

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPG-IPC/14/7643
Dated 09 Dec 2014

**LNBH29, LNBH29E and LNBH30 : Copper Wire Bonding
Implementation on MLP package 3x3 mm and 4x4 mm leads
in Carsem (Malaysia)**

Table 1. Change Implementation Schedule

Forecasted implementation date for change	01-Jan-2015
Forecasted availability date of samples for customer	02-Dec-2014
Forecasted date for STMicroelectronics change Qualification Plan results availability	15-Dec-2014
Estimated date of changed product first shipment	10-Mar-2015

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	LNBH29, LNBH29E, LNBH30
Type of change	Package assembly material change
Reason for change	To follow the Company guidelines on bonding material implementation
Description of the change	Pad structure (Top Metal) : Ni/Pd layer (3um Nickel / 0.3um Palladium thickness) is added Wire bonding : Copper
Change Product Identification	By a new Finished Goods code
Manufacturing Location(s)	1]Sc Carsem S - Malaysia

DOCUMENT APPROVAL

Name	Function
Pioppo, Sergio Franco	Marketing Manager
Pioppo, Sergio Franco	Product Manager
Moretti, Paolo	Q.A. Manager

ATTACHMENT TO PCN IPD-IPC/13/7643

WHAT:

As an extension of the **PCN IPD-IPC/12/7384**, the “Pd/Cu wire bonding on Ni/Pd pad implementation” for BCD6S solutions mounted in MLP package will be adopted and delivered by our subcontractor Carsem located in Malaysia also for the below devices:

LNBH29 (VFDFPN 3x3-16 and VFDFPN 4x4-16)
LNBH29E (VFDFPN 3x3-16 and VFDFPN 4x4-16)
LNBH30 (VFDFPN 4x4-16)

WHY:

To comply with the Company requirements for bonding material implementation and to increase delivery flexibility.

HOW:

No change in the electrical and mechanical characteristics. Please refer to the Reliability Reports herewith enclosed, related to Carsem, Malaysia (**PCN IPD-IPC/12/7384**).

Three different test vehicles (UM90; UJ58; UJ75) have been checked to guarantee device performance, crossing Front End technologies (BCD6S/BCD6SOI) and Back End package assembly rules with Palladium/copper wire process.

The new process (copper wire) can be traced by the internal part numbers on ST standard labels, as follows:

Commercial Product	New Internal part Number	Back-End Plant
LNBH29PTR	LNBH29PTR\$Y4	Carsem Malaysia
LNBH29QTR	LNBH29QTR\$Y5	Carsem Malaysia
LNBH29EPTR	LNBH29EPTR\$Y3	Carsem Malaysia
LNBH29EQTR	LNBH29EQTR\$Y3	Carsem Malaysia
LNBH30QTR	LNBH30QTR\$Y4	Carsem Malaysia

WHEN:

The change will be implemented starting January, 2015.
Samples are available and can be delivered upon request.

Reliability Evaluation Report

ST8034

New Product Qualification

General Information		Locations	
Product Line	UI87	Wafer fab	Catania M5
Product Description	Smartcard interfaces ST8034HNQR		
P/N	ST8034PQR ST8034ATDT	Assembly plant	Carsem S QFN 24L QFN 16L Bouskoura SO16 narrow
Product Group	AMS	Reliability Lab	Catania Reliability Lab
Product division	STD Products & HiRel	Reliability assessment	Pass
Package	QFN 24L QFN 16L SO16 narrow		
Silicon Process technology	BCD6S-3M		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	25-Mar-2013	13	A.Riciputo	G.Presti	

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1 APPLICABLE AND REFERENCE DOCUMENTS	3
2 GLOSSARY	3
3 RELIABILITY EVALUATION OVERVIEW	3
3.1 OBJECTIVES	3
3.2 CONCLUSION	3
4 DEVICE CHARACTERISTICS	4
4.1 DEVICE DESCRIPTION	4
4.2 CONSTRUCTION NOTE	4
5 TESTS RESULTS SUMMARY	5
5.1 TEST VEHICLE	5
5.2 TEST PLAN AND RESULTS SUMMARY	5
6 ANNEXES	6
6.1 DEVICE DETAILS	6
6.2 TESTS DESCRIPTION	13

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47E	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

New Product, new QFN Package Qualification.

The present evaluation plan includes three different packages for the same product:

QFN 4x4 24L and QFN 3X3-16L packages using CU wires 1 mil, assembled in CARSEM S.

