

PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data

1.1 Company	STMicroelectronics International N.V
1.2 PCN No.	MICROCONTROLLERS/24/14886
1.3 Title of PCN	AMKOR ATP (Philippines) LQFP100 14x14 and LQFP144 20x20 Copper wire proliferation on STM32H74x/75x and STM32H7Ax/H7Bx listed products
1.4 Product Category	STM32H74x/75x and STM32H7Ax/H7Bx
1.5 Issue date	2024-08-18

2. PCN Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Ricardo Antonio DE SA EARP
2.2.2 Marketing Manager	Veronique BARLATIER
2.2.3 Quality Manager	Pascal NARCHE

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
Materials	Direct Material: Bond Wire - Metallurgy (metallic composition/ raw material)	AMKOR ATP (Philippines)

4. Description of change

	Old	New
4.1 Description	Current Wire bonding material: - ASEKH (Taiwan) gold wire - ASEKH (Taiwan) copper palladium wire. - AMKOR ATP (Philippines) gold wire	Current Wire bonding material: - ASEKH (Taiwan) gold wire - ASEKH (Taiwan) copper palladium wire. - AMKOR ATP (Philippines) gold wire New Wire bonding material : - AMKOR ATP (Philippines) copper palladium wire
4.2 Anticipated Impact on form, fit, function, quality, reliability or processability?	no impact on Form, Fit, Function	

5. Reason / motivation for change

5.1 Motivation	To improve service
5.2 Customer Benefit	SERVICE IMPROVEMENT

6. Marking of parts / traceability of change

6.1 Description	traceability ensured by ST Internal tools
-----------------	---

7. Timing / schedule

7.1 Date of qualification results	2024-08-06
7.2 Intended start of delivery	2024-11-01
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation

8.1 Description	14886 MDG-GPM-RER2312 V3.0 PCN14486 ATP1-LQFP14x14 100L LQFP20x20 144L-CuPd RER Eval.pdf		
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2024-08-18

9. Attachments (additional documentations)

14886 Public product.pdf
14886 MDG-GPM-RER2312 V3.0 PCN14486 ATP1-LQFP14x14 100L LQFP20x20 144L-CuPd RER Eval.pdf
14886 PCN14886_Additional information.pdf

10. Affected parts

10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
	STM32H742VGT6	
	STM32H742VIT6	
	STM32H742ZGT6	
	STM32H743VGT6	
	STM32H743VIT6	
	STM32H743VIT6TR	
	STM32H743ZGT6	
	STM32H743ZIT6	
	STM32H743ZIT6U	
	STM32H745ZIT3	
	STM32H745ZIT6	
	STM32H750VBT6	
	STM32H750VBT6TR	
	STM32H750ZBT6	
	STM32H753VIT6	
	STM32H753ZIT6	
	STM32H755ZIT6	
	STM32H7A3VGT6	
	STM32H7A3VIT6	
	STM32H7A3VIT6Q	
	STM32H7A3ZIT6	
	STM32H7A3ZIT6Q	
	STM32H7B0VBT6	
	STM32H7B0VBT6TR	
	STM32H7B3VIT6	
	STM32H7B3ZIT6Q	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

Reliability Evaluation Report

MDG-GPM-RER2312

AMKOR ATP1 LQFP14x14 - LQFP20x20 Copper wire introduction and standardization to post plated leadframes on listed products

General Information	
Commercial Product	STM32F427VGT6 STM32L4R9VIT6 STM32F402VCT6 STM32F469ZIT6 STM32L496ZGT6 STM32H743ZIT6
Product Line	419X66; 470X66; 423X66; 434X66; 461X66 ; 450X66
Die revision	419 cut 2.2 470 cut 1.5 423 cut 1.1 434 cut 1.0 461 cut 2.0 450 cut 2.2
Product Description	STM32F4 STM32L4 STM32H7
Package	LQFP 100 14x14x1.4 LQFP144 20x20x1.4
Silicon Technology	CMOSM10; TN090 ; M40
Division	MDRF-GPM

Traceability	
Diffusion Plant	Crolles300, TSMC Fab14
Assembly Plant	SC AMKOR ATP1 - PHILIPPINES

Reliability Assessment	
Pass	X
Fail	

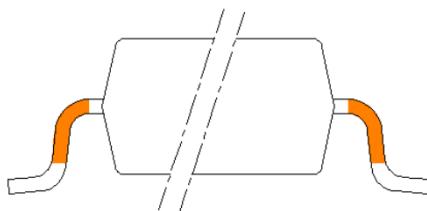
Release	Date	Author	Function
1.0	29 th September 2023	Gabin Bosco	GPM BE Q&R
2.0	7 th Mai 2024	Gabin Bosco	GPM BE Q&R
3.0	26 th July 2024	Gabin Bosco	GPM BE Q&R

Approved by:

Version	Name	Function	Location	Date
1.0	Berengere ROUTIER-SCAPPUCCI	GPM BE Q&R Manager	ROUSSET	2 nd October 2023
	Pascal NARCHE	Subgroup Quality Manager	ROUSSET	2 nd October 2023
2.0	Pascal NARCHE	Subgroup Quality Manager	ROUSSET	7 th May 2024
3.0	Berengere ROUTIER SCAPPUCCI	GPM BE Q&R Manager	ROUSSET	2 st August 2024

This report is a summary of the reliability trials performed in good faith by STMicroelectronics. This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics General Terms and Conditions of Sale.

