CA SPC563M64L7

Red digit: differentiation for new silicon cut

Monaco1.5M codes for Cut 3.0

	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COAR
Finish Good code	563M64L5COAR-3	63M64L5C7OAR000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L5	CA SPC563M64L5
	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COAY
Finish Good code	563M64L5COAY-3	63M64L5C7OAY000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L5	CA SPC563M64L5
	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COBR
Finish Good code	563M64L5COBR-3	63M64L5C7OBR000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L5	CA SPC563M64L5

Red digit: differentiation for new silicon cut

Monaco1.5M codes for Cut 3.0

	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COAR
Finish Good code	563M64L7COAR-3	63M64L7C7OAR000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L7	CA SPC563M64L7
	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COAY
Finish Good code	563M64L7COAY-3	63M64L7C7OAY000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L7	CA SPC563M64L7
	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COBR
Finish Good code	563M64L7COBR-3	63M64L7C7OBR000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L7	CA SPC563M64L7

Red digit: differentiation for new silicon cut

Monaco1.5M codes for Cut 3.0

	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L5COBY
Finish Good code	563M64L5COBY-3	63M64L5C7OBY000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L5	CA SPC563M64L5
	Monaco 1.5M Cut2.2	Monaco 1.5M Cut3.0
Ordering code		SPC563M64L7COBY
Finish Good code	563M64L7COBY-3	63M64L7C7OBY000
Silicon code	FM64BCG	FM64CAQ
Marking	BC SPC563M64L7	CA SPC563M64L7

Red digit: differentiation for new silicon cut

Reliability Report

Andorra 4M

FAB transfer

General Information		Locations	
Product Line	FA80	Wafer fab location	Crolles 2
Product Description	Andorra 4M cut 3.0		
Commercial Product	SPC564A80		
Product Group	APG	Final Assessment	
Product division	MID	Reliability assessment	Qualification Passed as per Q100 rev G grade 1
Silicon process technology	CMOS M10		

DOCUMENT HISTORY

Version	Date	Author	Comment
1.0	30/04/2013	M. De Tomasi	First Document release

RELEASED DOCUMENT

TABLE OF CONTENTS

1	RELIABILITY EVALUATION OVERVIEW	3
1.1	OBJECTIVES	3
1.2	CONCLUSIONS	3
2	TRACEABILITY	4
2.1	WAFER FAB INFORMATION	4
2.2	PACKAGE OUTLINE/MECHANICAL DATA	4
2.3	FINAL TESTING INFORMATION:	4
3	RELIABILITY PLAN AND TESTS RESULTS	5
3.1	CONDITIONS	5
3.2	TABLES ENTRY LEGEND	5
3.3	ACCELERATED ENVIRONMENTAL STRESS TEST (Q100 GROUP A)	5
3.4	ACCELERATED LIFETIME SIMULATION TEST (Q100 GROUP B)	7
3.5	PACKAGE ASSEMBLY INTEGRITY TEST (Q100 GROUP C)	9
3.6	DIE FABRICATION RELIABILITY TEST (Q100 GROUP D)	9
3.7	ELECTRICAL VERIFICATION TEST (Q100 GROUP E)	10
3.8	DEFECT SCREENING TEST (Q100 GROUP F)	11

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objectives

Aim of this document is to report the reliability trials results of Andorra 4M Cut 3.0 qualification.

Andorra 4M cut 3.0 is processed in Crolles FAB using CMOS M10 (90 nm) technology and it is assembled in Malta-ST assy line for LQFP176 package with gold wire.

The M10 (90nm technology) process was qualified in Rousset R8 Fab in wk922 using three logic test chips and a Flash test chip as test vehicles. Andorra 4M cut 2.0 was qualified in Rousset in Q1 2011.

Considering that Andorra4M is the first M10 product with 6 metal layers and FLS Flash diffused in Crolles, no similarity with other qualified products could be considered.

The qualification exercise will be based on 3 diffusion lots coming from Crolles: assy reports required on all qualification lots.

The qualification exercise is in respect of Q100 rev G specification.

1.2 Conclusions

All qualification trials have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

Parameter drift analysis performed on samples submitted to die oriented test showed a good stability of the main electrical monitored parameters.

Package oriented tests have not put in evidence any criticality.

On the ground of the overall positive results we can conclude that Andorra 4M cut 3.0 in LQFP176 can be qualified in accordance to AEC-Q100 Grade1 RevG.

2 TRACEABILITY

2.1 Wafer fab information

DIE FEATURES	
Diffusion Site	Crolles 2
Wafer Diameter (inches)	12
Process Technology	CMOS M10
Passivation	PSG - Nit UV
Die finishing back side	Lapped Silicon

2.2 Package outline/Mechanical data

	LQFP 176
Package Description	LQFP 176 24x24x1.4
Assembly Site	ST KIRKOP – MALTA
Die Attach material	ABLEBOND 3280T
Molding compound	SUMITOMO EME-G700LS
Substrate/Leadframe	LQFP 176L 24SQ RgAg
Wires bonding materials/diameters	WIRE Au 2N GPG2 D0.9

2.3 Final testing information:

PACKAGE FEATURES	
Electrical Testing manufacturing location	: ST KIRKOP – MALTA
Tester	: Teradyne J750

3 RELIABILITY PLAN AND TESTS RESULTS

3.1 Conditions

Room test temperature is 25°C

Hot test temperature is 150°C

Cold test temperature is -40°C

3.2 Tables entry legend

Symbol	How to read
<input type="checkbox"/>	Action or condition has not to be considered
<input checked="" type="checkbox"/>	The action/condition has been done/applied during the trial
N.P.	The trial or readout is not in the Qualification Plan and thus has not been performed

3.3 Accelerated Environmental Stress Test (Q100 Group A)

N	TEST NAME	CONDITIONS [SPEC]	Step	RESULTS			Notes
				LOT 1	LOT 2	LOT 3	
1	Pre Conditioning MSL 3	[J-STD-020] <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold <input checked="" type="checkbox"/> Sonoscan pre / post <input checked="" type="checkbox"/> 100 Temperature Cycles 24h bake@125°C, 192h@30°C/60%RH 3x Reflow simulation 260°C Peak Temp	Pre	0/231	0/231	0/231	
			Post	0/231	0/231	0/231	
2	THB Temperature Humidity Bias	[JESD22-A101/A110] <input checked="" type="checkbox"/> AfterJedec PC MSL3 <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold Ta=85°C, 85%RH, 1000hrs	500 hrs	0/77	0/77	0/77	
			1000 hrs	0/77	0/77	0/77	
3	AC Autoclave	[JESD22-A102/A118] <input checked="" type="checkbox"/> AfterJedec PC MSL3 <input checked="" type="checkbox"/> Testing at Room <input type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold P=2.08atm Ta=121°C, 96hrs	96 hrs	0/77	0/77	0/77	
4	TC Temperature Cycling	[JESD22-A104] <input checked="" type="checkbox"/> AfterJedec PC MSL3 <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input checked="" type="checkbox"/> Testing at Cold <input checked="" type="checkbox"/> Sonoscan pre / post <input checked="" type="checkbox"/> WPT pre / post <input checked="" type="checkbox"/> WBS pre / post Ta=-50°C /+150 °C 1000 cyc	500 cyc	0/77	0/77	0/77	
			1000 cyc	0/77	0/77	0/77	

5	PTC Power Temperature Cycle	[JESD22-A105] <input type="checkbox"/> After Jedec PC MSL3 <input type="checkbox"/> Testing at Room <input type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold Ta=-40°C /+125 °C 1000 cyc	1000 cyc	N.P.	N.P.	N.P.	Not required on Andorra 4M
6	HTSL High Temperature Storage Lifetime	[JESD22-A103] Ta= 150°C 1000hrs (2000hrs <i>monitoring</i>)	1000 hrs	N.P.	N.P.	N.P.	See HTDR trial

3.4 Accelerated Lifetime Simulation Test (Q100 Group B)

N	TEST NAME	CONDITIONS [SPEC]	Step	Results			Notes
				Lot 1	Lot 2	Lot 3	
1	HTOL High Temp. Operating Life	<p>[JESD22-A108]</p> <p><input checked="" type="checkbox"/> After Jedec PC MSL3</p> <p><input checked="" type="checkbox"/> After 1k W/E cyc @125°C</p> <p><input checked="" type="checkbox"/> Testing at Room, Hot, Cold</p> <p><input checked="" type="checkbox"/> Drift Analysis on Key parameters at Room, Hot, Cold</p> <p>Ta=125°C, Tj=150°C VDD+20% 1000hrs</p>	168 hrs	0/77	0/77	0/77	
			500 hrs	0/77	0/77	0/77	
			1000 hrs	0/77	0/77	0/77	
2	ELFR Early Life Failure Rate	<p>[AEC Q100-008]</p> <p><input checked="" type="checkbox"/> Testing at Room, Hot, Cold</p> <p>Ta= 125°C, Tj=150°C, 24+24hrs</p>	24hrs	0/77	0/77	0/77	
			48hrs	0/77	0/77	0/77	
3	HTDR High Temp. Data Retention	<p>[AEC Q100-005]</p> <p><input checked="" type="checkbox"/> After Jedec PC MSL3</p> <p><input checked="" type="checkbox"/> Testing at Room</p> <p><input checked="" type="checkbox"/> Testing at Hot</p> <p><input type="checkbox"/> Testing at Cold</p> <p><input checked="" type="checkbox"/> After 1k W/E cyc @125°C</p> <p><input checked="" type="checkbox"/> Vth Drift Analysis</p> <p>Ta= 150°C, All0 Pattern 2000hrs</p>	168 hrs	0/77	0/77	0/77	
			500 hrs	0/77	0/77	0/77	
			1000 hrs	0/77	0/77	0/77	
			2000 hrs	0/77	0/77	0/77	
4.a	FET @25°C	<p>[AEC Q100-005]</p> <p><input checked="" type="checkbox"/> Drift Analysis on Flash key parameters at Room, Hot, Cold</p> <p>Ta= 25°C 100k Write/Erase cyc</p>	10k cyc	0/77	N.P.	N.P.	
			50k cyc	0/77	N.P.	N.P.	
			100k cyc	0/77	N.P.	N.P.	
4.b	HTDR After FET	<input checked="" type="checkbox"/> Vth Drift Analysis Ta= 150°C, All0 Pattern 168hrs	168 hrs	0/77	N.P.	N.P.	
5.a	FET @125°C	<p>[AEC Q100-005]</p> <p><input checked="" type="checkbox"/> Drift Analysis on Flash key parameters at Room, Hot, Cold</p> <p>Ta= 125°C 100k Write/Erase cyc</p>	10k cyc	0/77	0/77	0/77	
			50k cyc	0/77	0/77	0/77	
			100k cyc	0/77	0/77	0/77	
5.b	HTDR After FET	<input checked="" type="checkbox"/> Vth Drift Analysis Ta= 150°C, All0 Pattern 168hrs	168 hrs	0/77	0/77	0/77	

