

PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data

1.1 Company		STMicroelectronics International N.V
1.2 PCN No.		AMS/20/12147
1.3 Title of PCN		Introduction of a new Assembly and Test location (Subcontractor TSHT China) for products assembled in SOT23 5L package
1.4 Product Category		See product list
1.5 Issue date		2020-05-27

2. PCN Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Marcello SAN BIAGIO
2.1.2 Marketing Manager	Salvatore DI VINCENZO
2.1.3 Quality Manager	Giuseppe LISI

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
Transfer	Line transfer for a full process or process brick (process step, control plan, recipes) from one site to another site: Assembly site (SOP 2617)	Assembly and Test Plant : - Carsem (Malaysia) - TSHT (China)

4. Description of change

	Old	New
4.1 Description	Assembly and Test Plant : - Carsem (Malaysia)	Assembly and Test Plant : - Carsem (Malaysia) - TSHT (China)
4.2 Anticipated Impact on form,fit, function, quality, reliability or processability?	No impact	

5. Reason / motivation for change

5.1 Motivation	We released in 2017 the PCN 10331 and 10454 to announce the qualification of our subcontractor TSHT for the assembly of selected products in SOT23 5. This new PCN is just to enlarge the list of impacted products.
5.2 Customer Benefit	CAPACITY INCREASE

6. Marking of parts / traceability of change

6.1 Description	New Finished good codes
-----------------	-------------------------

7. Timing / schedule

7.1 Date of qualification results	2020-04-30
7.2 Intended start of delivery	2020-08-31
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation

8.1 Description	12147 standard-Sot23 TSHT additional lines_.pdf		
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2020-05-27

9. Attachments (additional documentations)

12147 Public product.pdf

12147 standard-Sot23 TSHT additional lines_.pdf

10. Affected parts

10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
LD2985BM25R	LD2985BM25R	
LD2985BM28R	LD2985BM28R	
LD2985BM30R	LD2985BM30R	
	LD2985BM31R	
LD2985BM33R	LD2985BM33R	
LD2985BM50R	LD2985BM50R	
	LDK220M-R	
	LDK220M25R	
	LDK220M27R	
	LDK220M30R	
	LDK220M32R	
	LDK220M33R	
	LDK220M36R	
	LDK220M40R	
	LDK220M50R	
	LDK320AM-R	
	LDK320AM120R	
	LDK320AM15R	
	LDK320AM25R	
	LDK320AM30R	
	LDK320AM33R	
	LDK320AM36R	
	LDK320AM50R	
	LDK320M-R	
	LDK320M18R	
	LDK320M30R	
	LDK320M33R	
	LDK320M50R	
LK112M15TR	LK112M15TR	
LK112M18TR	LK112M18TR	
LK112M25TR	LK112M25TR	
LK112M33TR	LK112M33TR	
LK112M50TR	LK112M50TR	
LK112M60TR	LK112M60TR	
LK112M80TR	LK112M80TR	
LK112SM18TR	LK112SM18TR	
LK112SM33TR	LK112SM33TR	
LK112SM50TR	LK112SM50TR	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title : Introduction of a new Assembly and Test location (Subcontractor TSHT China) for products assembled in SOT23 5L package

PCN Reference : AMS/20/12147

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

LK112M80TR	LDK320M25R	LDK320AM15R
LK112M33TR	LDK220M-R	LDK320AM36R
LD2985BM25R	LK112M15TR	LDK320AM50R
LD2985BM18R	LK112M60TR	LDK320M-R
LK112M25TR	LD2985BM28R	LDK220M33R
LK112SM50TR	LD2985BM33R	LK112SM18TR
LDK220M30R	LDK220M40R	LDK320AM30R
LD2985BM30R	LD2985BM50R	LD2985BM31R
LDK220M36R	LDK320AM25R	LDK320M18R
LK112SM33TR	LDK320AM120R	LDK320M30R
LDK320AM-R	LK112M18TR	LDK320M33R
LDK220M25R	LDK220M27R	LK112M50TR
LDK220M32R	LDK320AM33R	LDK320M50R
LDK220M50R		

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

**PRODUCT/PROCESS
CHANGE NOTIFICATION**

PCN AMS/20/12147

Analog, MEMS & Sensors (AMS)

**Introduction of a new Assembly and Test location
(TSHT China) for products assembled in SOT23 5L package**

WHAT:

Progressing on activities related to process modernization and quality improvement, ST is pleased to announce the introduction of TSHT/China as an added subcontractor for Assy and Test & Finishing activities for some products assembled in our SOT23 5L package. **We already released in July 2017 the PCN10331 and 10454 announcing this new plant.** This new PCN is just to enlarge the list of impacted products.