RELIABILITY EVALUATION OVERVIEW


• OBJECTIVE

The aim of this report is to present the reliability evaluation performed for the qualification of ATP1 (Philippines) LQFP14x14 to 20x20 assembly line with copper wires on techno TSMC N90, Crolles M10, TSMC M10, Crolles M40 and Crolles E40 by similarity as BEOL and pad geometry is covered by M40.

PCN14039 changes are described here below:

	Existing back-end line	Added back-end line
Assembly line	AMKOR ATP (Philippines)	
Leadframe	Pre-plated (PPF) Leadfinishing e4 (1)	Post-Plated (DR) Leadfinishing e3
Epoxy ⁽²⁾	CRM-1076YB (Sumitomo)	3230 (Henkel)
Wire	Gold 0.8mil	Copper Palladium (0.8mil)
Marking composition	Without 2D With e4	With 2D Marking With e3

⁽¹⁾ Lead color and surface finish change depending on leadfinishing.

⁽²⁾ Package darkness changes depending on molding compound. Pin1 identifier can change in terms of form and positioning. Marking position and size could be different upon assembly site, without any loss of information.

PCN14886 changes are described here below:

	Existing back-end line		Added back-end line	
Assembly line	ASE Kaohsiung (Taiwan)		AMKOR ATP (Philippines)	
Die attach material	Sumitomo CRM 1076WA	HITACHI EN4900G	Evertech AP4200 Ablestik 3230	Ablestik 3230
Wire	Gold 0.8mil	CuPd 0.8mil	Gold 0.8mil	CuPd 0.8mil
Marking composition	Without 2D	With 2D Marking	Without 2D	With 2D Marking

- CONCLUSION

All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

Package oriented tests have not put in evidence any criticality. Physical analysis performed on samples submitted to tests has not put in evidence any issue. ESD CDM are in accordance with ST spec.

Based on the overall results obtained, products below have positively passed reliability evaluation:

Line code	Commercial product	Diff plant	Assy plant
419X66	STM32F427VG	TSMC FAB14	SC AMKOR ATP1
470X66	STM32L4R9VI	TSMC FAB14	
423X66	STM32F402VC	Crolles 300	
434X66	STM32F469ZI	Crolles 300	
461X66	STM32L496ZG	TSMC FAB14	
450X66	STM32H743ZIT6	Crolles 300	

According to good reliability tests results in line with validated product mission profile and reliability strategy, the qualification is granted for all products with same silicon technology (TSMC N90/M40, Crolles M10/M40/E40) as Test vehicles in LQFP14x14 and LQFP20x20 at ATP1 (Amkor - Philippines) in copper-palladium wire.

Refer to Section 3.0 for reliability test results.

TABLE OF CONTENT

1. RELIABILITY STRATEGY	5
2. PRODUCT OR TEST VEHICLE CHARACTERISTICS	5
2.1. Generalities	5
2.2. Traceability	5
2.2.1. Wafer Fab Information	5
2.2.2. Assembly Information	11
2.2.3. Reliability testing information	12
3. TEST RESULTS SUMMARY	12
3.1. Lot information	12
3.2. Test results summary	13
4. APPLICABLE AND REFERENCE DOCUMENTS	14
5. GLOSSARY	14
6. REVISION HISTORY	15

1. RELIABILITY STRATEGY

Reliability trials performed as part of this reliability evaluation are in agreement with ST 0061692 specification, in full compliancy with the JESD-47 international standard.

For details on test conditions, generic data used and specifications references, refer to test results summary in section 3.

2. PRODUCT OR TEST VEHICLE CHARACTERISTICS

2.1. Generalities

Package line	Partial rawline code	Number of lots
LQFP 100 14x14x1.4	1L*419	1
	1L*470	1
	1L*423	1
LQFP144 20x20x1.4	1A*434	1
	1A*461	1
	1A*450	1

2.2. Traceability

2.2.1. Wafer Fab Information

Die 419

Wafer Fab Information		
FAB1		
Wafer fab name / location	TSMC Fab14 DIFF / Taiwan	
Wafer diameter (inches)	12	
Wafer thickness (µm)	775± 25	
Silicon process technology	CMOSM10	
Number of masks	42	
Die finishing front side (passivation) materials / thickness (µm)	USG + NITRIDE/ 1.9µm	
Die finishing back side Materials	RAW SILICON	
Die area (Stepping die size)	25.43 mm ² (5582 µm, 4556 µm)	
Die pad size		
Geometry		Open(X,Y)
Rectangular		59,123 µm
Sawing street width (X,Y) (µm)	80,80	