6.a	FET @-40°C	[AEC Q100-005] ☒ Drift Analysis on Flash key parameters at Room, Hot, Cold Ta= -40°C 100k Write/Erase cyc	10k cyc	N.P.	0/77	N.P.	
			50k cyc	N.P.	0/77	N.P.	
			100k cyc	N.P.	0/77	N.P.	
6.b	HTDR After FET	☒ Vth Drift Analysis Ta= 150°C, All0 Pattern 168hrs	168 hrs	N.P.	0/77	N.P.	
7	LTDR Low Temp. Data Retention	[AEC Q100-005] ☒ Vth Drift Analysis After 1k W/E cyc @25°C Ta= 60°C, All0 Pattern 2000hrs	500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	
			2000 hrs	0/77	N.P.	N.P.	
8	LTDR Low Temp. Data Retention	[AEC Q100-005] ☒ Vth Drift Analysis After 10k W/E cyc @25°C Ta= 60°C, All0 Pattern 2000hrs	500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	
			2000 hrs	0/77	N.P.	N.P.	
9	LTDR Low Temp. Data Retention	[AEC Q100-005] ☒ Vth Drift Analysis After 100k W/E cyc @25°C Ta= 60°C, All0 Pattern 2000hrs	500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	
			2000 hrs	0/77	N.P.	N.P.	
10	Flip Bit	[AEC Q100-005] ☒ Vth Drift Analysis After 1 W/E cyc @25°C Ta= 25°C, Chk Pattern 1000hrs	168 hrs	N.P.	0/77	N.P.	
			500 hrs	N.P.	0/77	N.P.	
			1000 hrs	N.P.	0/77	N.P.	
11	Read Disturb	After 10 W/E cyc @25°C Ta= 25°C; 4,5V Stress <1ppm after 6000hrs with ECC	Final	N.P.	0/77	N.P.	
12	Read Disturb	After 10k W/E cyc @25°C Ta= 25°C; 4,5V Stress <1ppm after 1 sec with ECC	Final	N.P.	N.P.	0/77	

3.5 Package Assembly Integrity Test (Q100 Group C)

N	TEST NAME	CONDITIONS [SPEC]	Step	Results			Notes
				LQFP176	LQFP144	LQFP100	
1	WBS Wire Bond Shear	[AEC Q100-001] At appropriate time interval for each bonder to be used 30 bonds x 5 devices	Final result	Done	Done	Done	Assy report
2	WBP Wire Bond Pull	[MIL-STD883 method 2011] 30 bonds x 5 devices	Final result	Done	Done	Done	Assy report
3	SD Solderability	[JEDEC JEDES22-B102] > 95% lead coverage	Final result	Done	Done	Done	Assy report
4	PD Physical Dimension	[JEDEC JEDES22-B100 and B108]	Final result	Done	Done	Done	Assy report
5	SBS Solder Ball Shear	[AEC Q100-010]	Final result	N.A.	N.A.	N.A.	Not applicable
6	LI Lead Integrity	[JEDEC JEDES22-B105]	Final result	N.A.	N.A.	N.A.	Not applicable

3.6 Die Fabrication Reliability Test (Q100 Group D)

N	TEST NAME	CONDITIONS	Step	RESULTS		Notes
				Final result	RESULTS	
1	EM Electromigration	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE		Process qualification
2	TDDB Time Dependent Dielectric Breakdown	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE		Process qualification
3	HCI Hot Carrier Injection	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE		Process qualification
4	NBTI Negative Bias Temperature Instability	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE		Process qualification
5	SM Stress Migration	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE		Process qualification

3.7 Electrical Verification Test (Q100 Group E)

Test			Step	RESULTS	Notes
N	TEST NAME	CONDITIONS [AEC Q100]			
1.a	ESD HBM	HBM = 2kV	Final result	PASSED	
1.b	ESD MM	MM = 200V	Final result	PASSED	
1.c	ESD CDM	CDM = 500V / 750V corner only	Final result	PASSED	
2.a	LU	Class II - Level A (+/- 100mA)	Final result	PASSED	
2.b	LU	Class II - Level A (1,5 x Vmax)	Final result	PASSED	
3	ED Electrical Distribution	[AEC Q100-009] <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input checked="" type="checkbox"/> Testing at Cold	Final result	DONE	
4	FG Fault Grading	[AEC Q100-007] FG shall be = or > 90% for qual units	Final result	DONE by Similarity	Andorra 4M cut 2.0
5	CHAR Characterization	[AEC Q103] Performed on new technologies and part families. <input type="checkbox"/> Testing at Room <input type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold	Final result	N.P.	Not required by Q100
6	GL Electrothermally-Induced Gate Leakage	[AEC Q100-006] Test before and after GL at room temperature within 96hours of GL stress completion	Final result	DONE	
7	EMC Electromagnetic Compatibility	[SAE J1752/3 – radiated Emission]	Final result	N.P.	Not required by Q100
8	SC Short Circuit Characterization	[AEC Q100-012] Applicable to all smart power devices. This test and statistical evaluation shall be performed per agreement between user and supplier on a case-by-case basis.	Final result	N.A.	Not applicable to Microcontroller
9	SER Soft Error Rate	[JEDEC Un-accelerated: JESD89-1 or Accelerated: JESD89-2 & JESD89-3] Applicable to devices with memory sizes 1Mbit SRAM or DRAM based cells. Either test option (un-accelerated or accelerated) can be performed, in accordance to the referenced specifications. This test and its accept criteria is performed	Final result	DONE	

3.8 Defect Screening Test (Q100 Group F)

Test			Step	RESULTS	Notes
N	TEST NAME	CONDITIONS			
1	PAT Process Average testing	[AEC Q101]	Final result	IMPLEMENTED	
2	SBA Statistical Bin/Yield Analysis	[AEC Q102]	Final result	IMPLEMENTED	

Reliability Report

Pictus 512K

Fab Transfer

General Information		Locations	
Product Line	<i>FP50xx</i>	Wafer fab location	<i>Crolles 2</i>
Product Description	<i>Pictus 512k cut 3.5</i>		
Commercial Product	<i>SPC560P50xx, SPC560P44xx</i>		
Product Group	<i>APG</i>	Final Assessment	
Product division	<i>MID</i>	Reliability assessment	Qualification
Silicon process technology	<i>CMOS M10</i>		<i>Passed as per Q100 rev G grade 1</i>

DOCUMENT HISTORY

Version	Date	Author	Comment
0.1	29/01/2013	L. Cola	First document draft
0.5	07/02/2013	L. Cola	First document release with preliminary results available
0.6	22/02/2013	L. Cola	Document Format review
1.0	26/06/2013	R. Enrici Vaion	Cut3.5 qualification strategy
1.1	1/07/2013	R. Enrici Vaion	General Information updated

RELEASED DOCUMENT

TABLE OF CONTENTS

1 RELIABILITY EVALUATION OVERVIEW	3
1.1 OBJECTIVES.....	3
1.2 CONCLUSIONS.....	3
2 TRACEABILITY	4
2.1 WAFER FAB INFORMATION.....	4
2.2 PACKAGE OUTLINE/MECHANICAL DATA	4
2.3 FINAL TESTING INFORMATION:	4
3 RELIABILITY PLAN AND TESTS RESULTS.....	5
3.1 CONDITIONS.....	5
3.2 TABLES ENTRY LEGEND	5
3.3 ENVIRONMENTAL STRESS TEST (Q100 GROUP A)	5
3.4 LIFETIME STRESS TEST (Q100 GROUP B)	7
3.5 PACKAGE ASSEMBLY INTEGRITY TEST (Q100 GROUP C)	9
3.6 DIE FABRICATION RELIABILITY TEST (Q100 GROUP D)	10
3.7 ELECTRICAL VERIFICATION TEST (Q100 GROUP E)	10
3.8 DEFECT SCREENING TEST (Q100 GROUP F)	11
4 REVISION TRACKING	12

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objectives

Aim of this document is to report the reliability trials results achieved on Pictus 512k Cut 3.4 and Cut 3.5 qualification exercise, in order to release the device to production volume in Crolles.

Pictus 512k is processed in Crolles2 FAB using CMOS M10 (90 nm) technology and it is assembled in Malta-ST assy in LQFP144 package.

Pictus 512k embeds the ST Flash module.

Considering that Pictus 512K is the first M10 product with 4 metal layers and ST Flash diffused in Crolles, no similarity with other products could be considered.

The qualification exercise is based on three diffusion lots of Cut 3.4 coming from Crolles2.

Pictus512k Cut3.5, diffused in Crolles, is qualified by similarity taking into account results achieved with Rousset silicon Pictus 512K cut 3.5 (RR003612AG6050), being a pure design fix independent on process transfer.

Package qualification has been run on one assembly lot using similarity with qualification done on Rousset silicon on Pictus 512K and Bolero512K products, considering that from Back End point of view the differences between Rousset and Crolles Fab have to be considered minor.