The list of test vehicles used for the validation is listed here below.

Commercial Product	Current Finished Good	Current Assy & TnF Plant	Added Finished Good	Added Assy & TnF Plant
LD2981CM33TR	LD2981CM33TR\$2V	Carsem	LD2981CM33TR\$1R	TSHT
LDK120M-R	LDK120M-R\$3V	Carsem	LDK120M-R\$1R	TSHT

Dedicated engineering trials and test vehicles have been defined to validate the change.

WHY:

The purpose of the introduction of TSHT for both Assy and Test & Finishing activities for the here above listed commercial products is to further improve the rationalization of our manufacturing assets and provide a better support to our customers by enhancing the manufacturing process for higher volume production.

HOW:

- The qualification is based on Test vehicle representatives by using internal ST rule for changes.

WHEN:

The transfer set will be implemented in Q2/2020 in TSHT.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets.

There is -as well- no change in the packing process or in the standard delivery quantities. Shipments may start earlier with the customer's written agreement.

Reliability Qualification plan

New Subcontractor

SOT23 in SC-Tianshui Huatian-China (TSHT)

TVs: LDK120 (UI69) & LD2981(KR33)

General Information		Locations	
Product Lines	UI69	Wafer fab	CTM8
Product Description	200 mA low quiescent current very low noise LDO	Assembly plant	<i>SC-Tianshui Huatian-China (TSHT)</i>
P/N	LDK120M-R\$4V		
Product Group	AMG (Analog & MEMS Group)		
Product division	General Purpose Analog & RF Division	Reliability Lab	<i>Catania Reliability LAB</i>
Package	POWER MANAGEMENT		
Silicon Process technology	SOT23 5L - 1.0mil Pd-Cu		
	BCD6S		

General Information		Locations	
Product Lines	KR33	Wafer fab	Singapore 6
Product Description	Very Low Drop VREG @ 100mA 3.3 V	Assembly plant	<i>SC-Tianshui Huatian-China (TSHT)</i>
P/N	LD2981ABM33TR\$3V		
Product Group	AMG (Analog & MEMS Group)		
Product division	General Purpose Analog & RF Division	Reliability Lab	<i>Catania Reliability LAB</i>
Package	POWER MANAGEMENT		
Silicon Process technology	SOT23 5L - 1.0mil Pd-Cu		
	BI20II		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	Jun-2017	7	Giuseppe Failla	Giovanni Presti	Final Report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS.....	9
2	GLOSSARY	9
3	RELIABILITY EVALUATION OVERVIEW	9
3.1	OBJECTIVES.....	9
3.2	CONCLUSION	9
4	DEVICE CHARACTERISTICS	10
4.1	DEVICE DESCRIPTION	10
4.2	CONSTRUCTION NOTE.....	11
5	TESTS PLAN SUMMARY	12
5.1	TEST PLAN AND RESULTS SUMMARY	12
6	ANNEXES	13
6.1	TESTS DESCRIPTION	13

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

To qualify the SOT23 in the subcontractor SC-Tianshui Huatian-China (TSHT)
In order to cover the FE/BE compatibility two TVs in different technologies have been chosen:

- TV1: LDK120M-R\$4V (UI69) diffused in BCD6S
- TV2: LD2981ABM33TR\$3V (KR33) diffused in BI20II.

BE Process

To be qualified

3 different Lots + 2 different BE CLs for each Test Vehicle are requested

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime

4 DEVICE CHARACTERISTICS

4.1 Device description

- ❖ The LDK120 low drop voltage regulator provides 200 mA of maximum current from an input supply voltage in the range of 1.9 V to 5.5 V, with a typical dropout voltage of 100 mV. It is stabilized with a ceramic capacitor on the output. The very low drop voltage, low quiescent current and low noise features make it suitable for low power battery powered applications. An enable logic control function puts the LDK120 in shutdown mode allowing a total current consumption lower than 1 μ A. The device also includes a short-circuit constant current limiting and thermal protection.
- ❖ The LD2981 is a 100 mA fixed-output voltage regulator. The low-drop voltage and the ultra low quiescent current make them suitable for low noise, low power applications and in battery powered systems. The quiescent current in sleep mode is less than 1 μ A when INHIBIT pin is pulled low. Shutdown logic control function is available on pin n° 3 (TTL compatible). This means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. The LD2981 is designed to work with low ESR ceramic capacitor. Typical applications are in cellular phone, palmtop/laptop computer, personal digital assistant (PDA), personal stereo, camcorder and camera.

