

PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data

1.1 Company		STMicroelectronics International N.V
1.2 PCN No.		AMG/18/10669
1.3 Title of PCN		Qualification of ASE WeiHai for D2PAK package (GPA Division)
1.4 Product Category		See attached product list
1.5 Issue date		2018-02-14

2. PCN Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Lorenzo NASO
2.1.2 Marketing Manager	Marcello SAN BIAGIO
2.1.3 Quality Manager	Jean-Marc BUGNARD

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
Transfer	Line transfer for a full process or process brick (process step, control plan, recipes) from one site to another site: Assembly site (SOP 2617)	- ST Shenzhen - ASE WeiHai

4. Description of change

	Old	New
4.1 Description	Assembly, Test and Finishing : - ST Shenzhen	Assembly, Test and Finishing : - ST Shenzhen - ASE WeiHai
4.2 Anticipated Impact on form, fit, function, quality, reliability or processability?	No impact	

5. Reason / motivation for change

5.1 Motivation	The introduction of ASE WeiHai for both Assembly and Test & Finishing activities will allow us to rationalize our manufacturing assets and improve our manufacturing process for higher volume production in order to provide a better support to our customers.
5.2 Customer Benefit	CAPACITY INCREASE

6. Marking of parts / traceability of change

6.1 Description	New finished good code
-----------------	------------------------

7. Timing / schedule

7.1 Date of qualification results	2018-01-12
7.2 Intended start of delivery	2018-05-19
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation

8.1 Description	10669 399-W-17-Qualification Subcon D2pak package Cu wire in Ase WeiHai.pdf		
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2018-02-14

9. Attachments (additional documentations)

10669 Public product.pdf
10669 399-W-17-Qualification Subcon D2pak package Cu wire in Ase Weihai.pdf

10. Affected parts

10. 1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
L7805ABD2T-TR	L7805ABD2T-TR	
L7805CD2T-TR	L7805CD2T-TR	
LM317D2T-TR	LM317D2T-TR	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

Reliability Report

Subcon Qualification

TVs: L7805CD2T & LM317D2T

D2pak package Cu wire in Ase Weihai

General Information		Locations	
Product Lines	XL05	Wafer fab	Singapore 6
Product Description	POSITIVE VR 1.5A 5V	Assembly plant	ASE WEIHAI
P/N	<i>L7805CD2T-TR</i>	Reliability Lab	Catania Reliability LAB
Product Group	AMG	Reliability assessment	Pass
Product division	General Purpose Analog & RF POWER MANAGEMENT		
Package	D2PAK		
Silicon Process technology	<i>HBIP40V</i> Back metallization: Cr/Ni/Ag		
General Information			
Product Lines	L317		
Product Description	ADJ. POS. VR @ 1.5A		
P/N	<i>LM317D2T-TR</i>		
Product Group	AMG		
Product division	General Purpose Analog & RF POWER MANAGEMENT		
Package	D2PAK		
Silicon Process technology	<i>BIP (>6um)</i> Back metallization: Cr/Ni/Ag		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	February 2018	8	Giuseppe Giacopello	Giovanni Presti	Final Report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
2	GLOSSARY.....	3
3	RELIABILITY EVALUATION OVERVIEW.....	3
3.1	OBJECTIVES	3
3.2	CONCLUSION	3
4	DEVICE CHARACTERISTICS.....	4
4.1	DEVICE DESCRIPTION	4
4.2	CONSTRUCTION NOTE	5
5	TESTS RESULTS SUMMARY.....	6
5.1	TEST VEHICLE.....	6
5.2	TEST PLAN AND RESULTS SUMMARY.....	6
6	ANNEXES.....	7
6.1	DEVICE DETAILS.....	7
6.2	TESTS DESCRIPTION.....	8

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size
TV	Test Vehicle

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

To qualify the D2PAK in ASE Weihai.

FE

TV1: XL05 - Cr/Ni/Ag - HBIP40
TV2: L317 - Cr/Ni/Ag - BIP (>6um)

BE

D2PAK in ASE Weihai

3 cumulative different qualification Lots are requested

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description

LM317

1.2 V to 37 V adjustable voltage regulators

Description

DPAK

The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for use as positive adjustable voltage regulators. They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range. The nominal output voltage is selected by means of a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

L78

Positive voltage regulator ICs

Description

DPAK

The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D²PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

4.2 Construction note

	L317	XL05
Wafer/Die fab. information		
Wafer fab manufacturing location	AMK 6	AMK 6
Technology	BiP > 6um	HBIP40
Die finishing back side	Cr/Ni/Ag	Cr/Ni/Ag
Die size	2,410, 1,920 micron	1,320, 1,630 micron
Passivation type	SiN (nitride)	P-VAPOX/NITRIDE
Wafer Testing (EWS) information		
Electrical testing manufacturing location	Ang Mo Kio EWS	Ang Mo Kio EWS
Tester	ETS300	ETS300
Test program	L317QAE01	LX05B6D01
Assembly information		
Assembly site	ASE Weihai	ASE Weihai
Package description	D2PACK	D2PACK
Mold Compound	Epoxy	Epoxy
Frame material	TO263 IDF Dual Gage Bar	TO263 IDF Dual Gage Bar
Die attach material	Soft solder	Soft solder
Wires bonding materials/diameters	2mil Cu wire	2mil Cu wire
Final testing information		
Testing location	ASE Weihai	ASE Weihai
Tester	AZ400S	AZ400S
Test program	L317_LM317D2T_V1.0_ASE	XL05_L7805CD_V1.0_ASEW