The qualification exercise for this new product is in respect of Q100 revG.

1.2 Conclusions

Qualification trials have been completed with positive results on Cut3.4. Neither functional nor parametric rejects were detected at final electrical testing.

Parameter drift analysis performed on samples submitted to die oriented test showed a good stability of the main electrical monitored parameters.

Package trials with Au-wire concluded with positive results.

Pictus 512k Cut3.5 is qualified by similarity without any additional trial required.

2 TRACEABILITY

2.1 Wafer fab information

DIE FEATURES	
Diffusion Site	Crolles 2
Wafer Diameter (inches)	12
Process Technology	CMOS M10
Passivation	PSG - Nit UV
Die finishing back side	Lapped Silicon

2.2 Package outline/Mechanical data

	LQFP 144
Package Description	LQFP 144 20x20x1.4
Assembly Site	ST KIRKOP – MALTA
Die Attach material	GLUE ABLEBOND 3280T
Molding compound	SUMITOMO EME-G700LS
Substrate/Leadframe	LQFP 144L RgAg
Wires bonding materials/diameters	WIRE Au 2N GPG2 D0.9

2.3 Final testing information:

PACKAGE FEATURES	
Electrical Testing manufacturing location	: ST KIRKOP – MALTA
Tester	: Teradyne J750

3 RELIABILITY PLAN AND TESTS RESULTS

3.1 Conditions

Room test temperature is 25°C
Hot test temperature is 125°C
Cold test temperature is -40°C

3.2 Tables entry legend

Symbol	How to read
<input type="checkbox"/>	Action or condition has not to be considered
<input checked="" type="checkbox"/>	The action/condition has been done/applied during the trial
N.P.	The trial or readout is not in the Qualification Plan and thus has not been performed

3.3 Environmental stress test (Q100 group A)

N	TEST NAME	CONDITIONS [SPEC]	Step	Notes	
				LQFP144	
1	PC Pre-Conditioning MSL 3	<p>[J-STD-020]</p> <p><input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold <input checked="" type="checkbox"/> Sonoscan pre / post <input type="checkbox"/> 100 Temperature Cycles</p> <p>24h bake@125°C, 192h@30°C/60%RH 3x Reflow simulation 260°C Peak Temp</p>	Pre	0/77 x3 x1 Pictus 512K Croles 0/77 x 3 x 1 Pictus 512K Rousset 0/77 x 3 x 2 Bolero 512K Rousset	Similarity with Pictus 512K and Bolero 512K diffused in Rousset and assembled in Malta
			Post	0/77 x3 x1 Pictus 512K Croles 0/77 x 3 x 1 Pictus 512K Rousset 0/77 x 3 x 2 Bolero 512K Rousset	
2	THB Temperature Humidity Bias	<p>[JESD22-A101/A110]</p> <p><input checked="" type="checkbox"/> AfterJedec PC MSL3 <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold</p> <p>Ta=85°C, 85%RH, 1000hrs</p>	500 hrs	0/77 Pictus 512K Croles 0/77 Pictus 512K Rousset 0/77 x 2 Bolero 512K Rousset	Similarity with Pictus 512K and Bolero 512K diffused in Rousset and assembled in Malta
			1000 hrs	0/77 Pictus 512K Croles 0/77 Pictus 512K Rousset 0/77 x 2 Bolero 512K Rousset	

3	AC Autoclave	<p>[JESD22-A102/A118]</p> <p><input checked="" type="checkbox"/> AfterJedec PC MSL3 <input checked="" type="checkbox"/> Testing at Room <input type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold <input type="checkbox"/> Die visual inspection post trial</p> <p>P=2.08atm Ta=121°C, 96hrs</p>	96 hrs	<p>0/77 Pictus 512K Croles</p> <p>0/77 Pictus 512K Rousset</p> <p>0/77 x 2 Bolero 512K Rousset</p>	Similarity with Pictus 512K and Bolero 512K diffused in Rousset and assembled in Malta
4	TC Temperature Cycling	<p>[JESD22-A104]</p> <p><input checked="" type="checkbox"/> AfterJedec PC MSL3 <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold <input checked="" type="checkbox"/> Sonoscan pre / post <input checked="" type="checkbox"/> WPT pre / post <input checked="" type="checkbox"/> WBS pre / post</p> <p>*Ta=-65°C /+150 °C 500 cyc</p> <p>Ta=-50°C /+150 °C 1000 cyc</p>	500 cyc	<p>*0/77 Pictus 512K Croles</p> <p>0/77 Pictus 512K Rousset</p> <p>0/77 x 2 Bolero 512K Rousset</p>	Similarity with Pictus 512K and Bolero 512K diffused in Rousset and assembled in Malta
			1000 cyc	<p>0/77 Pictus 512K Rousset</p> <p>0/77 x 2 Bolero 512K Rousset</p>	
5	PTC Power Temperature Cycling	<p>[JESD22-A105]</p> <p><input type="checkbox"/> AfterJedec PC MSL3 <input type="checkbox"/> Testing at Room <input type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold</p> <p>Ta=-40°C /+125 °C 1000 cyc</p>	1000 cyc	N.P.	Not required on Pictus512K
6	HTSL High Temperature Storage Lifetime	<p>[JESD22-A103]</p> <p><input type="checkbox"/> AfterJedec PC MSL3 <input type="checkbox"/> After 100 TC <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold <input type="checkbox"/> Sonoscan pre / post <input checked="" type="checkbox"/> WPT pre / post <input checked="" type="checkbox"/> WBS pre / post <input type="checkbox"/> Die visual inspection post trial <input type="checkbox"/> Die cross section post trial</p> <p>*Ta= 175°C 336hrs (500hrs monitor)</p> <p>Ta= 150°C 1000hrs</p>	336 hrs	<p>*0/77 Pictus 512K Croles</p>	Similarity with Pictus 512K and Bolero 512K diffused in Rousset and assembled in Malta
			500hrs	<p>*0/77 Pictus 512K Croles</p> <p>0/77 Pictus 512K Rousset</p> <p>0/77 x 2 Bolero 512K Rousset</p>	
			1000hrs	<p>0/77 Pictus 512K Rousset</p> <p>0/77 x 2 Bolero 512K Rousset</p>	

3.4 Lifetime stress test (Q100 Group B)

N	TEST NAME	CONDITIONS [SPEC]	Step	Results			Notes	
				Lot 1	Lot 2	Lot 3		
1	HTOL High Temp. Operating Life	<p>[JESD22-A108]</p> <p><input checked="" type="checkbox"/> After Jedec PC MSL3</p> <p><input type="checkbox"/> After 100 TC</p> <p><input checked="" type="checkbox"/> After 1k W/E cyc @125°C</p> <p><input checked="" type="checkbox"/> Testing at Room, Hot, Cold</p> <p><input checked="" type="checkbox"/> Drift Analysis on Key parameters at Room, Hot, Cold</p> <p>Ta=125°C, Tj=150°C VDD+20% 1000hrs</p>	0 hrs	0/77	0/77	0/77		
			168 hrs	0/77	0/77	0/77		
			500 hrs	0/77	0/77	0/77		
			1000 hrs	0/77	0/77	0/77		
2	ELFR Early Life Failure Rate	[AEC Q100-008]	<p><input checked="" type="checkbox"/> Testing at Room, Hot, Cold</p> <p>Ta= 125°C, Tj=150°C, 48 hrs</p>	48hrs	0/800	0/800	0/800	
3	HTDR High Temp. Data Retention	<p>[AEC Q100-005]</p> <p><input checked="" type="checkbox"/> After Jedec PC MSL3</p> <p><input checked="" type="checkbox"/> After 1k W/E cyc @125°C</p> <p><input checked="" type="checkbox"/> Vth Drift Analysis</p> <p>Ta= 150°C, All0 Pattern 1000hrs (2000hrs monitoring)</p>	0 hrs	0/77	0/77	0/77		
4.a	FET @ 25°C		168 hrs	0/77	0/77	0/77		
			500 hrs	0/77	0/77	0/77		
			1000 hrs	0/77	0/77	0/77		
			2000 hrs	0/77	0/77	0/77		
4.b	HTDR After FET	<input checked="" type="checkbox"/> Vth Drift Analysis Ta= 150°C, All0 Pattern 168hrs	168 hrs	0/77	0/77	0/77		

Test			Step	Results			Notes
N	TEST NAME	CONDITIONS [SPEC]		Lot 1	Lot 2	Lot 3	
5.a	FET @125°C	[AEC Q100-005] <input checked="" type="checkbox"/> Drift Analysis on Flash key parameters at Room, Hot, Cold Ta= 125°C 100k Write/Erase cyc	10k cyc	0/77	N.P.	N.P.	
			50k cyc	0/77	N.P.	N.P.	
			100k cyc	0/77	N.P.	N.P.	
5.b	HTDR After FET	[AEC Q100-005] <input checked="" type="checkbox"/> Vth Drift Analysis Ta= 150°C, All0 Pattern 168hrs	168 hrs	0/77	N.P.	N.P.	
6.a	FET @-40°C	[AEC Q100-005] <input checked="" type="checkbox"/> Drift Analysis on Flash key parameters at Room, Hot, Cold Ta= -40°C 100k Write/Erase cyc	10k cyc	0/77	N.P.	N.P.	
			50k cyc	0/77	N.P.	N.P.	
			100k cyc	0/77	N.P.	N.P.	
6.b	HTDR After FET	[AEC Q100-005] <input checked="" type="checkbox"/> Vth Drift Analysis Ta= 150°C, All0 Pattern 168hrs	168 hrs	0/77	N.P.	N.P.	
7	LTDR Low Temp. Data Retention	[AEC Q100-005] After 1k W/E cyc @25°C Ta= 60°C, All0 Pattern 1000hrs (2000hrs monitoring)	0 hrs	0/77	N.P.	N.P.	
			500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	
			2000 hrs	0/77	N.P.	N.P.	
8	LTDR Low Temp. Data Retention	[AEC Q100-005] After 10k W/E cyc @25°C Ta= 60°C, All0 Pattern 1000hrs (2000hrs monitoring)	0 hrs	0/77	N.P.	N.P.	
			500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	
			2000 hrs	0/77	N.P.	N.P.	
9	LTDR Low Temp. Data Retention	[AEC Q100-005] After 100k W/E cyc @25°C Ta= 60°C, All0 Pattern 1000hrs (2000hrs monitoring)	0 hrs	0/77	N.P.	N.P.	
			500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	
			2000 hrs	0/77	N.P.	N.P.	
10	Flip Bit	[AEC Q100-005] After 1 W/E cyc @25°C Ta= 25°C, Chk Pattern 1000hrs	0 hrs	0/77	N.P.	N.P.	
			168 hrs	0/77	N.P.	N.P.	
			500 hrs	0/77	N.P.	N.P.	
			1000 hrs	0/77	N.P.	N.P.	

