

PRODUCT / PROCESS CHANGE NOTIFICATION	
---------------------------------------	--

1. PCN basic data	
-------------------	--

1.1 Company		STMicroelectronics International N.V
1.2 PCN No.		AMS/20/12004
1.3 Title of PCN		Power Management BU: Introduction of the HBIP40 technology for the LM317Lxx & LM217Lxx series (100mA) assembled in TO92 and SO-8 packages
1.4 Product Category		See product list
1.5 Issue date		2020-04-28

2. PCN Team	
-------------	--

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Marcello SAN BIAGIO
2.1.2 Marketing Manager	Salvatore DI VINCENZO
2.1.3 Quality Manager	Giuseppe LISI

3. Change		
-----------	--	--

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
General Product & Design	Die redesign: Mask or mask set change with new die design – Pad modification (sizes, vertical structure, metal thickness)	Front end location : ST Ang Mo Kio (Singapore)

4. Description of change		
--------------------------	--	--

	Old	New
4.1 Description	LAAT Technology	HBIP40 Technology
4.2 Anticipated Impact on form,fit, function, quality, reliability or processability?	No changes of the Electrical Characteristics and Quality.	

5. Reason / motivation for change	
-----------------------------------	--

5.1 Motivation	Following Divisional commitment towards a continuous improvement philosophy, a more fine geometry Bipolar technology has been qualified in ST called HBip40. As already done for the L78xx and L79xx series, ST is going to use this improved technology to redesign the LM317Lxx/LM217Lxx Linear Voltage Regulator series also. The HBM value has been updated according to the ST Specification on "Reliability Tests and Criteria for Qualifications". Electrical characteristics remain unchanged. Quality and Reliability parameters are still guaranteed at the same level as in the past.
5.2 Customer Benefit	SERVICE IMPROVEMENT

6. Marking of parts / traceability of change	
--	--

6.1 Description	The traceability of the new parts will be ensured by different internal codification and QA number
-----------------	--

7. Timing / schedule	
----------------------	--

7.1 Date of qualification results	2020-02-13
7.2 Intended start of delivery	2020-07-20
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation	
-------------------------------	--

8.1 Description	12004 W486-W901 19- Report Customer LM317L in TO92 and SO8 (HBIP40).pdf		
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2020-04-28

9. Attachments (additional documentations)

12004 Public product.pdf
12004 W486-W901 19- Report Customer LM317L in TO92 and SO8 (HBIP40).pdf

10. Affected parts

10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
LM217LD13TR	LM217LD13TR	
LM217LZ-TR	LM217LZ-TR	
LM317LD13TR	LM317LD13TR	
LM317LZ	LM317LZ	
LM317LZ-AP	LM317LZ-AP	
LM317LZ-TR	LM317LZ-TR	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

Public Products List

Public Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title : Power Management BU: Introduction of the HBIP40 technology for the LM317Lxx & LM217Lxx series (100mA) assembled in TO92 and SO-8 packages

PCN Reference : AMS/20/12004

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

LM317LZ	LM317LD13TR	LM317LZ-AP
LM217LD13TR	LM217LZ-TR	LM317LZ-TR

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

Reliability Evaluation Report

On Technology HBIP40

T.V.:

LM317LD13TR Pkg SO8 STS

LM317LZ-TRL Pkg TO92 ASE

Product Lines		Locations
Product Description	<i>AL1701</i> Low current 1.2 to 37 V adj Vreg <i>1.2 V to 37 V adjustable voltage regulators</i> <i>LM317LD13TR</i> <i>LM317Z-TRL</i> AMG GENERAL PURPOSE ANALOG & RF <i>-SO8 TO92</i> HBIP40	SINGAPORE Ang Mo Kio
P/N	Wafer fab	
Product Group	Assembly site	<i>Shenzhen / ASE</i>
Product division	Reliability Lab	Catania
Package	Reliability assessment	
Silicon Process technology		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	November 2019	6	Angelo Basile	Giuseppe Giacopello	Final Report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1 APPLICABLE AND REFERENCE DOCUMENTS	3
2 GLOSSARY	3
3 RELIABILITY EVALUATION OVERVIEW.....	3
3.1 OBJECTIVES	3
3.2 CONCLUSION	3
DEVICE CHARACTERISTICS	4
3.3 DEVICE DESCRIPTION	4
3.4 CONSTRUCTION NOTE	4
4 TESTS RESULTS SUMMARY	5
4.1 TEST VEHICLE	5
4.2 TEST PLAN AND RESULTS SUMMARY	5
4.3 TESTS DESCRIPTION	6

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Qualification New Product LM317LD13TR and the LM317LZ-TR in HBIP40 technology assembled in SO8 Shenzhen and TO92 ASE Subcontractor.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests has how that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime

The present reliability results are positive.

DEVICE CHARACTERISTICS

3.3 Device description

The LM217 LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for use as positive adjustable voltage regulators. They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range. The nominal output voltage is selected by means of a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators

3.4 Construction note

		P/N - LM317LZ-TR	P/N LM317LD13TR
Wafer/Die fab. information			
Wafer fab manufacturing location		SINGAPORE Ang Mo Kio	
Technology		HBiP40V	
Die finishing back side		Lapped silicon	
Die size	980x960 micron		980x960 micron
Passivation type	P-VAPOX/NITRIDE		
Wafer Testing (EWS) Information			
Electrical testing manuf.	Ang Mo Kio EWS		
Assembly information			
Assembly site	ASE		SHENZHEN
Package description	TO92		SO8
Molding Compound	EPOXY		
Die Attach Material	EPOXY		
Wires Bonding Mat.	WIRE Cu 1mils		

4 TESTS RESULTS SUMMARY

4.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Trace Code	Process/ Package	Product Line	Comments
1	V67209TN	GK8110M401	GK8110M4	SO8	AL1701	
2	V67209TN	A1936NUZ	GE936063	TO92	AL1701	

4.2 Test plan and results summary

Test		Std ref.	Conditions	SS	Steps	Failure/SS		Note
						Lot 1 SO8	Lot 2 TO92	
Die Oriented Tests								
HTOL	N	JESD22 A-108	Ta = 125°C, BIAS 40 V	77	168 h	0/77	0/77	
					500 h	0/77	0/77	
					1000 h	0/77	0/77	
HTSL	N	JESD22 A-103	Ta = 150°C	45	168 h	0/45		
					500 h	0/45		
					1000 h	0/45		
Package Oriented Tests								
PC		JESD22-A113	Drying 24 H @ 125°C Store 168h @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times		Final	Pass		
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C	77	168 h	0/77		
TC	Y	JESD22 A-104	Ta = -65°C to 150°C	77	100 cy	0/77		
					200 cy	0/77		
					500 cy	0/77		
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS 24V	77	168 h	0/77	0/77	
					500 h	0/77	0/77	
					1000 h	0/77	0/77	
Others Test								
ESD	N	ANSI / ESDA JEDEC JS-001	HBM	3	+- 1000V	Pass		
		ANSI/ESDA JEDEC JS002	CDM	3	+- 500V			

4.3 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL HighTemperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other Test		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. HBM: Human Body Model CDM: Charged Device Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.