4.2 Construction note

	LDK120M-R\$4V (UI69)	LD2981ABM33TR\$3V (KR33)
Wafer/Die fab. information		
Wafer fab manufacturing location	CT8	AMK6
Technology	BCD6S	BI20II
Die finishing back side	RAW SILICON	LAPPED SILICON
Die size	782 x 736 um	1470 x 990 um
Bond pad metallization layers	Ti/AlCu/TiNARC	AISi
Passivation type	TEOS/SiN/Polyimide	P-Vapox/Nitride/Polyimide(PIQ)
Assembly information		
Assembly site	SC-Tianshui Huatian-China (TSHT)	
Package description	SOT 23 5L	
Molding compound	Epoxy	
Frame	SOT235 A194 (52X72) -16P	
Die attach process	GLUE	
Wires bonding materials/diameters	1.0mil Pd Cu	
Lead finishing process	Pure Tin Plating Sn 100%	

5 TESTS PLAN SUMMARY

5.1 Test plan and results summary

TV1: LDK120M-R\$4V (UI69)

Test	PC	Std ref.	Conditions	Steps	SS				
					Lot 1	Lot 2	Lot 3	Lot 1-CL	Lot 1-CL
Die Oriented Tests (*)									
HTOL		JESD22 A-108	T _j = 125°C, V = V _{bias} +7V		168 H	0/77			
					500 H	0/77			
					1000 H	0/77			
HTSL		JESD22 A-103	T _a = 150°C		168 H	0/25	0/25	0/25	0/25
					500 H	0/25	0/25	0/25	0/25
					1000 H	0/25	0/25	0/25	0/25
Package Oriented Tests (*)									
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ T _a =85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times		Final	pass	pass	pass	pass
AC	Y	JESD22 A-102	Pa=2Atm / T _a =121°C		96 h	0/25	0/25	0/25	
TC	Y	JESD22 A-104	T _a = -65°C to 150°C		100cy	0/25	0/25	0/25	0/25
					200cy	0/25	0/25	0/25	0/25
					500 cy	0/25	0/25	0/25	0/25
THB	Y	JESD22 A-101	T _a = 85°C, RH = 85%, Bias +5,5V		168 H	0/25	0/25	0/25	
					500 H	0/25	0/25	0/25	
					1000 H	0/25	0/25	0/25	
Other Tests									
ESD		JESD22-C101	CDM		500V 750V corner pins	Pass			
CA			Construction Analysis			Pass			

Note (*) All samples have been assembled on dedicated PCB in agreement with JEDEC020 spec.

TV2: LD2981ABM33TR\$3V (KR33)

Test	PC	Std ref.	Conditions	Steps	SS				
					Lot 4	Lot 5	Lot 6	Lot 4-CL	Lot 4-CL
Die Oriented Tests									
HTOL		JESD22 A-108	T _j = 125°C, V = V _{bias} +20V		168 H	0/77			
					500 H	0/77			
					1000 H	0/77			
HTSL		JESD22 A-103	T _a = 150°C		168 H	0/25	0/25	0/25	0/25
					500 H	0/25	0/25	0/25	0/25
					1000 H	0/25	0/25	0/25	0/25
Package Oriented Tests									
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ T _a =85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times		Final	pass	pass	pass	pass
AC	Y	JESD22 A-102	Pa=2Atm / T _a =121°C		96 h	0/25	0/25	0/25	
TC	Y	JESD22 A-104	T _a = -65°C to 150°C		100cy	0/25	0/25	0/25	0/25
					200cy	0/25	0/25	0/25	0/25
					500 cy	0/25	0/25	0/25	0/25
THB	Y	JESD22 A-101	T _a = 85°C, RH = 85%, Bias +16V		168 H	0/25	0/25	0/25	
					500 H	0/25	0/25	0/25	
					1000 H	0/25	0/25	0/25	
Other Tests									
ESD		JESD22-C101	CDM		500V 750V corner pins	Pass			

Note:

6 ANNEXES

6.1 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTB High Temperature Bias		
HTRB High Temperature Reverse Bias	The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.
HTFB / HTGB High Temperature Forward (Gate) Bias		To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.

Test name	Description	Purpose
TF / IOL Thermal Fatigue / Intermittent Operating Life	The device is submitted to cycled temperature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.