Test			Step	Results			Notes
N	TEST NAME	CONDITIONS [SPEC]		Lot 1	Lot 2	Lot 3	
11.a	Read Disturb	After 10 W/E cyc @125°C Ta= 25°C; 4,5V Stress 220hrs	Final	0/77	N.P.	N.P.	
11.b	Read Disturb	After 10k W/E cyc @125°C Ta= 25°C; 4,5V Stress 1s	Final	0/77	N.P.	N.P.	

3.5 Package Assembly Integrity Test (Q100 Group C)

Test			Step	Results	Notes
N	TEST NAME	CONDITIONS [SPEC]			
1	WBS Wire Bond Shear	[AEC Q100-001] At appropriate time interval for each bonder to be used 30 bonds x 5 devices	Final result	Done	Assy report
2	WBP Wire Bond Pull	[MIL-STD883 method 2011] 30 bonds x 5 devices	Final result	Done	Assy report
3	SD Solderability	[JEDEC JEDES22-B102] > 95% lead coverage	Final result	Done	Assy report
4	PD Physical Dimension	[JEDEC JEDES22-B100 and B108]	Final result	Done	Assy report
5	SBS Solder Ball Shear	[AEC Q100-010]	Final result	N.A.	Not applicable
6	LI Lead Integrity	[JEDEC JEDES22-B105]	Final result	N.A.	Not applicable

3.6 Die Fabrication Reliability Test (Q100 Group D)

Test			Step	RESULTS	Notes
N	TEST NAME	CONDITIONS			
1	EM Electromigration	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE	Process qualification
2	TDDB Time Dependent Dielectric Breakdown	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE	Process qualification
3	HCI Hot Carrier Injection	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE	Process qualification
4	NBTI Negative Bias Temperature Instability	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE	Process qualification
5	SM Stress Migration	The data, test method, calculation and internal criteria should be available to the customer upon request for new technologies	Final result	DONE	Process qualification

3.7 Electrical verification test (Q100 Group E)

Test			Step	RESULTS	Notes
N	TEST NAME	CONDITIONS			
1.a	ESD HBM	HBM = 2kV	Final result	PASSED	
1.b	ESD MM	MM = 200V	Final result	PASSED	
1.c	ESD CDM	CDM = 500V / 750V corner only	Final result	PASSED	
2.a	LU	Current Injection = Level B +/- 100 mA	Final result	PASSED	
2.b	LU	Supply Voltage = Level B 1.5xVmax	Final result	PASSED	
3	ED Electrical Distribution	[AEC Q100-009] <input checked="" type="checkbox"/> Testing at Room <input checked="" type="checkbox"/> Testing at Hot <input checked="" type="checkbox"/> Testing at Cold	Final result	DONE	
4	FG Fault Grading	[AEC Q100-007] FG shall be = or > 90% for qual units	Final result	DONE by Similarity	Pictus 512K Rousset
5	CHAR Characterization	[AEC Q103] Performed on new technologies and part families. <input type="checkbox"/> Testing at Room <input type="checkbox"/> Testing at Hot <input type="checkbox"/> Testing at Cold	Final result	N.P.	Not required by Q100

6	GL Electrothermally-Induced Gate Leakage	[AEC Q100-006] Test before and after GL at room temperature within 96hours of GL stress completion	Final result	DONE	
7	EMC Electromagnetic Compatibility	[SAE J1752/3 – radiated Emission]	Final result	N.P.	Not required by Q100
8	SC Short Circuit Characterization	[AEC Q100-012] Applicable to all smart power devices. This test and statistical evaluation shall be performed per agreement between user and supplier on a case-by-case basis.	Final result	N.A.	Not applicable to Microcontroller
9	SER Soft Error Rate	[JEDEC Un-accelerated: JESD89-1 or Accelerated: JESD89-2 & JESD89-3] Applicable to devices with memory sizes 1Mbit SRAM or DRAM based cells. Either test option (un-accelerated or accelerated) can be performed, in accordance to the referenced specifications. This test and its accept criteria is performed	Final result	DONE	

3.8 Defect Screening Test (Q100 Group F)

Test			Step	RESULTS	Notes
N	TEST NAME	CONDITIONS			
1	PAT Process Average testing	[AEC Q101]	Final result	IMPLEMENTED	
2	SBA Statistical Bin/Yield Analysis	[AEC Q102]	Final result	IMPLEMENTED	

4 REVISION TRACKING

Rev 1.1:

1. Added similarity for package trials in pag. 5,6
2. Added Package Assembly Integrity Test (Q100 Group C) table in page 9
3. Added die Fabrication Reliability Test (Q100 Group D) table in page 10
- 4.

Rev 1.0:

1. Package lot inserted in pag.4
2. Table of package trials added in pag.5,6
3. Cut 3.5 qualification strategy pag.3

Rev 0.6:

1. Format adjustment on header
2. Added Qualification ongoing statement (page 3)

Rev 0.5:

3. First document release with incomplete results available.

Rev 0.1: First document draft

SPC56 - M10 technology PCNs description

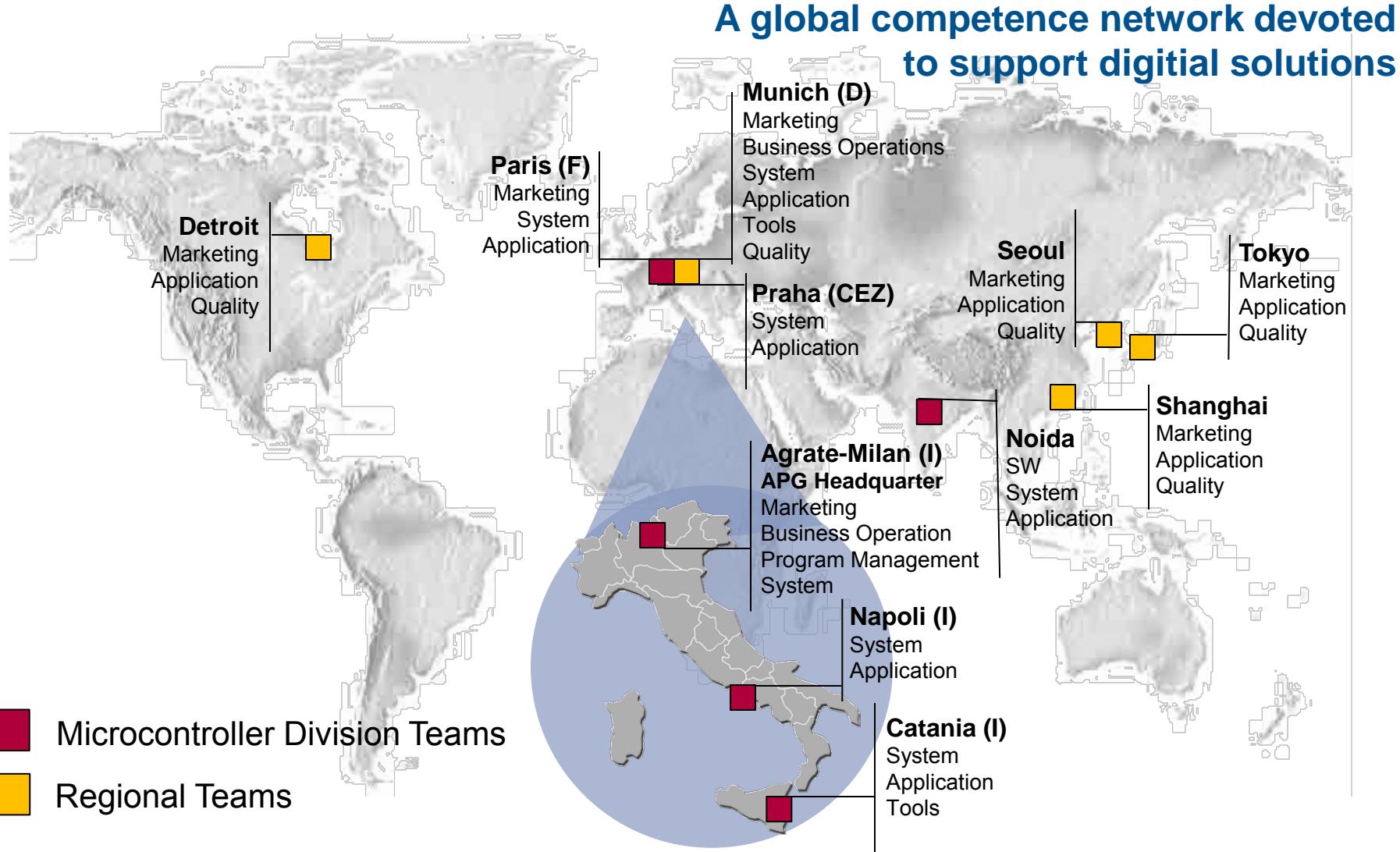
October 2013

LIST OF CHANGES

- Front End (wafer diffusion):
 - High volume manufacturing source activation: M10 process & product transfer from Rousset 8" to Crolles 12"
- EWS (electrical wafer sort):
 - Activation of second testing site in Rousset where not yet qualified
- Back End (assembly):
 - LQFP64/100 main source activation: package transfer from Muar to Malta
 - CuPd wire introduction