Metal levels/Materials/Thicknesses	Wire bond pad metal	Composition	Thickness
	1	TaN/Ta/CuSeed/Cu	0.22 µm
	2	TaN/Ta/CuSeed/Cu	0.28 µm
	3	TaN/Ta/CuSeed/Cu	0.28 µm
	4	TaN/Ta/CuSeed/Cu	0.28 µm
	5	TaN/Ta/CuSeed/Cu	0.28 µm
	6	Ta/TaN/AiCu	0.73 µm
	7	AiCu	1.2 µm

Die 470

Wafer Fab Information		
FAB1		
Wafer fab name / location	TSMC Fab14 DIFF / Taiwan	
Wafer diameter (inches)	12	
Wafer thickness (µm)	775±25	
Silicon process technology	TN090	
Number of masks	46	
Die finishing front side (passivation) materials / thickness	PSG+NITRIDE / 1.9µm	
Die finishing back side Materials	RAW SILICON	
Die area (Stepping die size)	27.685 mm ² (5259.6 µm, 5263.8 µm)	
Die pad size		Geometry
		Open(X,Y)
	Rectangular	123,59 µm
Sawing street width (X,Y) (µm)	80,80	
Metal levels/Materials/Thicknesses		
Metal levels/Materials/Thicknesses	Wire bond pad metal	Composition
	1	TaN/Ta/CuSeed/Cu
	2	TaN/Ta/CuSeed/Cu
	3	TaN/Ta/CuSeed/Cu
	4	TaN/Ta/CuSeed/Cu
	5	TaN/Ta/CuSeed/Cu
	6	TaN/Ta/CuSeed/Cu
	7	AiCu

Die 423

Wafer Fab Information																											
FAB1																											
Wafer fab name / location		Crolles 300/France																									
Wafer diameter (inches)		12																									
Wafer thickness (µm)		775±25																									
Silicon process technology		CMOSM10ULP																									
Number of masks		44																									
Die finishing front side (passivation) materials / thickness		PSG + NITRIDE/ 1.1µm																									
Die finishing back side Materials		RAW SILICON																									
Die area (Stepping die size)		9,000 mm ² (3000 µm, 3000 µm)																									
Die pad size	<table border="1"> <tr> <th>Geometry</th><th>Open(X,Y)</th></tr> <tr> <td>Rectangular</td><td>59,123 µm</td></tr> </table>	Geometry	Open(X,Y)	Rectangular	59,123 µm																						
Geometry	Open(X,Y)																										
Rectangular	59,123 µm																										
Sawing street width (X,Y) (µm)	80,80																										
Metal levels/Materials/Thicknesses	<table border="1"> <thead> <tr> <th>Wire bond pad metal</th><th>Composition</th><th>Thickness</th></tr> </thead> <tbody> <tr> <td>1</td><td>TaN/CuSeed/Cu</td><td>0.24 µm</td></tr> <tr> <td>2</td><td>TaN/CuSeed/Cu</td><td>0.33 µm</td></tr> <tr> <td>3</td><td>TaN/CuSeed/Cu</td><td>0.33 µm</td></tr> <tr> <td>4</td><td>TaN/CuSeed/Cu</td><td>0.33 µm</td></tr> <tr> <td>5</td><td>TaN/CuSeed/Cu</td><td>0.33 µm</td></tr> <tr> <td>6</td><td>TaN/CuSeed/Cu</td><td>0.85 µm</td></tr> <tr> <td>7</td><td>AlCu/TinArc</td><td>1.45 µm</td></tr> </tbody> </table>	Wire bond pad metal	Composition	Thickness	1	TaN/CuSeed/Cu	0.24 µm	2	TaN/CuSeed/Cu	0.33 µm	3	TaN/CuSeed/Cu	0.33 µm	4	TaN/CuSeed/Cu	0.33 µm	5	TaN/CuSeed/Cu	0.33 µm	6	TaN/CuSeed/Cu	0.85 µm	7	AlCu/TinArc	1.45 µm		
Wire bond pad metal	Composition	Thickness																									
1	TaN/CuSeed/Cu	0.24 µm																									
2	TaN/CuSeed/Cu	0.33 µm																									
3	TaN/CuSeed/Cu	0.33 µm																									
4	TaN/CuSeed/Cu	0.33 µm																									
5	TaN/CuSeed/Cu	0.33 µm																									
6	TaN/CuSeed/Cu	0.85 µm																									
7	AlCu/TinArc	1.45 µm																									