SO16 package packages using CU wires 1 mil, assembled in Bouskoura.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description

Smartcard interfaces

4.2 Construction note

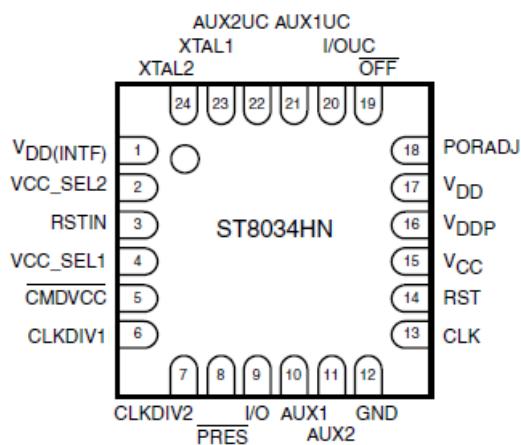
ST8034		
Wafer/Die fab. information		
Wafer fab manufacturing location	Catania M5	
Technology	BCD6S	
Die finishing back side	RAW SILICON	
Die size	1608x1700µm	
Passivation type	TEOS/SiN/Polyimide	
Wafer Testing (EWS) information		
Electrical testing manufacturing location	TPY	
Tester	J750 Teradyne	
Assembly information		
Assembly site	Carsem S	BOUSKOURA
Package description	QFN 4x4 24L	QFN 3x3-16L
Molding compound	EPOXY	
Wires bonding materials/diameters	Cu 1mil	
Final testing information		
Testing location	Carsem S	BOUSKOURA
Tester	ASL1K	

5 TESTS RESULTS SUMMARY

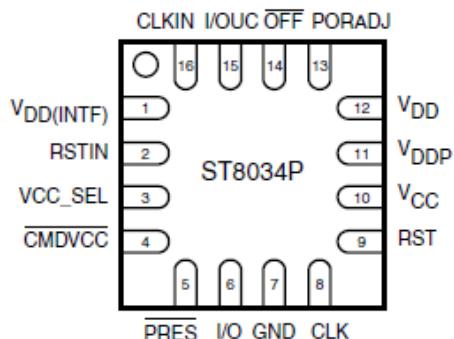
5.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Tech. Code	Process/ Package	Product Line	Comments
1	5226598	ENG C3402	AYD8*UI87AA5	BCD6S-3M/ QFN 4x4 24L	UI87	
2		ENG C4003		BCD6S-3M/ QFN 3x3 16L		
3		ENG C3404		BCD6S-3M/ SO16 Narrow		
4	5226598	LP1249N1P	JDQ7*UI87AA5			