Manufacturing Improvements

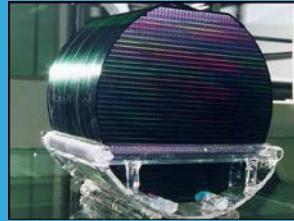
Device	Mem size	Package	C300	CuPd	Assy Muar to Malta	EWS Agr to R8	Design Fix
Pictus	256K	LQFP 64	X	X	X		
		LQFP 100	X	X	X		
		KGD + OPM					
	512K	LQFP 100	X	X	X		
		LQFP 144	X	X			
	1M	LQFP 100	X	X	X		
		LQFP 144	X	X			
Bolero	256K	QFN					
		LQFP 64	X	X	X		
		LQFP 100	X	X	X		
	512K	QFN				X	
		LQFP 64	X	X	X		X
		LQFP 100	X	X	X		X
	1.5M	LQFP 144	X	X			X
		LQFP 100	X	X	X	X	X
		LQFP 144	X	X		X	X
	3M	LQFP 176	X	X		X	X
		LQFP 208	X	X		X	X
		BGA					X


Device	Mem size	Package	C300	CuPd	Assy Muar to Malta	EWS Agr to R8	Design Fix
Leopard	1M	LQFP 100	X	X			
		LQFP 144	X	X			
		2M	LQFP 100	X	X		
	2M	LQFP 144	X	X			
		BGA 257					
Monaco	1.5M	LQFP 144	X	X			X
		LQFP 176	X	X			X
Andorra	2M	LQFP 176	X	X			X
		BGA 324	X				X
	4M	LQFP 176	X	X			X
		BGA 324	X				X

APG – Microcontroller & ADAS Business Unit

Main Locations Sites

4



SPC56 32 Bit - M10 90 nm Supply Chain structure

5

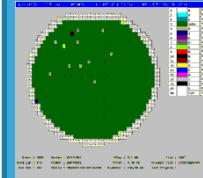
WAF

WAFER
MANUFACTURING

Business
forecasting

DUAL Source

- 90 nm:
 - Rousset 8"
 - Crolles 12"
 - Agrate 8" (BEOL)


- 55 nm:
 - Crolles 12"
 - Foundry 12"

- 40 nm:
 - Crolles 12"
 - Foundry 12"

Front End

DICE

EWS
electrical wafer
sort

DUAL Source:

- Rousset
- Agrate

Buffer
Stock

ASSY

**DUAL
Source:**

- QFP:
 - Malta
 - Muar
 - ASE (subcon)

- BGA:
 - Malta
 - Muar

Final Test

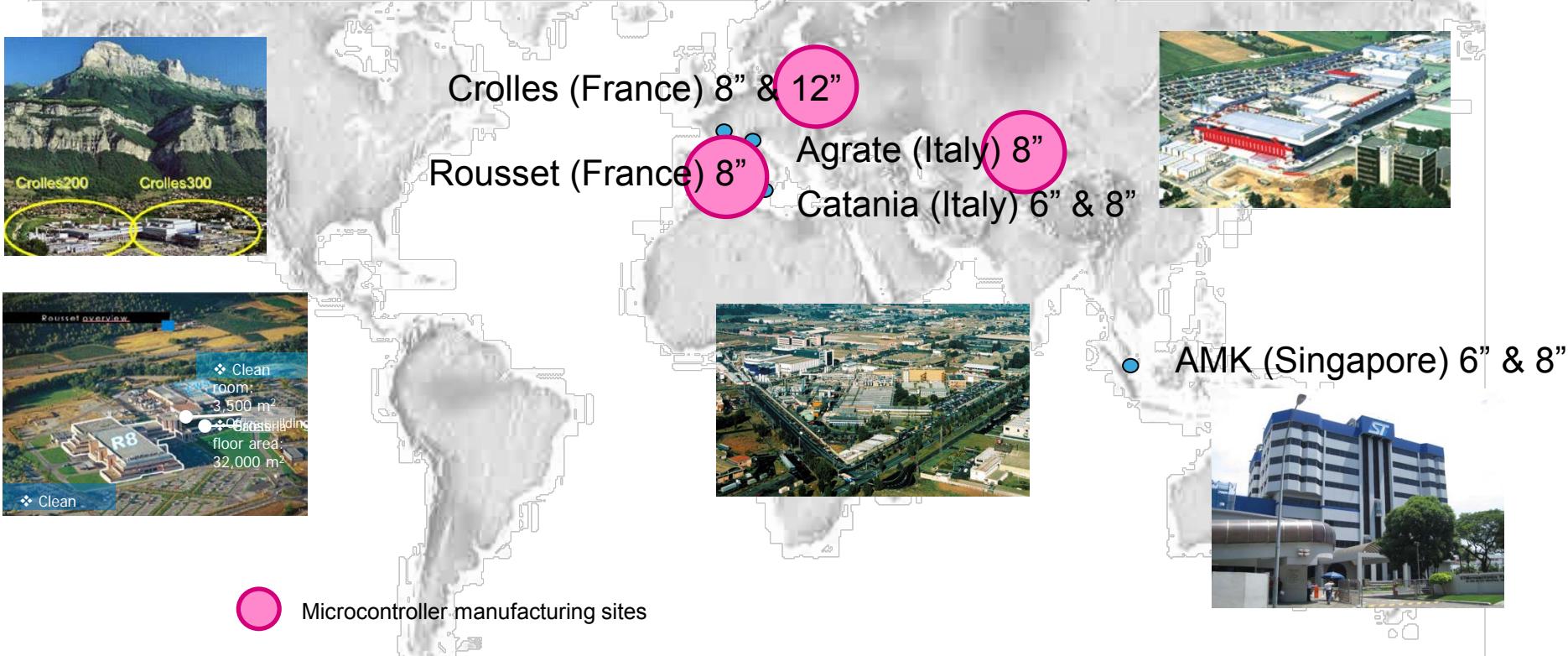
**Double
Source:**

- Malta
- KYEC (subcon)

FG

Buffer
stock

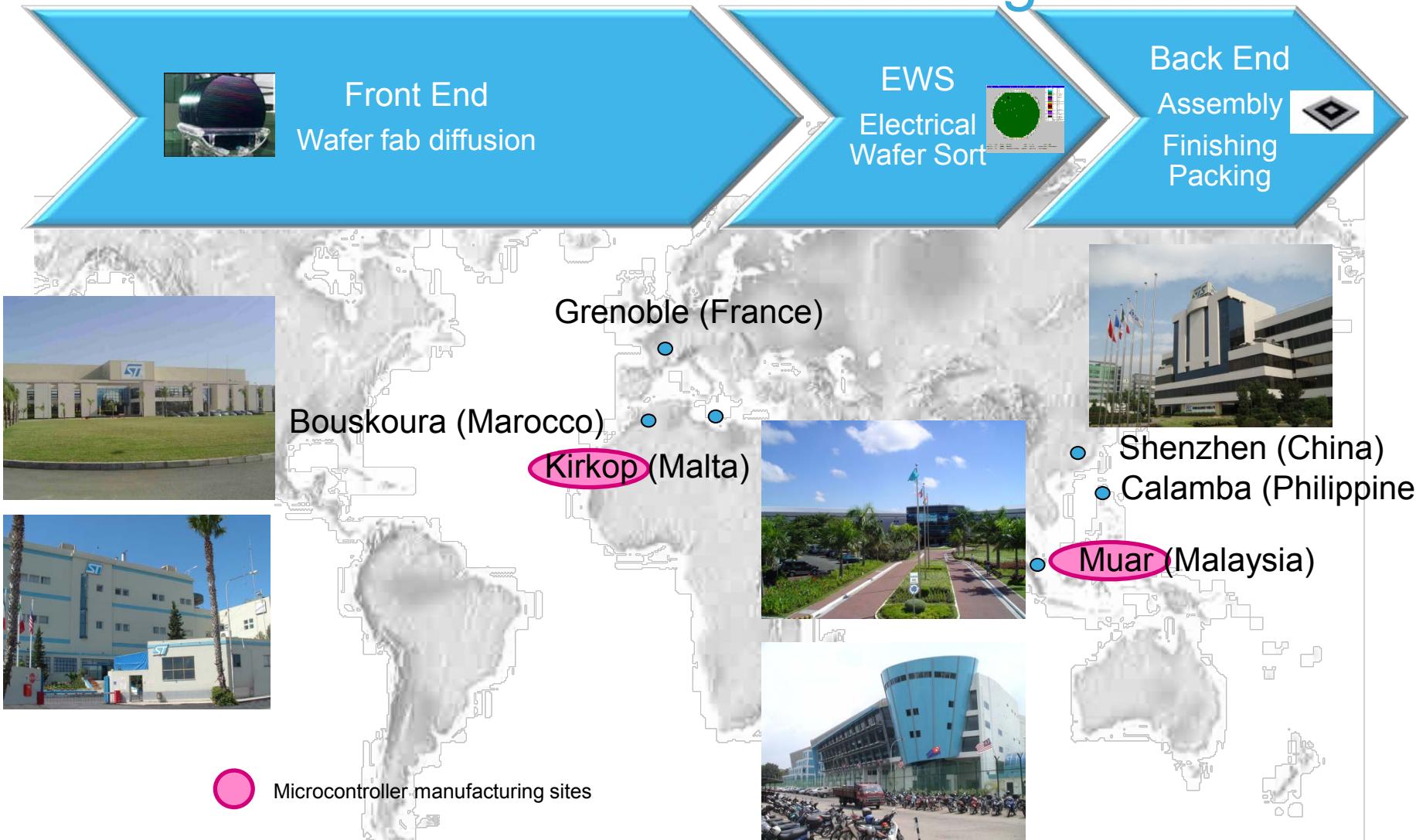
Back End


ST Manufacturing Strategy for advanced Automotive Microcontrollers is to use a main internal source and dual source capabilities (internal or subcon) to support large volumes, improve flexibility and secure business.