Die 434

Wafer Fab Information		
FAB1		
Wafer fab name / location	Crolles 300/France	
Wafer diameter (inches)	12	
Wafer thickness (μm)	775 \pm 25	
Silicon process technology	CMOSM10ULP	
Number of masks	43	
Die finishing front side (passivation) materials	PSG + NITRIDE/ 1.1 μm	
Die finishing back side Materials	RAW SILICON	
Die area (Stepping die size)	28,24 mm 2 (5730 μm , 4928 μm)	
Die pad size	Geometry	Open(X,Y)
	Rectangular	59,123 μm
Sawing street width (X,Y) (μm)	80,80	
Metal levels/Materials/Thicknesses	Wire bond pad metal	Composition
	1	TaN/CuSeed/Cu
	2	TaN/CuSeed/Cu
	3	TaN/CuSeed/Cu
	4	TaN/CuSeed/Cu
	5	TaN/CuSeed/Cu
	6	TaN/CuSeed/Cu
	7	AlCu/TinArc

Die 461

Wafer Fab Information		
FAB1		
Wafer fab name / location	TSMC Fab14 DIFF / Taiwan	
Wafer diameter (inches)	12	
Wafer thickness (μm)	775 \pm 25	
Silicon process technology	TN090CE	
Number of masks	45	
Die finishing front side (passivation) materials	PSG + NITRIDE/ 1 μm	
Die finishing back side Materials	RAW SILICON	
Die area (Stepping die size)	19,438 mm ² (4177,2 μm , 4653,4 μm)	
Die pad size	Geometry	Open(X,Y)
	Rectangular	123,59 μm
Sawing street width (X,Y) (μm)	80,80	
Metal levels/Materials/Thicknesses	Wire bond pad metal	Composition
	1	TaN/Ta/CuSeed/Cu
	2	TaN/Ta/CuSeed/Cu
	3	TaN/Ta/CuSeed/Cu
	4	TaN/Ta/CuSeed/Cu
	5	TaN/Ta/CuSeed/Cu
	6	TaN/Ta/CuSeed/Cu
	7	AlCu

Die 450

Wafer Fab Information																													
FAB1																													
Wafer fab name / location	Crolles 300																												
Wafer diameter (inches)	12																												
Wafer thickness (μm)	775 \pm 25																												
Silicon process technology	CMOSM40MI																												
Number of masks	51																												
Die finishing front side (passivation) materials	PSG NITRIDE																												
Die finishing back side Materials	RAW SILICON																												
Die area (Stepping die size)	23.23 mm ² (4983, 4662)																												
Die pad size	Geometry	Open(X,Y)																											
	Rectangular	54.9,54.4 μm																											
Sawing street width (X,Y) (μm)	72,72																												
Metal levels/Materials/Thicknesses	<table border="1"> <thead> <tr> <th>Wire bond pad metal</th><th>Composition</th><th>Thickness</th></tr> </thead> <tbody> <tr> <td>1</td><td>TaN/Ta/CuSeed/Cu</td><td>0.13 μm</td></tr> <tr> <td>2</td><td>TaN/Ta/CuSeed/Cu</td><td>0.14 μm</td></tr> <tr> <td>3</td><td>TaN/Ta/CuSeed/Cu</td><td>0.14 μm</td></tr> <tr> <td>4</td><td>TaN/Ta/CuSeed/Cu</td><td>0.14 μm</td></tr> <tr> <td>5</td><td>TaN/Ta/CuSeed/Cu</td><td>0.14 μm</td></tr> <tr> <td>6</td><td>TaN/Ta/CuSeed/Cu</td><td>0.85 μm</td></tr> <tr> <td>7</td><td>TaN/Ta/CuSeed/Cu</td><td>0.85 μm</td></tr> <tr> <td>8</td><td>Ta/TaN/AiCu</td><td>1.525 μm</td></tr> </tbody> </table>		Wire bond pad metal	Composition	Thickness	1	TaN/Ta/CuSeed/Cu	0.13 μm	2	TaN/Ta/CuSeed/Cu	0.14 μm	3	TaN/Ta/CuSeed/Cu	0.14 μm	4	TaN/Ta/CuSeed/Cu	0.14 μm	5	TaN/Ta/CuSeed/Cu	0.14 μm	6	TaN/Ta/CuSeed/Cu	0.85 μm	7	TaN/Ta/CuSeed/Cu	0.85 μm	8	Ta/TaN/AiCu	1.525 μm
Wire bond pad metal	Composition	Thickness																											
1	TaN/Ta/CuSeed/Cu	0.13 μm																											
2	TaN/Ta/CuSeed/Cu	0.14 μm																											
3	TaN/Ta/CuSeed/Cu	0.14 μm																											
4	TaN/Ta/CuSeed/Cu	0.14 μm																											
5	TaN/Ta/CuSeed/Cu	0.14 μm																											
6	TaN/Ta/CuSeed/Cu	0.85 μm																											
7	TaN/Ta/CuSeed/Cu	0.85 μm																											
8	Ta/TaN/AiCu	1.525 μm																											