5 TESTS RESULTS SUMMARY

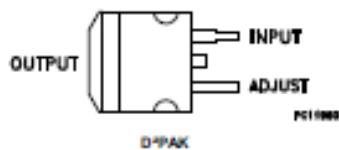
5.1 Test vehicle

Lot #	Package	Product Line	Part number
1	D2PAK	L31701	LM317D2T-TR
2		XL0501	L7805CD2T-TR
3		L31701	LM317D2T-TR

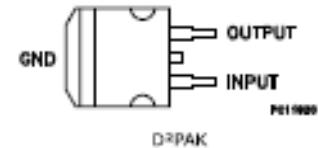
5.2 Test plan and results summary

 P/N: **LM317D2T-TR**

 P/N: **L7805CD2T-TR**

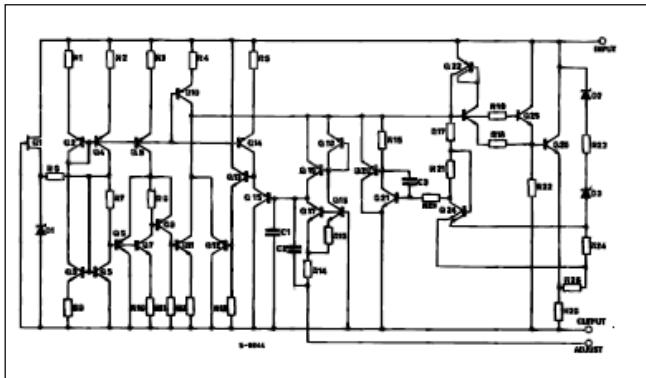

Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS			Note
						Lot 1	Lot 2	Lot 3	
Die Oriented Tests									
HTOL	N	JESD22 A-108	T _j = 125° C, BIAS= 40 V	77	168 h	0/ 77			
					500 h	0/ 77			
					1000 h	0/ 77			
HTOL	N	JESD22 A-108	T _j = 125° C, BIAS= 35 V	77	168 h		0/ 77		
					500 h		0/ 77		
					1000 h		0/ 77		
HTSL	N	JESD22 A-103	Ta= 150° C	75	168 h	0/ 25	0/ 25	0/ 25	
					500 h	0/ 25	0/ 25	0/ 25	
					1000 h	0/ 25	0/ 25	0/ 25	
Package Oriented Tests									
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=245°C 3 times			Final	Final	Final	
AC	Y	JESD22 A-102	Pa=2 Atm / Ta= 121° C	75	96 h	0/ 25	0/ 25	0/ 25	
TC	Y	JESD22 A-104	Ta= - 65° C to 150° C	75	100 cy	0/ 25	0/ 25	0/ 25	
					200 cy	0/ 25	0/ 25	0/ 25	
					500 cy	0/ 25	0/ 25	0/ 25	
THB	Y	JESD22 A-101	Ta= 85° C, RH= 85%, BIAS= 24 V	75	168 h	0/ 25	0/ 25	0/ 25	
					500 h	0/ 25	0/ 25	0/ 25	
					1000 h	0/ 25	0/ 25	0/ 25	
Other Tests									
ESD	N	JESD22 C101	CDM	3	500 V	Pass	Pass		
				3	250 V	Pass	Pass		
CA	N		Construction Analysis			Pass	Pass		

6 ANNEXES

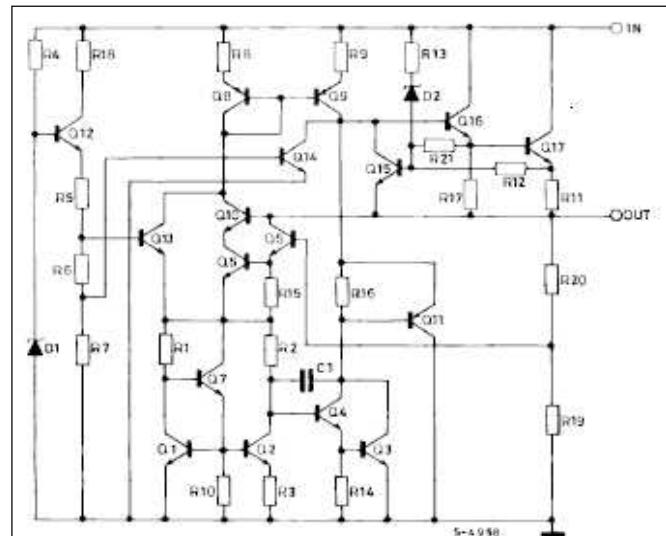

6.1 Device details

6.1.1 Pin configuration

Pin connection (top view D2PAK for LM317)



Pin connection (top view D2PAK for L78)



6.1.2 Block diagram

Schematic diagram for LM317

Schematic diagram for L78

6.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
CA Construction Analysis	Construction Analysis	To verify the physical product conformity