SPC56 32 Bit - M10 90 nm

ST Manufacturing sites - FE

6


Although ST manufacturing facilities are worldwide diffused, microcontroller manufacturing is concentrated in Europe where the highest level of engineering competencies is kept by the Company

SPC56 32 Bit - M10 90 nm

ST Manufacturing sites - BE

7

SPC56 32 Bit - M10 90 nm Manufacturing strategy

8

- ST new process and product introduction strategy is to focus and stabilize industrialization and first months of production in an internal wafer fab
 - Rousset R8 8“ for 90nm eNVM process (M10)
 - Crolles 300 12“ for 55nm eNVM process (M55)
- A second wafer fab is enabled and qualified when production ramp up has been completed in the leading wafer fab and sufficient volumes are foreseen
- M10 90nm process used for the SPC56 family in Rousset R8 is now mature. To support the very high volumes expected over the next years Crolles 300 has been qualified
 - Crolles 300 (12“ wafers): M10 technology qualified. Two products already qualified. Product qualification end by Q1 2013

SPC56 32 Bit - M10 90 nm Manufacturing strategy

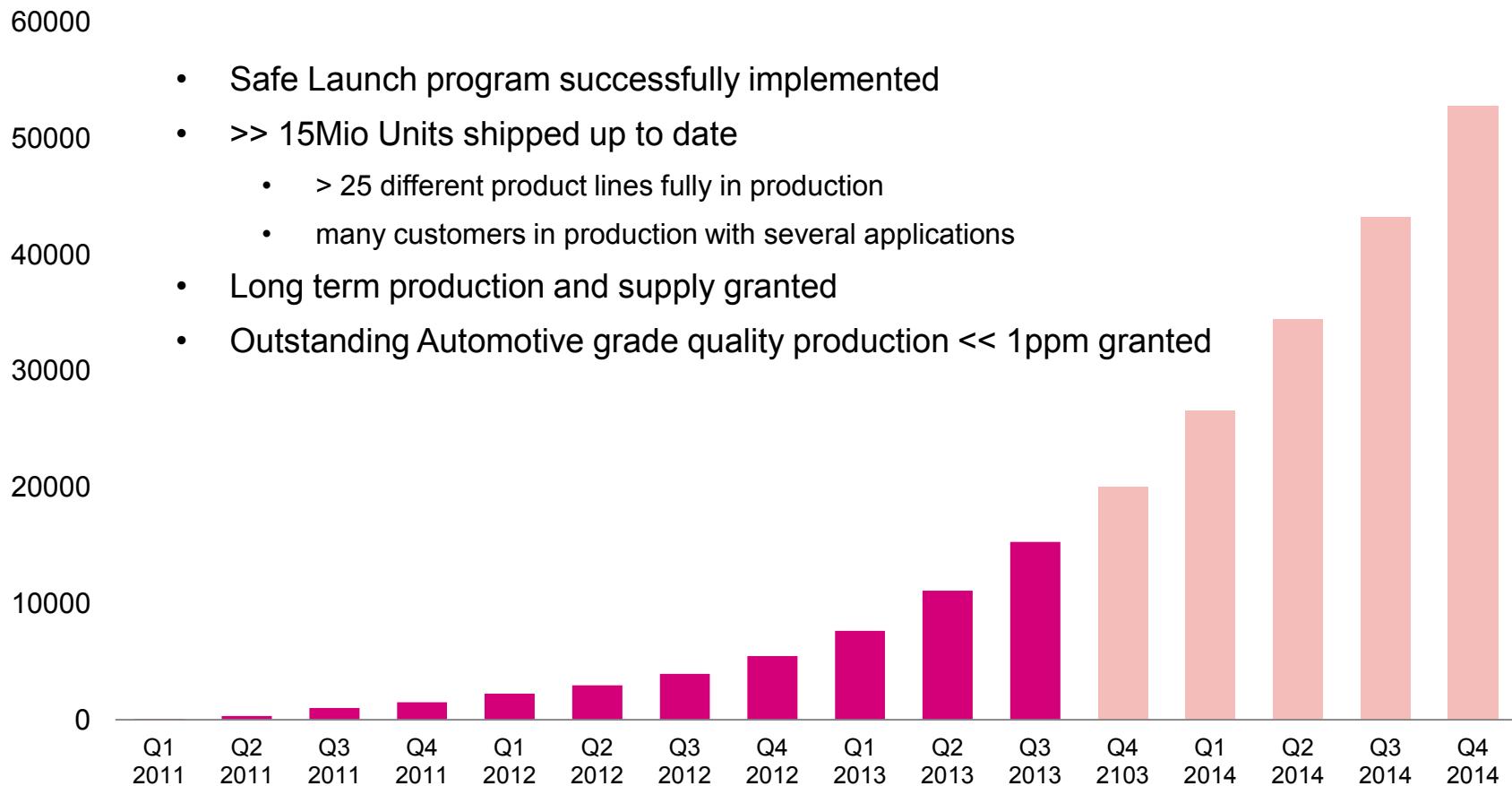
Technology	FAB A	FAB B	FAB C
BCD3	AMK6		
BCD4	AMK6	AG8	
BCD5	AMK6	AG8	
BCD6	AG8 + R2	CTN M5	
BCD8	CTN M5	AG8 + R2	
ViPM05	AMK6	CTN L1	CTN M5
ViPM07	CTN M5		
M10 (NVM 90nm)	R8	C300	R8 + R2
M55 (NVM 55nm)	C300	Foundry	
H11/H12	C300	Foundry	

Dual source strategy is applied inside ST on all technology families for automotive products thanks to in-house manufacturing capability

Secured Supply Chain

10

A true case study: ST managing Japan earthquake crisis


- ST vs our SUPPLIER
 - Crisis Management Team established at Corporate level
 - Two main task forces: FE & BE
 - team members from Purchasing, Manufacturing, Quality, Planning
 - daily update to Corporate Management
 - Communication to ST customers managed by PCN
- ***NO IMPACT ON ST DELIVERY***
- ST vs our CUSTOMERs
 - ST directly involved by two major car makers to support with uC shipments as a back up for their Tier 2/3 impacted by Japan earthquake in Power Train and Safety related applications :
 - 1st extraordinary delivery after 5 weeks from 1st contact
 - 50% of customer run rate demand reached after 10 weeks
 - **100% of customer run rate demand scheduled after 15 weeks**
 - **NO CUSTOMER RETURN AFTER 3 YEAR AND 1M pcs SHIPPED IN THE FIRST YEAR**

90nm eNVM Production ramp-up Quality Performance

11

SPC56 ramp up in Automotive (K cumulate pcs)

M10 Front End Dual Sourcing

PCN APG-MID/13/7698

Crolles transfer global qualification strategy

- M10 TECHNOLOGY MAT30 done
- M10 TV (Pictus 512K, Andorra 4M) MAT30 done
- Similarity will be applied to qualify the M10 products, taking into account that Pictus 512K and Andorra 4M are already qualified:

CMOSM10 Crolles process: qualification plan

Product	Package	# lots Micro	similarity	# lots Flash	Similarity
Pictus 256K	LQFP100 LQFP64	1	Pictus 512K	1	Pictus 512K
Pictus 512K	LQFP144 LQFP100	3	No	3	No
Pictus 1M	LQFP100 LQFP144	1	Pictus 512K	1	Pictus 512K
Bolero 256K	LQFP100 LQFP64	1	Pictus 512K	1	Pictus 512K
Bolero 512K	LQFP144 LQFP100 LQFP64	1	Pictus 512K	1	Pictus 512K
Bolero 1.5M	LQFP176	1	Pictus 512K	1	Pictus 512K
Bolero 3M	LQFP176	1	Pictus 512K	1	Pictus 512K
Monaco 1.5M	LQFP100 LQFP144 LQFP176	3	No	3	No
Andorra 2M	LQFP176	1	Andorra 4M Leopard 1M	1	Andorra 4M Leopard 1M Leopard 2M
Andorra 4M	LQFP176	3	No	3	No
Leopard 1M	LQFP100 LQFP144	1	Andorra 4M Andorra 2M	1	Andorra 2M Andorra 4M Leopard 2M
Leopard 2M	LQFP100 LQFP144	1	Andorra 4M Andorra 2M	1	Andorra 2M Andorra 4M Leopard 1M

SPC56 32-Bit M10 90 nm FE Manufacturing Dual Source strategy

15

2012	2013												2014												2015				2016		2017	
	J	F	M	A	M	J	J	A	S	O	N	D	J	F	M	A	M	J	J	A	S	O	N	D	Q1	Q2	Q3	Q4				

▲
1 MU
shipped

▲
15 MU
shipped

Rousset R8 8": current production site for 4 & 6 metal SPC56 (M10 – 90nm) products

M10 90nm 4&6 Metals volume production

Crolles C300 12": high capacity production site for 4 & 6 metal SPC56 (M10 – 90nm) products

M10 90nm high volume production

M10 90nm 6 Metals ramp up

M10 90nm 4 Metals ramp up

Agrate R2 8": additional site for back end of line (contact / metal / vias) steps on Rousset wafers

M10 90nm Rousset FEOL + Agrate BEOL 4 Metal products

Internal FE Manufacturing sites

Roussent	Current	Potential
8" /200mm Capacity	7500 wafers/week	6000 wafers/week full Cu
Product Start		CY2000
Clean room	7300m ²	9500m ²
Investissement to date	\$1.8 B	
Technologies in production	0.35µm to 90nm	65/55nm
Class	Mini environnement concept (class 1)	
Employees	2722 (total site, including EWS, Divisions and Support Functions)	
Crolles 300	Current	Potential
12" /300mm Capacity	3500 wafers/week	4500 wafers/week
Product Start		CY2003
Clean room		10000m ²
Investissement to date	\$1.55 B	
Technologies in production	90nm down to 40nm	32nm down to 22nm
Class	Mini environnement concept (class 1)	
Employees	>5000 (total site, including contractors, partners, and R&D)	