2.2.2. Assembly Information

Assembly Information	
Package: LQFP 100 14x14x1.4	419 470 423
Assembly plant name / location	SC AMKOR ATP1/ PHILIPPINES
Pitch (mm)	0.5
Die thickness after back-grinding (µm)	375±25
Die sawing method	Laser groove + mechanical sawing
Bill of Material elements	
Lead frame material/reference	LF for LQFP14x14 100L CuAg 5.75sq
Lead frame finishing (material/thickness)	Pure Tin (e3): Tolerance 7 to 20 µm
Die attach material / glue /supplier	D/A Ablestik 3230
Wire bonding material/diameter	Wire CuPd 0.8 mils
Molding compound material/supplier/reference	Resin Sumitomo G631HQ
Package Moisture Sensitivity Level (JEDEC J-STD020D)	3

Assembly Information			
Package: LQFP 144 20x20x1.4	434	461	450
Assembly plant name / location	SC AMKOR ATP1 - PHILIPPINES		
Pitch (mm)	0.5		
Die thickness after back-grinding (µm)	290±25µm	375±25µm	290±25µm
Die sawing method	Laser groove + mechanical sawing		
Bill of Material elements			
Lead frame material/reference	LF for LQFP20x20 144L CuAg 6.2sq		LF LQFP144L Pur Tin 7sq
Lead frame finishing (material/thickness)	Pure Tin (e3): Tolerance 7 to 20 µm		
Die attach material / glue /supplier	D/A Ablestik 3230		
Wire bonding material/diameter/supplier	Wire CuPd 0.8 mils		
Molding compound material/supplier/reference	Resin Sumitomo G631HQ		
Package Moisture Sensitivity Level (JEDEC J-STD020D)	3		

2.2.3. Reliability testing information

Reliability Testing Information	
Reliability laboratory name / location	ATP Rel Lab, Grenoble Rel Lab, Muar BE Lab

Note: ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: http://www.st.com/content/st_com/en/support/quality-and-reliability/certifications.html

3. TEST RESULTS SUMMARY

3.1. Lot information

Lot #	Diffusion Lot / Wafer ID	Die Revision (Cut)	Assy Lot / Trace Code	Raw Line	Package	Note
Lot 1	9R301475	Cut 2.2	7B33538A	521L*419XXX5	LQFP 100 14x14x1.4	NA
Lot 2	9R150945	Cut 1.5	7B230593	601L*470QCXV	LQFP 100 14x14x1.4	NA
Lot 3	Q209709	Cut 1.1	7B230534	641L*423QCXZ	LQFP 100 14x14x1.4	NA
Lot 4	Q210616	Cut 1.0	7B230447	611A*434QCXA	LQFP144 20x20x1.4	NA
Lot 5	9R215035	Cut 2.0	7B229576	621A*461QCXB	LQFP144 20x20x1.4	NA
Lot 6	VQ319339	Cut 2.2	7B40629G	501A*450QCXV	LQFP144 20x20x1.4	NA

3.2. Test results summary

ACCELERATED ENVIRONMENT STRESS TESTS

Test code	Stress method	Stress Conditions	Lots Qty	S.S.	Total	Results/Lot Fail/S.S.	Comments:(N/A =Not Applicable)
PC	JSTD 020 JESD 22-A113	24h bake@125°C, MSL3 (192h/30°C/60%RH) 3x Reflow simulation Peak Reflow Temp= 260°C	6	308	1848	Lot 1: 0/308 Lot 2: 0/308 Lot 3: 0/308 Lot 4: 0/308 Lot 5: 0/308 Lot 6: 0/308	NA
HTSL	JESD22-A103	Ta= 150°C Duration= 1000hrs <input checked="" type="checkbox"/> After PC	6	77	462	Lot 1: 0/77 Lot 2: 0/77 Lot 3: 0/77 Lot 4: 0/77 Lot 5: 0/77 Lot 6: 0/77	NA
TC	JESD22-A104	Ta= -65°C/150°C Cyc= 500 <input checked="" type="checkbox"/> After PC	6	77	462	Lot 1: 0/77 Lot 2: 0/77 Lot 3: 0/77 Lot 4: 0/77 Lot 5: 0/77 Lot 6: 0/77	NA
THB	JESD22-A101	Ta= 85°C / 85%RH Duration= 1000hrs <input checked="" type="checkbox"/> After PC	6	77	462	Lot 1: 0/77 Lot 2: 0/77 Lot 3: 0/77 Lot 4: 0/77 Lot 5: 0/77 Lot 6: 0/77	NA
UHAST	JESD22-A118	Ta= 130°C/85%RH Duration= 96hrs <input checked="" type="checkbox"/> After PC	6	77	462	Lot 1: 0/77 Lot 2: 0/77 Lot 3: 0/77 Lot 4: 0/77 Lot 5: 0/77 Lot 6: 0/77	NA