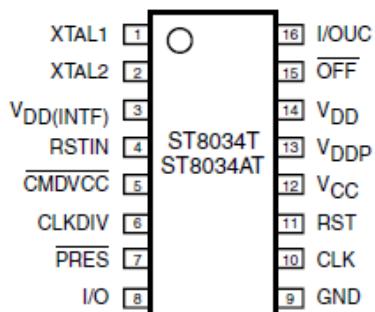
5.2 Test plan and results summary


ST8034

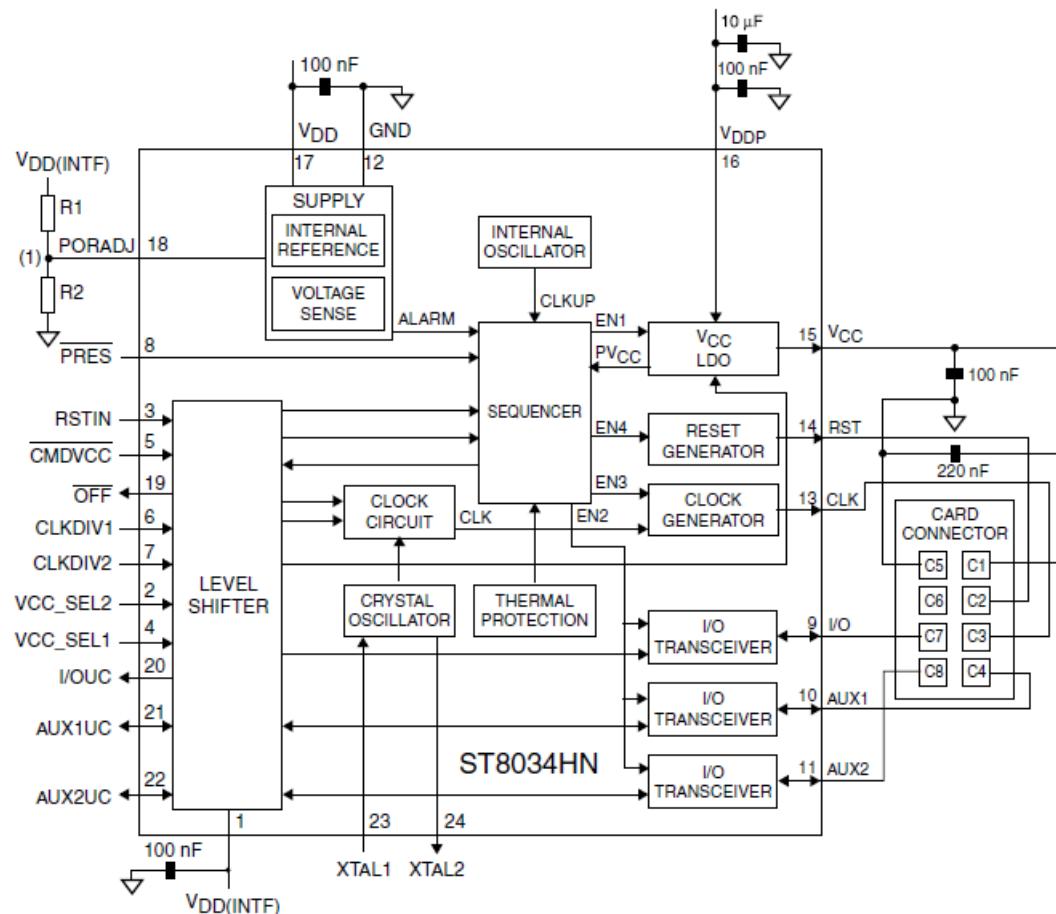
Test	PC	Std ref.	Conditions	Steps	Failure/SS				Note
					Lot 1	Lot 2	Lot 3	Lot 4	
Die Oriented Tests									
HTB	N	JESD22 A-108	T _j = 125°C, V _{bias} =+6V	168 H	0/77				
				500 H	0/77				
				1000 H	0/77				
HTSL	N	JESD22 A-103	Ta = 150°C	168 H	0/45	0/45	0/45	0/45	
				500 H	0/45	0/45	0/45	0/45	
				1000 H	0/45	0/45	0/45	0/45	
Package Oriented Tests									
PC		JESD22 A-113	Drying 24H@125°C Store 168H@Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times	Final	Pass	Pass	Pass	Pass	
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C	96 H	0/77	0/77	0/77	0/77	
TC	Y	JESD22 A-104	Ta = -65°C to 150°C	100 cy	0/77	0/77	0/77	0/77	
				200 cy	0/77	0/77	0/77	0/77	
				500 cy	0/77	0/77	0/77	0/77	
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85% V _{bias} =+5V,	168 H	0/77	0/77		0/77	
				500 H	0/77	0/77		0/77	
				1000 H	0/77	0/77		0/77	
Other Tests									
ESD	N	AEC Q101- 001, 002 and 005	HBM	±2KV	Pass			Pass	All pins
				±8KV	Pass			Pass	I/O, RST, VCC, CLK, PRES Pins
				CDM	±500V	Pass	Pass	Pass	
LU	N	AEC Q100 - 004	Current Inj. Overvoltage	MM	±200V	Pass		Pass	