SPC56 32 Bit - M10 90 nm Rousset plant

17

SPC56 32 Bit - M10 90 nm Crolles 300 mm

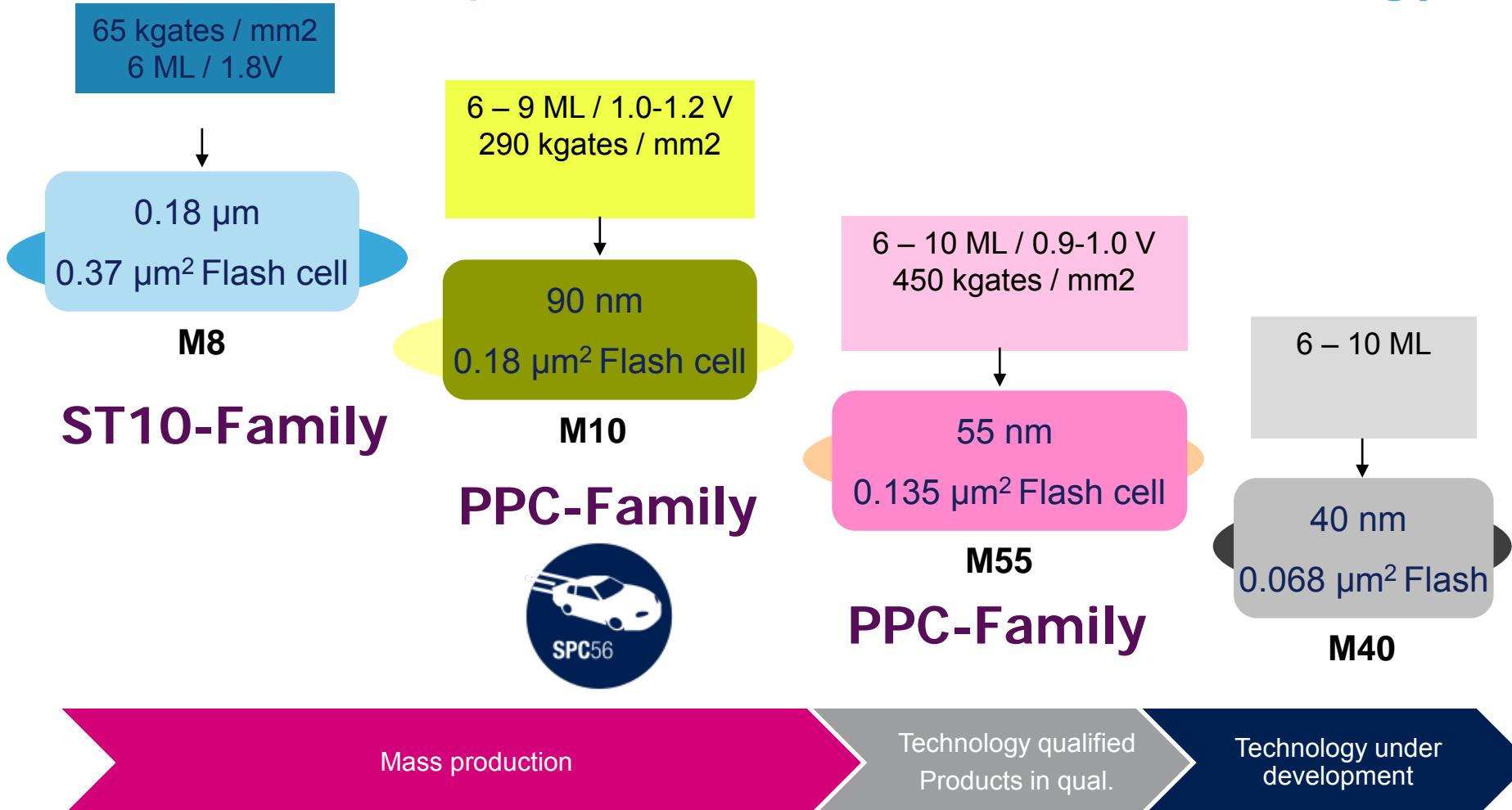
18

Embedded non-volatile memory

Technology & Manufacturing Challenges

19

- Change in eFlash technology development & manufacturing environment
 - Very few companies in the world able to develop & manufacture eFlash
 - Stand-alone NVM manufacturers more and more separated from eFlash manufacturers
 - Very few Auto eFlash MCU supplier keep in-house production capabilities


“Nano2017” R&D Program Announced at STMicroelectronics’ Croles Site

Five-year strategic R&D program led by ST to further advance the company's leadership in key embedded processing solutions and technologies

Leadership in embedded flash technology

ST has been a major player in the stand alone flash memory market prior to integrate them inside MCU device
ST is a global player in embedded MCU since 25 years over three different technology node: M6Y, M8, M10

SPC56 32 Bit - M10 90 nm Crolles300 : Facilities

21

• Clean room

- surface
- air conditioning
- vibration

10 000 m² class ISO4 @ 0.1 µm + 2000 m² B2 building
Foup + mini-environnement class ISO2 @0.1 µm
6.500.000 m³ / h
21.5°C +/- 0.5 °C temperature
45% +/- 2 % hygrometry
3 µm / s (V+H) RMS

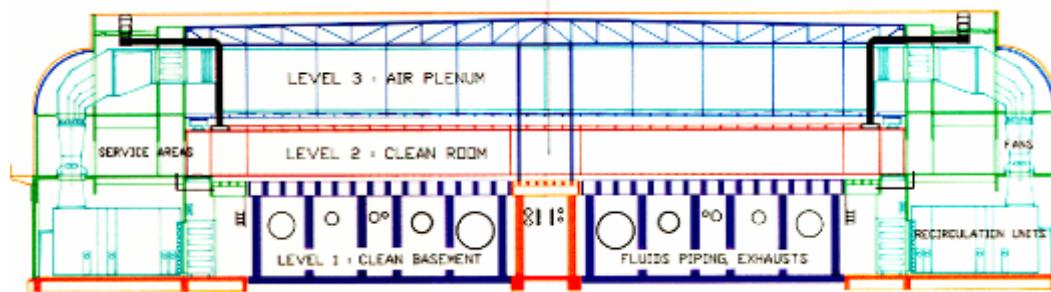
• Fluids

- Ultra-pure water
- Gases
- Chemicals

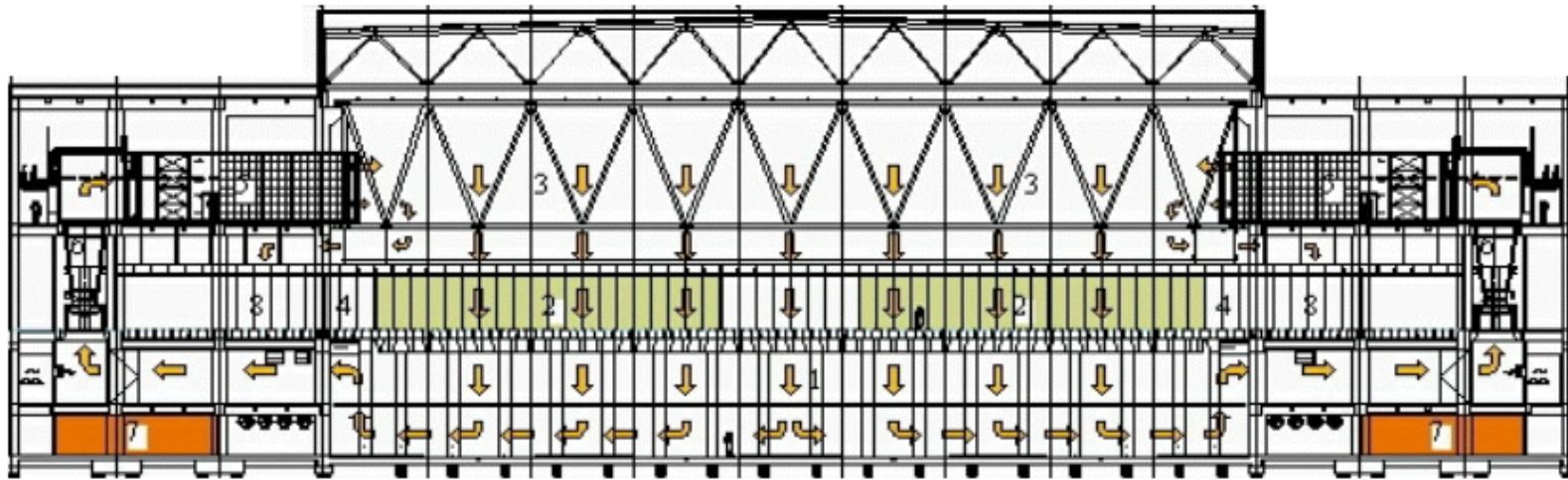
18.2 Mohm.cm
1 ppb pour le TOC
20 ppt pour les chlorures
100 ppt (O₂: 1 ppb)
1-10 ppb