Electrical Verification Tests

Test code	Stress method	Stress Conditions	Lots Qty	S.S.	Total	Results/Lot Fail/S.S.	Comments:(N/A =Not Applicable)
ESD CDM	JEDEC JS-002	Voltage=250V for 419/470/434/461/450 Voltage=500V for 423	6	3	18	Lot 1: 0/3 Lot 2: 0/3 Lot 3: 0/3 Lot 4: 0/3 Lot 5: 0/3 Lot 6: 0/3	NA

PACKAGE ASSEMBLY INTEGRITY TESTS

Test code	Stress method	Stress Conditions	Lots Qty	S.S.	Total	Results/Lot Fail/S.S.	Comments:(N/A =Not Applicable)
CA	Construction analysis including solderability, physical dimensions, wire bond shear	JESD 22B102 JESD B100/ B108 ST internal specifications	6	50	300	Lot 1: 0/50 Lot 2: 0/50 Lot 3: 0/50 Lot 4: 0/50 Lot 5: 0/50 Lot 6: 0/50	NA

Note: Test method revision reference is the one active at the date of reliability trial execution.

4. APPLICABLE AND REFERENCE DOCUMENTS

Reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
SOP2.4.4	Record Management Procedure
SOP2.6.2	Internal Change Management
SOP2.6.7	Finished Good Maturity Management
SOP2.6.9	Package & Process Maturity Management in BE
SOP2.6.11	Program Management for Product Development
SOP2.6.17	Management of Manufacturing Transfers
SOP2.6.19	Front-End Technology Platform Development and Qualification
DMS 0061692	Reliability Tests and Criteria for Product Qualification
JEDEC JS-002	Electrostatic discharge (ESD) sensitivity testing charge device model (CDM)
JESD 22-A103	High Temperature Storage Life
J-STD-020	Moisture/reflow sensitivity classification for non-hermetic solid state surface mount devices
JESD22-A113	Preconditioning of non-hermetic surface mount devices prior to reliability testing
JESD22-A118	Unbiased Highly Accelerated temperature & humidity Stress Test
JESD22-A104	Temperature cycling
JESD22-A101	Temperature Humidity Bias
JESD 22B102	Solderability test
JESD B100/ B108	Physical dimension

5. GLOSSARY

ESD - CDM	Electrostatic Discharge - Charged Device Model
CA	Construction analysis
HTSL	Storage Life High temperature storage life
PC	Preconditioning
TC	Temperature Cycling
THB	Temperature Humidity Bias
UHAST	Unbiased HAST (Highly Accelerated Stress Test)
DMS	ST Advanced Documentation Controlled system/ Documentation Management System
BEOL	Back-End Of Line

6. REVISION HISTORY

Release	Author	Content description	Approval list			
			Function	Location	Name	date
1.0	Gabin BOSCO	Initial release	Div. Quality Manager	ROUSSET	Pascal NARCHE	2 nd October 2023
			BE Quality Manager	ROUSSET	Berengere ROUTIER-SCAPPUCCI	2 nd October 2023
2.0	Gabin BOSCO	M10 final results	Div. Quality Manager	ROUSSET	Pascal NARCHE	7 th May 2024
3.0	Gabin BOSCO	M40/E40 Crolles	BE Quality Manager	ROUSSET	Berengere ROUTIER-SCAPPUCCI	2 nd August 2024

TERMS OF USE

BY ACCEPTING THIS REPORT, YOU AGREE TO THE FOLLOWING TERMS OF USE:

This Reliability Evaluation Report (the "Report") and all information contained herein is the property of STMicroelectronics ("ST") and is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this Report solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this Report may not be used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this Report shall not be construed as an admission, acknowledgement or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not promise that this Report is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental, punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this Report. You further acknowledge and agree that the use of this Report in violation of these Terms of Use would cause immediate and irreparable harm to ST which could not adequately be remedied by damages. You therefore agree that injunctive relief is an appropriate remedy to enforce these Terms of Use.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement, including, without limitation, the warranty provisions thereunder.

In that respect please note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is granted by ST herein.