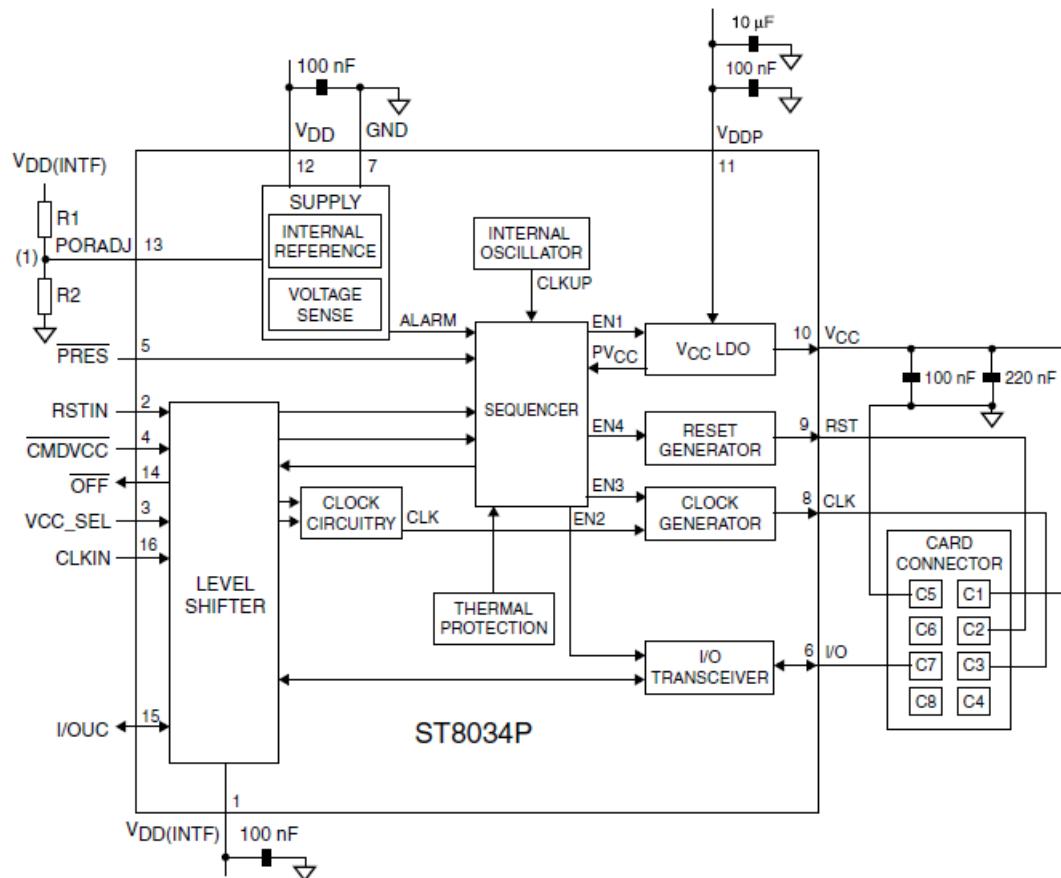

6 ANNEXES

6.1 Device details

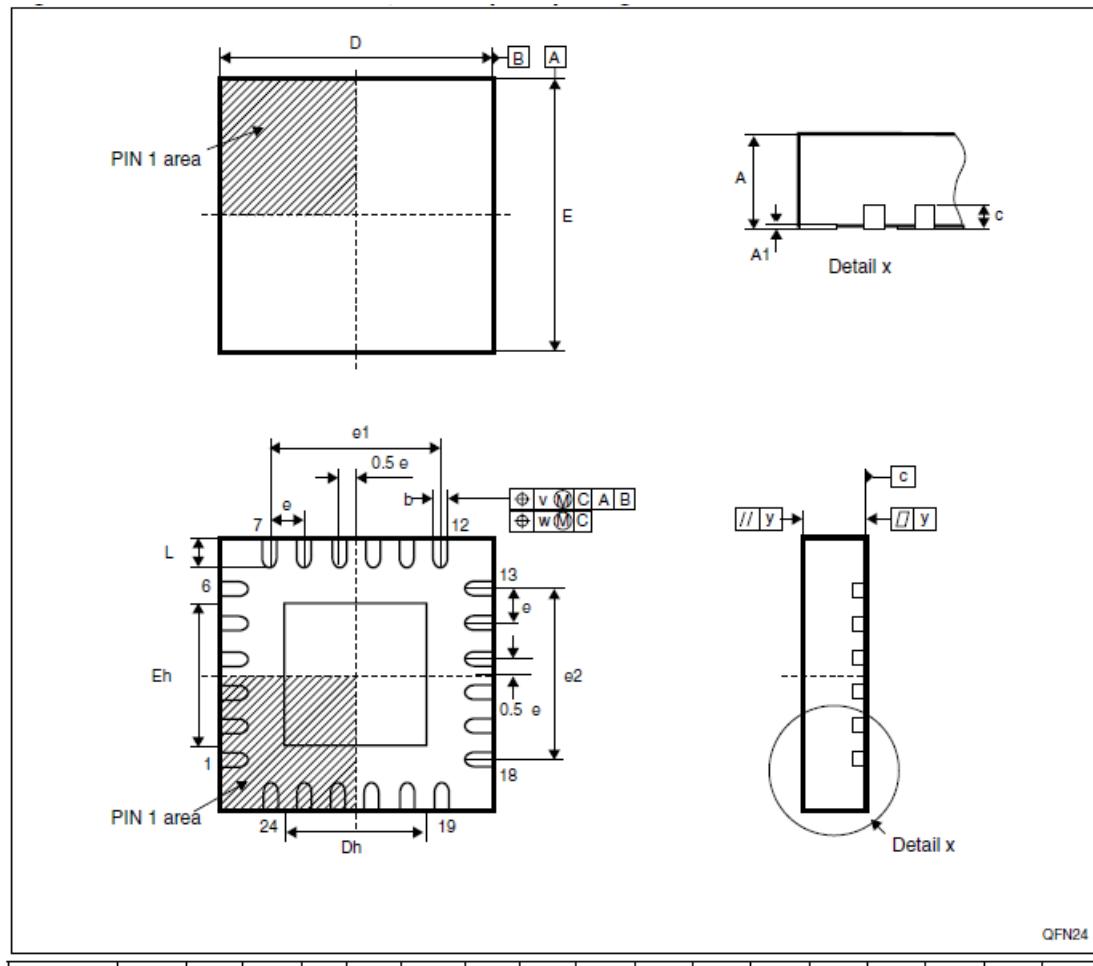

6.1.1 Pin connection

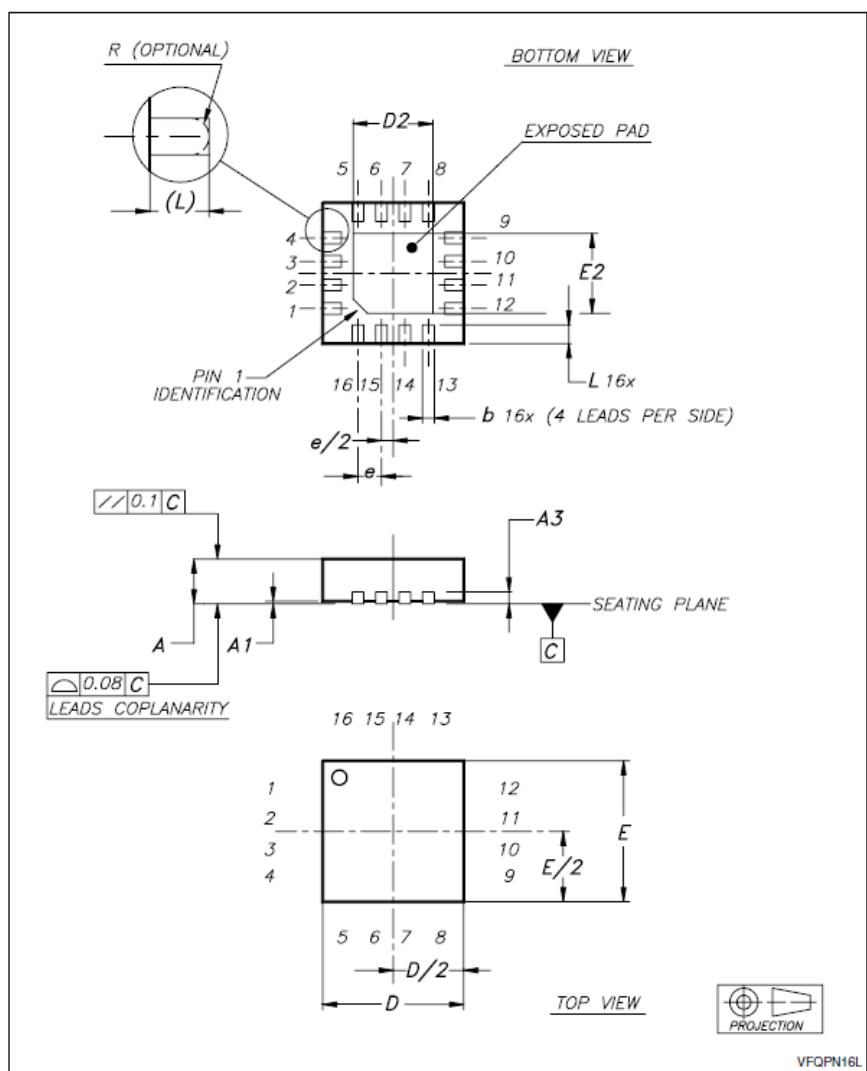
QFN24 - 4 x 4 x 0.8 mm, 0.5 mm pitch



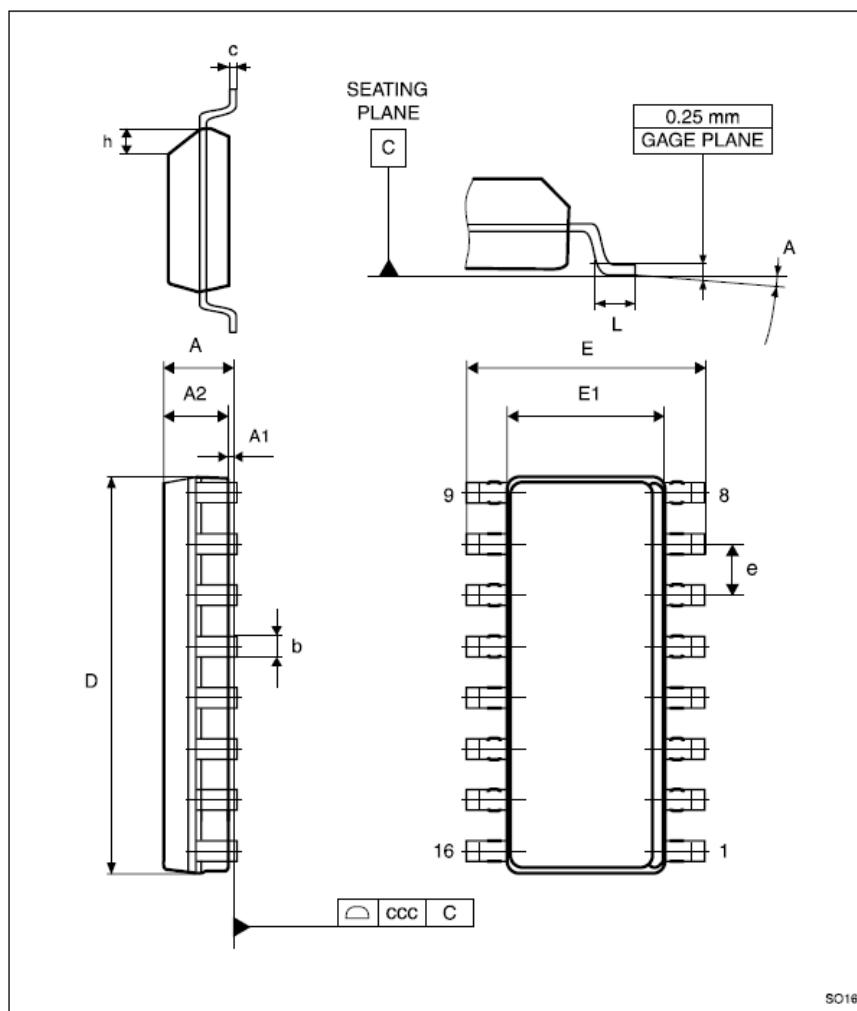

QFN16 3 x 3 x 0.8 mm, 0.5 mm pitch

SO16 3.9 x 9.9 mm


6.1.2 Block diagram



6.1.3 Package outline/Mechanical data



Symbol	$A^{(1)}$ max.	A1	b	c	$D^{(1)}$	Dh	$E^{(1)}$	Eh	e	e1	e2	L	v	w	y	y1	Unit
Dim.	1	0.05 0.00	0.30 0.18	0.2	4.1 3.9	2.25 1.95	4.1 3.9	2.25 1.95	0.5	2.5	2.5	0.5 0.3	0.1	0.05	0.05	0.1	mm

VFQPN16L

Symbol	Dimensions (mm)		
	Nom.	Min.	Max.
A	0.90	0.80	1
A1		0	0.05
A3	0.20		
b		0.18	0.30
D	3	2.90	3.10
D2		1.50	1.80
E	3	2.90	3.10
E2		1.50	1.80
e	0.50		
L		0.30	0.50

SO16

Symbol	Dimensions						Notes	
	Databook (mm)			Drawing (mm)				
	Min.	Typ.	Max.	Min.	Typ.	Max.		
A			1.75	1.43	1.55	1.68		
A1	0.10		0.25	0.12	0.15	0.18		
A2	1.25			1.48	1.52	1.56		
b	0.31		0.51	0.375	0.40	0.425		
c	0.17		0.25			0.238		
D	9.80	9.90	10.00	9.77	9.80	9.83	(1)	
E	5.80	6.00	6.20	5.90	6.00	6.10		
E1	3.80	3.90	4.00	3.82	3.85	3.88	(2)	
e		1.27			1.27			
h	0.25		0.50	0.425		0.50		
L	0.40		1.27	0.585	0.635	0.685	(3)	
k	0		8	2	4	8		
ccc			0.10			0.04		

6.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

Reliability Evaluation Report

Cu wires (1,0 mils) - NiPd Pactech Process

Test Vehicles:
LNBH26S-UX68 VFQFPN 4x4x1.0 24L package

General Information		Locations	
Product Line	UX6801	Wafer fab	Catania CTM8
Product Description	LNBH26S - Dual LNB power supply	Assembly plant	Carsen S - Malaysia
P/N	LNBH26SPQR	Reliability Lab	Catania Site
Product Group	IPD	Reliability assessment	Pass.
Product division	I3 Handheld & Computer PM		
Package	VFQFPN 4x4x1.0 24L		
Silicon Process technology	BCD6S		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	04-Mar-2013	9	Giuseppe Giacopello	Giovanni Presti	Final

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
2	GLOSSARY.....	3
3	RELIABILITY EVALUATION OVERVIEW.....	3
3.1	OBJECTIVES	3
3.2	CONCLUSION	3
4	DEVICE CHARACTERISTICS	4
4.1	DEVICE DESCRIPTION	4
4.2	CONSTRUCTION NOTE	4
5	TESTS RESULTS SUMMARY.....	5
5.1	TEST VEHICLE(FINAL SILICON).....	5
5.2	TEST PLAN AND RESULTS SUMMARY	5
6	ANNEXES.....	7
6.1	DEVICE DETAILS.....	7
6.2	TEST DESCRIPTION.....	9

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Reliability evaluation on Cu wires (1,0 mils) on VFDFPN package with PACTECH process

T.V.: UX6801 - LNBH26SPQR

3.2 Conclusion

The final reliability results are positive.

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure).

For HTB and THB test results please refer to the ST8034 device used as test vehicle

4 DEVICE CHARACTERISTICS

4.1 Device description

Intended for analog and digital dual satellite receivers/Sat-TV, and Sat-PC cards, the LNBH26S is a monolithic voltage regulator and interface IC, assembled in QFN24 4x4 specifically designed to provide the 13/18 V power supply and the 22 kHz tone signalling to the LNB downconverter in the antenna dishes or to the multiswitch box. In this application field, it offers a complete solution for dual tuner satellite receivers with extremely low component count, low power dissipation together with simple design and I²C standard interfacing.

4.2 Construction note

		P/N LNBH26S
Wafer/Die fab. information		
Wafer fab manufacturing location	Catania CTM8	
Technology	BCD6S	
Process family	BCD6 SHRINK	
Die finishing back side	Cr/NiV/Au	
Die size	2.645 x 2.645 mm ²	
Bond pad metallization layers	NiPd	
Passivation type	TEOS/SiN/Polyimide	
Wafer Testing (EWS) information		
Electrical testing manufacturing location	AngMoKio - Singapore	
Assembly information		
Assembly site	Carsem S - Malaysia	
Package description	VFQFPN 4x4x1.0 24 PITCH 0.5	
Molding compound	G770HC	
Frame material	MLPQ 4X4 24L expad 118x118 carsem	
Die attach material	Epoxy QMI519	
Wires bonding materials/diameters	COPPER WIRE 1.0 mil	
Lead finishing/bump solder material	Pure tin plating Sn 100%	
Final testing information		
Testing location	Carsem S - Malaysia	
Tester	ASL1K Credence	
Test program	UA29_FT	

5 TESTS RESULTS SUMMARY

5.1 Test vehicle(Final Silicon)

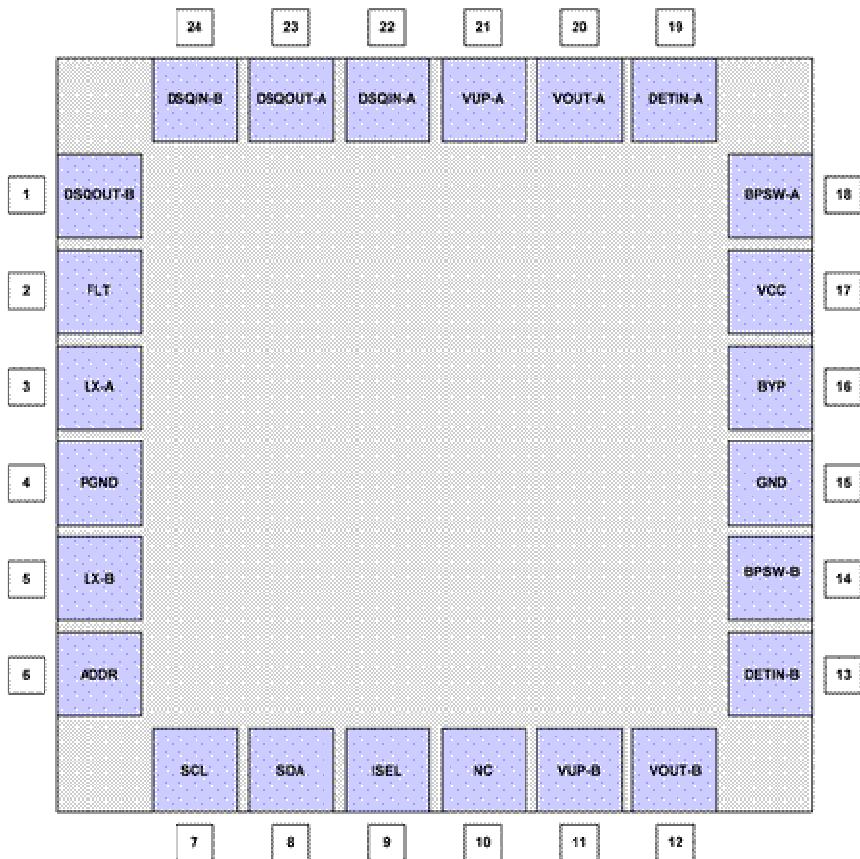
Lot #	Assy Lot	Trace Code	Process	Product Line	Comments
1	ENGC4603	RYND*UX68AB5	BCD6S	UX6801	

5.2 Test plan and results summary

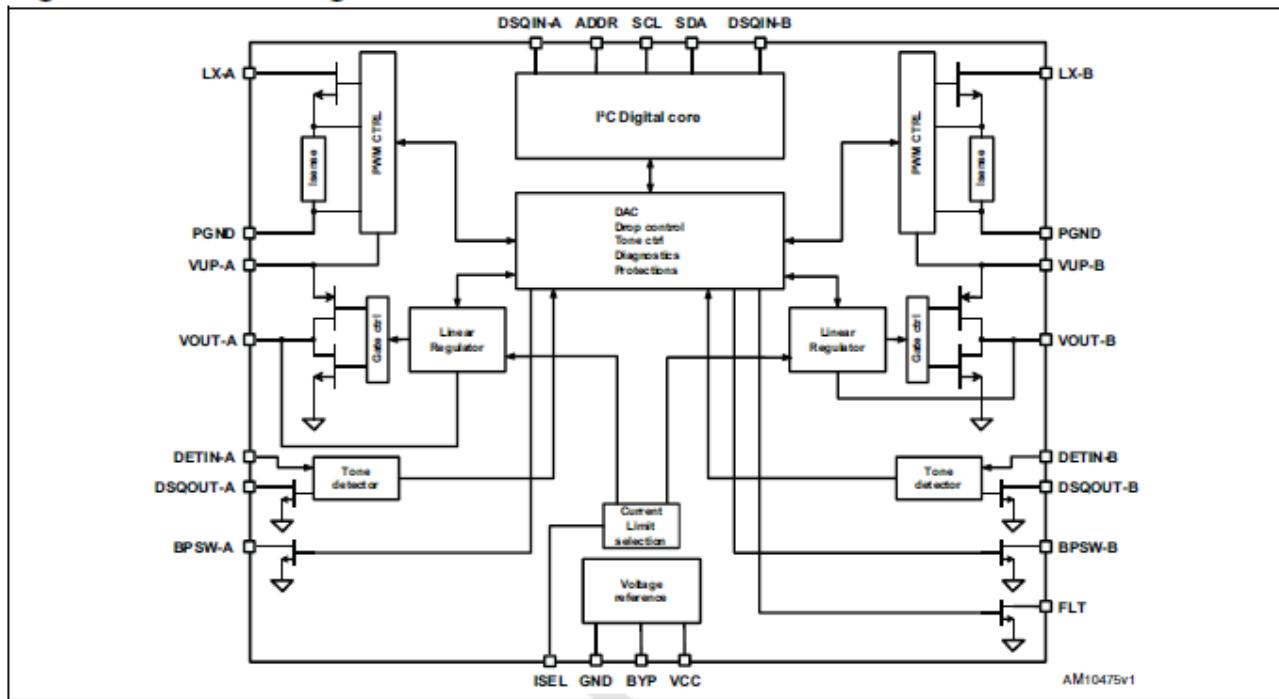
P/N LNBH26S

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS	Note
						Lot 1	
Die Oriented Tests							
HTSL	N	JESD22 A-103	Ta = 150°C	45	168 h	0/45	
					500 h	0/45	
					1000 h	0/45	
Package Oriented Tests							
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta= 85°C Rh= 85% Over Reflow @ Tpeak= 260°C 3 times		Final	Pass	
AC	Y	JESD22 A-102	Pa=2Atm / Ta= 121°C	77	168 h	0/77	
TC	Y	JESD22 A-104	Ta = -65°C to 150°C	77	100 cy	0/77	
					200 cy	0/77	
					500 cy	0/77	

Reference: **RER6043-078-W-13**
P/N ST8034


Lot #	Diffusion Lot	Assy Lot	Tech. Code	Process/ Package	Product Line	Comments
1	5226598	ENG C3402	AYD8*UI87AA5	BCD6S-3M/ HVQFN 4x4 24L	UI87	CUT1.0
2		ENG C4003		BCD6S-3M/ MLPQHS 3x3 16L		
3		ENG C3404		AY94*UI87AA5		

Test	PC	Std ref.	Conditions	Steps	Failure/SS			Note
					Lot 1	Lot 2	Lot 3	
Die Oriented Tests								
HTB	N	JESD22 A-108	T _j = 125°C, V _{bias} =+6V	168 H	0/77			
				500 H	0/77			
				1000 H	0/77			
HTSL	N	JESD22 A-103	Ta = 150°C	168 H	0/45	0/45	0/45	
				500 H	0/45	0/45	0/45	
				1000 H	0/45	0/45	0/45	
Package Oriented Tests								
PC		JESD22 A-113	Drying 24H@125°C Store 168H@Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times	Final	Pass	Pass	Pass	
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C	96 H	0/77	0/77	0/77	
TC	Y	JESD22 A-104	Ta = -65°C to 150°C	100 cy	0/77	0/77	0/77	
				200 cy	0/77	0/77	0/77	
				500 cy	0/77	0/77	0/77	
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85% V _{bias} =+5V,	168 H	0/77	0/77		
				500 H	0/77	0/77		
				1000 H	0/77	0/77		
Other Tests								
ESD	N	AEC Q101- 001, 002 and 005	HBM	±2KV	Pass			All pins
				±8KV	Pass			I/O, RST, VCC, CLK, PRES Pins
			CDM	±500V	Pass	Pass	Pass	
			MM	±200V	Pass			
LU	N	AEC Q100 - 004	Current Inj. Overvoltage	±100mA	Pass			


6 ANNEXES

6.1 Device details

6.1.1 Pin connection

6.1.2 Block diagram

6.2 Test Description

Test name	Description	Purpose
Die Oriented		
HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

Public Products List

PCN Title : LNBH29, LNBH29E and LNBH30 : Copper Wire Bonding Implementation on MLP package 3x3 mm and 4x4 mm leads in Carsem (Ma

PCN Reference : IPG-IPC/14/7643

PCN Created on : 08-DEC-2014

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change:

ST COMMERCIAL PRODUCT

LNBH29EPTR

LNBH29EQTR

LNBH29PTR

LNBH29QTR

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

©2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com