• Power supply

- average
- UPS


25 MW
17 MW

~ 9 kg with
25 wafers

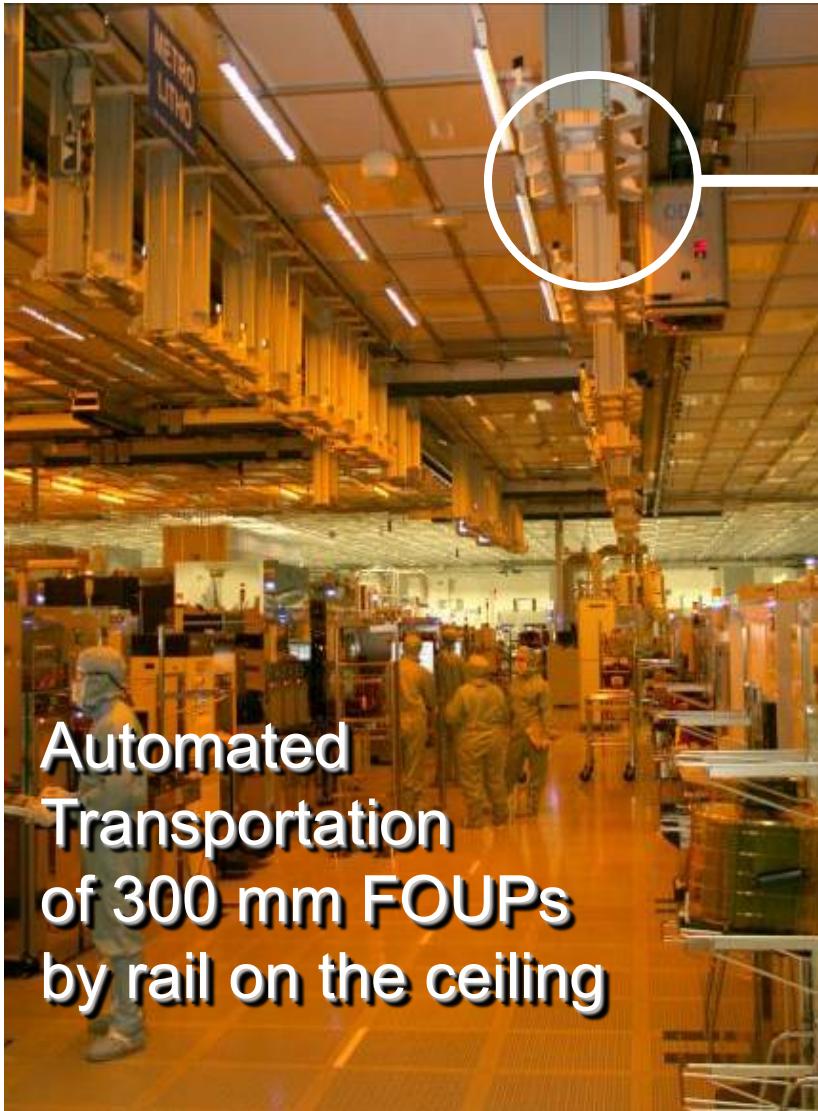


Crolles 300 mm vs. Crolles 200 mm

Crolles200 : from 0.35 μm to 0.12 μm

Crolles300 : from 90 nm to 22 nm

SPC56 32 Bit - M10 90 nm Clean Room 300 mm


23

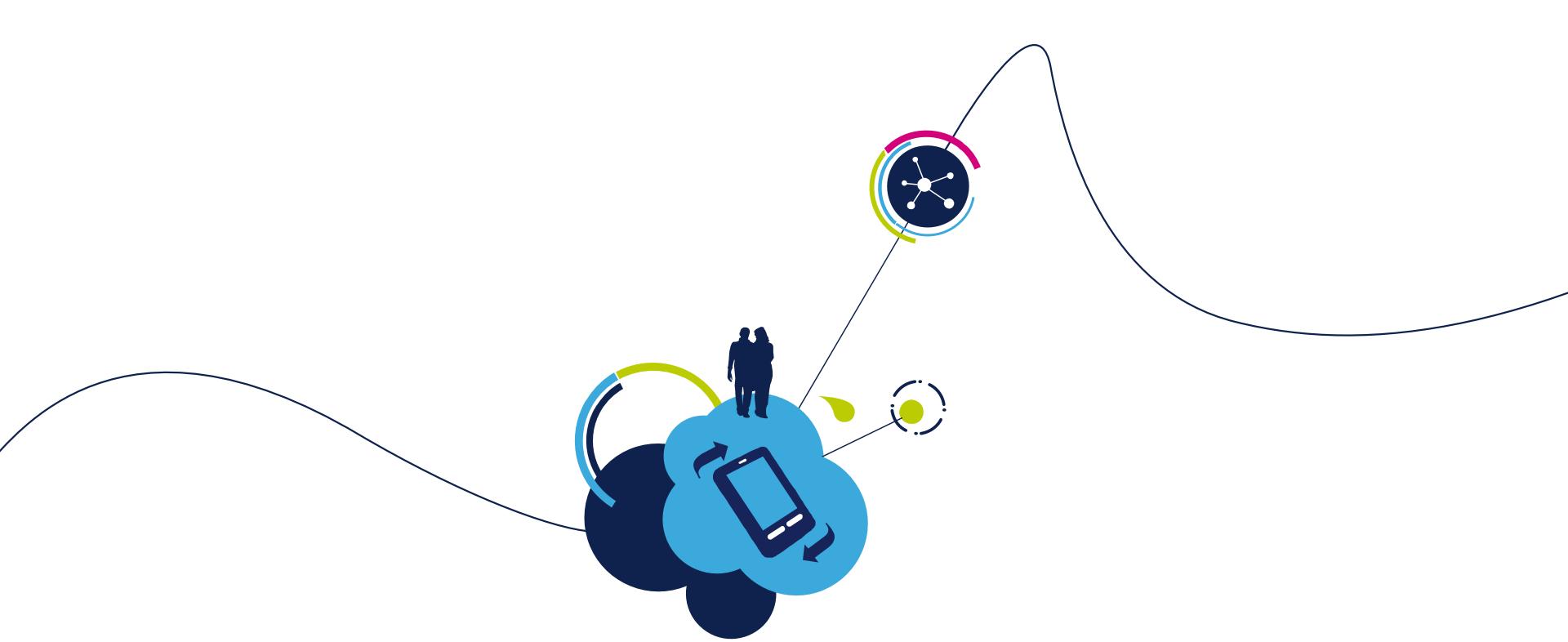
SPC56 32 Bit - M10 90 nm Clean Room 300 mm

24

SPC56 32 Bit - M10 90 nm Crolles300 Facilities Overview

25

Process exhausts
580 000 m³/h


Power:
Installed = 39 MVA
Peak demand = 15.6 MVA
Fab demand = 7.5 MVA
Facilities = 8.1 MVA

80 m³/h Ultra Pure Water Plant

30 MW cooling capacity

Copper wire qualification

Cu wire qualification

27

- CuPd wire will be used in M10 products
- Qualification exercise has to be run both on 4 metal and 6 metal option
- Similarities can be used evaluating bonding parameters and bill of material between:
 - 4 metal products (Pictus, Bolero)
 - 6 metal products (Andorra, Monaco, Leopard, Bolero 3M)

CuPd qualification status

28

- 6 metal process option

- Mat 10 (feasibility assessment) done
- Mat 20: three assembly lots with bonding corner conditions running
- Mat 30 for 6M1T process option running

Similarity between LQFP176 and LQFP144 packages:

- Same complexity from process point of view, both are 6M1T
- Same pad class and same Bond Pad Opening = 52um
- Same assembly line
- Line stressing planned on 30K parts to assess manufacturability

- 4 metal process option

- Mat 10 done
- Mat 20: three assembly lots with bonding corner conditions running
- Mat 30: three assembly lots in standard bonding condition
 - Line stressing planned on 30K parts to assess manufacturability running

Samples

- On customer request starting from

Q4 2013

4 Metal M10 Products in LQFP: QUAL PLAN for CuPd introduction

Products	LQFP Packages	Qualifications	Comments
Pictus512k	LQFP100	PACKAGE VALIDATION + Q100	Full qualification
	LQFP144	Q100	By similarities with Monaco 1.5M LQFP144 and Andorra 4M LQFP176
Pictus256k	LQFP64	PACKAGE VALIDATION + Q100	Full qualification
	LQFP100	NO TRIALS REQUIRED	Similarities with Pictus 512K LQFP100
Pictus1M	LQFP100	1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	Similarities with Pictus 512K LQFP100
	LQFP144	1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	Similarities with Pictus 512K LQFP144
Bolero256k	LQFP64	NO TRIALS REQUIRED	Similarities with Pictus 256K LQFP64
	LQFP100	NO TRIALS REQUIRED	Similarities with Pictus 512K LQFP100
Bolero512k	LQFP64	1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	Similarities with Pictus 256K LQFP64
	LQFP100	NO TRIALS REQUIRED	Similarities with Pictus 512K LQFP100
	LQFP144	NO TRIAL REQUIRED	Similarities with Pictus 512K LQFP144
Bolero1M5	LQFP100	1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	Similarities with Pictus 512K LQFP100
	LQFP144	1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	Similarities with Pictus 512K LQFP144
	LQFP176	1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	By similarities with Andorra 4M LQFP176 and Pictus 512K LQFP144

6 Metal M10 Products in LQFP: QUAL PLAN for CuPd introduction

Products	Packages	Qualifications	Comments
Monaco 1M5	LQFP176	PACKAGE VALIDATION + Q100	Shared with Monaco1M5 LQFP144
	LQFP144	PACKAGE VALIDATION + Q100	Shared with Andorra 4M LQFP176
	LQFP100	PACKAGE VALIDATION + Q100	Package similarities with LQFP100 4 metal option qualification
	LQFP176	NO TRIALS REQUIRED	By similarities with Monaco 1.5M LQFP144 and Andorra 4M LQFP176
Andorra 2M	LQFP176	NO TRIALS REQUIRED	By similarities with Monaco 1.5M LQFP144 and Andorra 4M LQFP176
Leopard 1M	LQFP100	NO TRIALS REQUIRED	Similarity with Leopard 2M
	LQFP144	NO TRIALS REQUIRED	Similarity with Leopard 2M
Leopard 2M	LQFP100	PACKAGE VALIDATION + Q100	Package similarities with LQFP100 4 metal option qualification
	LQFP144	PACKAGE VALIDATION + ONLY 1 LOT OF TC REQUIRED BECAUSE BIGGER DIE SIZE	Similarities with Pictus 512K and Monaco 1.5M LQFP144
Bolero 3M	LQFP176	NO TRIALS REQUIRED	Similarities with Pictus 512K, Leopard 1M and Andorra 4M

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

©2013 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