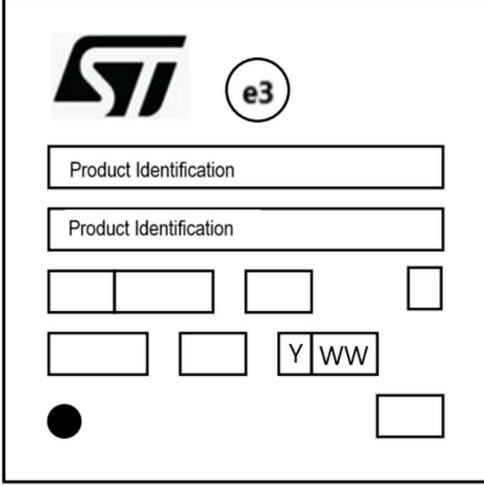
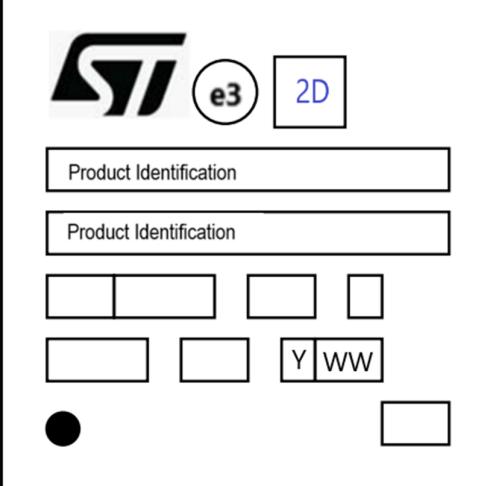
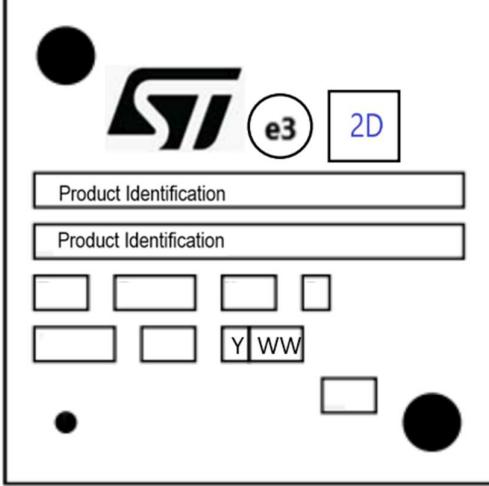
ST and ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously contained in any prior version of this document.

©2024 STMicroelectronics - All rights reserved

**PRODUCT/PROCESS
CHANGE NOTIFICATION
PCN14886 – Additional information**

**AMKOR ATP (Philippines) LQFP100 14x14 and LQFP144 20x20
package copper palladium bonding wire proliferation on
STM32H74x/75x and STM32H7Ax/H7Bx listed products.**

MDG – General Purpose Microcontrollers Division (GPM)




What are the changes?

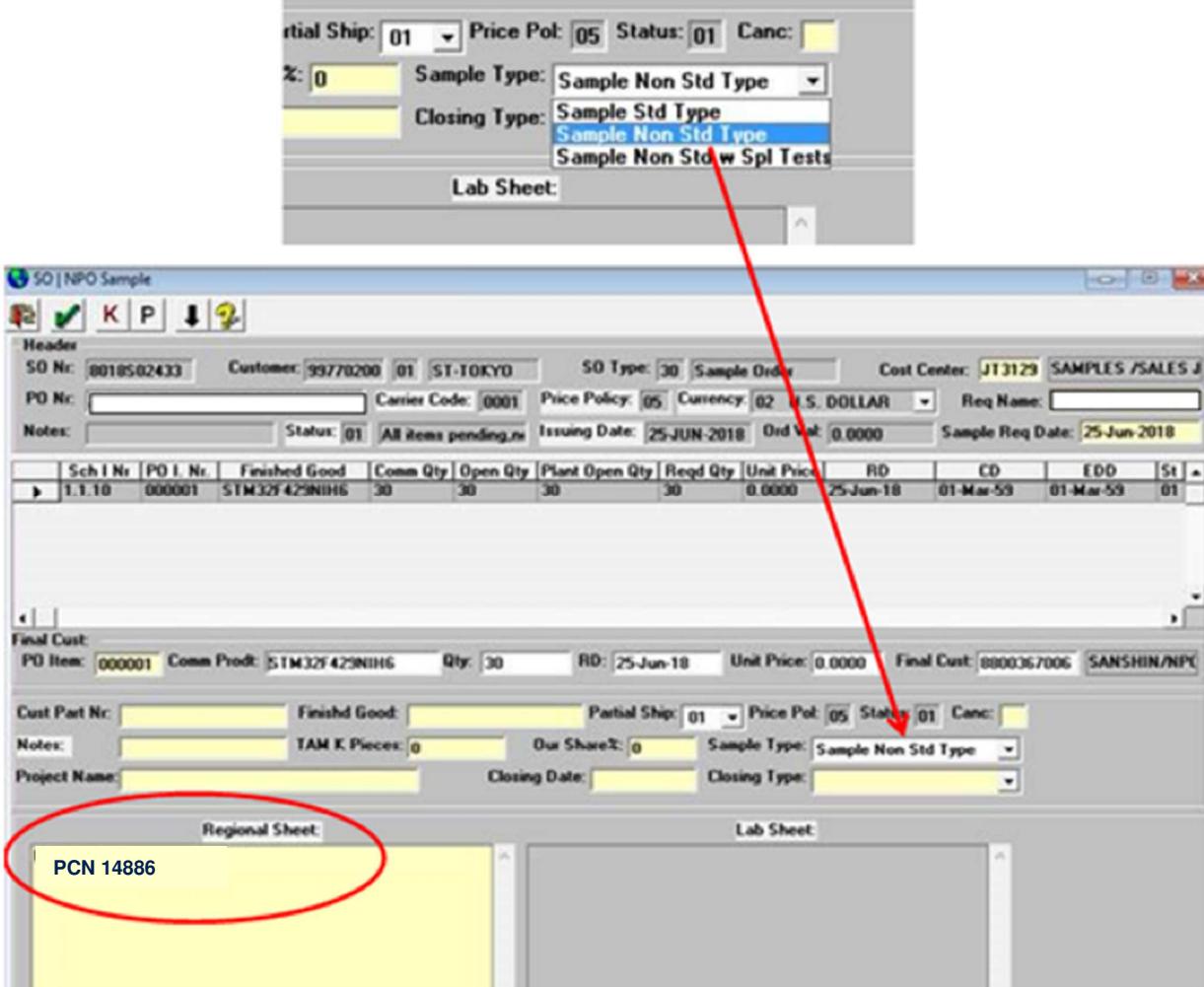
Proliferation of Palladium Copper Coated wire for LQFP14x14 100L and LQFP20x20 144L package to replace gold (Au) wire.

Changes described in table below:

	Existing back-end line		Added back-end line
	ASE KaoHsiung (Taiwan)	AMKOR ATP (Philippines)	
Assembly site			
Die Attach Material	Sumitomo CRM 1076WA	HITACHI EN4900G	Evertech AP4200 Ablestik 3230
Wire	Gold 0.8mil	CuPd 0.8mil	Gold 0.8mil CuPd 0.8mil
Marking composition	Without 2D	With 2D Marking	Without 2D With 2D Marking

How can the change be seen?

Package top view	Existing Marking	Added Marking
LQFP 100L 14x14		
LQFP 144L 20x20		


Codes already available on existing and added marking:

Y WW : Year Week (manufacturing date)

How to order samples?

For all samples request linked to this PCN, please:

- place a **Non-standard** sample order (choose Sample Non Std Type from pull down menu)
- insert the PCN number “**PCN14886**” into the NPO Electronic Sheet/**Regional Sheet**
- request sample(s) through Notice tool, indicating a single Commercial Product for each request

SO | NPO Sample

Header

SO Nr: 8010502433 Customer: 99770200 01 ST-TOKYO SO Type: 30 Sample Order Cost Center: J13129 SAMPLES /SALES J

PO Nr: Carrier Code: 0001 Price Policy: 05 Currency: 02 U.S. DOLLAR Req Name:

Notes: Status: 01 All Items pending.nv Issuing Date: 25-JUN-2018 Ord Val: 0.0000 Sample Req Date: 25-Jun-2018

Sch I Nr	PO I. Nr.	Finished Good	Comm Qty	Open Qty	Plant Open Qty	Reqd Qty	Unit Price	RD	CD	EDD	St
1.1.10	000001	STM32F429NIHS	30	30	30	30	0.0000	25-Jun-18	01-Mar-53	01-Mar-53	01

Final Cust:

PO Item: 000001 Comm Prod: STM32F429NIHS Qty: 30 RD: 25-Jun-18 Unit Price: 0.0000 Final Cust: 88000367006 SANSHIN/NPC

Cust Part Nr: Finished Good: Partial Ship: 01 Price Pol: 05 Status: 01 Canc:

Notes: TAM K. Pieces: 0 Our Share: 0 Sample Type: Sample Non Std Type

Project Name: Closing Date: Closing Type:

Regional Sheet: **PCN 14886**

Lab Sheet:

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics International NV and its affiliates ("ST") reserve the right to make changes corrections, enhancements, modifications, and improvements to ST products and/or to this document any time without notice. This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be construed as an admission, acknowledgement or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental, punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement, including, without limitation, the warranty provisions thereunder.

In that respect please note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously in any prior version of this document.

Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title : AMKOR ATP (Philippines) LQFP100 14x14 and LQFP144 20x20 Copper wire proliferation on STM32H74x/75x and STM32H7Ax/H7Bx listed products

PCN Reference : MICROCONTROLLERS/24/14886

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

STM32H750VBT6TR	STM32H743ZIT6	STM32H7B3VIT6
STM32H745ZIT6	STM32H742VIT6TR	STM32H742ZIT6
STM32H753VIT6	STM32H742ZGT6	STM32H7A3VIT6
STM32H743VGT6	STM32H7B0VBT6	STM32H742VGT6
STM32H745ZGT6	STM32H750VBT6	STM32H7A3ZIT6
STM32H7B3VIT6Q	STM32H755ZIT3	STM32H7A3ZGT6
STM32H7A3VGT6	STM32H7A3VGT6TR	STM32H743VIT6
STM32H743ZGT6	STM32H755ZIT6	STM32H753ZIT6
STM32H742VIT6	STM32H743VIT6TR	STM32H7A3VIT6Q
STM32H7B3ZIT6	STM32H7B0VBT6TR	STM32H742VGT6TR
STM32H750ZBT6	STM32H745ZIT3	STM32H7B3ZIT6Q
STM32H7A3ZIT6Q	STM32H7B0ZBT6	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved