

PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data

1.1 Company		STMicroelectronics International N.V
1.2 PCN No.		ADG/17/10607
1.3 Title of PCN		DPAK IGBT and IGBT+Diode Assembly Capacity Expansion - Tongfu Microelectronics (China)
1.4 Product Category		IGBT
1.5 Issue date		2017-12-07

2. PCN Team

2.1 Contact supplier	
2.1.1 Name	ROBERTSON HEATHER
2.1.2 Phone	+1 8475853058
2.1.3 Email	heather.robertson@st.com
2.2 Change responsibility	
2.2.1 Product Manager	Maurizio GIUDICE
2.1.2 Marketing Manager	Anna MOTTESE
2.1.3 Quality Manager	Vincenzo MILITANO

3. Change

3.1 Category	3.2 Type of change	3.3 Manufacturing Location
Materials	New direct material part number (same supplier, different supplier or new supplier), Lead frame base material	Tongfu Microelectronics (China)

4. Description of change

	Old	New
4.1 Description	Selected DPAK IGBTs were manufactured in Shenzhen (China)	Selected DPAK IGBTs will be manufactured also in Tongfu Microelectronics (China)
4.2 Anticipated Impact on form,fit, function, quality, reliability or processability?	no impact	

5. Reason / motivation for change

5.1 Motivation	Improve service to Customers
5.2 Customer Benefit	SERVICE IMPROVEMENT

6. Marking of parts / traceability of change

6.1 Description	by "GF" as first digits of the trace code, internal code (Finished Good) and Q.A. number
-----------------	--

7. Timing / schedule

7.1 Date of qualification results	2017-12-04
7.2 Intended start of delivery	2018-03-11
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation

8.1 Description	10607 Rel07-17.pdf	
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date 2017-12-07

9. Attachments (additional documentations)

10607 Public product.pdf

10607 DPAK IGBT and IGBT+Diode Assembly Capacity Expansion - TFME.pdf

10607 Rel07-17.pdf

10607 Comparison.pdf

10. Affected parts

10.1 Current		10.2 New (if applicable)
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No
	STGD14NC60KT4	
	STGD4M65DF2	
	STGD5H60DF	
STGD5NB120S2T4	STGD5NB120S2T4	
	STGD6M65DF2	
	STGD6NC60HDT4	
STGD7NB60ST4	STGD7NB60ST4	
STGD7NC60HT4	STGD7NC60HT4	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

Reliability Report Plan

*DPAK IGBT and IGBT+Diode Assembly Capacity Expansion
in Tongfu Microelectronics (China)
INDUSTRIAL*

General Information		Locations	
Product Lines:	IGBT EI6201 - Diode F62B IGBT IV6201 - Diode F62I IGBT IV6401	Wafer Fab and EWS Plant:	<i>IGBT: Catania (Italy) Diode: Tours (France)</i>
P/N:	STGD5H60DFSF STGD6NC60HDT4 STGD7NC60HT4	Assembly and testing plant:	<i>Tongfu Microelectronics (China)</i>
Product Group:	ADG	Reliability Lab:	<i>ADG - Catania Reliability Lab.</i>
Product division:	Power Transistor Division		
Package:	DPAK		
Silicon Process techn.:	IGBT Planar IGBT Trench		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	November 2017	8	A. Settinieri	C. Cappello	First issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
2	GLOSSARY	3
3	RELIABILITY EVALUATION OVERVIEW	3
3.1	OBJECTIVES	3
3.2	CONCLUSION	3
4	DEVICE CHARACTERISTICS	4
4.1	DEVICE DESCRIPTION	4
4.2	CONSTRUCTION NOTE	4
5	TESTS RESULTS SUMMARY	5
5.1	TEST VEHICLES	5
5.2	RELIABILITY TEST PLAN SUMMARY	5
6	ANNEXES 6.0	7
6.1	TESTS DESCRIPTION	7

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size
HF	Halogen Free

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

To qualify DPAK IGBT and IGBT+Diode assembled in TONGFU Microelectronics (China)

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. Reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description

IGBT Planar / IGBT Trench

4.2 Construction note

D.U.T.: STGD5H60DFSF

PACKAGE: DPAK

Wafer/Die Information	
Technology	IGBT Trench - Diode
Wafer Fab	IGBT Catania (Italy) - Diode Tours (France)
Die finishing back side	IGBT Al/Ti/NiV/Ag
Die size	IGBT: 2510 x 1950 μm^2 / Diode: 1100 x 1100 μm^2
Metal	IGBT AlCu
Passivation type	GBT SiN (nitride)

Assembly/Testing information	
Assembly site	Tongfu Microelectronics (China)
Package description	DPAK
Molding compound	HF Epoxy Resin
Frame material	Raw Copper
Die attach material	Soft Solder UMICORE Pb/Sn/Ag
Wire bonding process	Ultra Thermosonic
Wires bonding materials	Gate: Al (5mils) Source: Al (15mils)
Lead finishing/bump solder material	Pure Tin

D.U.T.: STGD6NC60HDT4

PACKAGE: DPAK

Wafer/Die Information	
Technology	IGBT Planar - Diode
Wafer Fab	IGBT Catania (Italy) - Diode Tours (France)
Die finishing back side	IGBT Cr/Ni/Ag
Die size	IGBT 1690 x 2620 μm^2 / Diode: 1100 x 1100 μm^2
Metal	IGBT AISi
Passivation type	IGBT SiN (nitride)

Assembly/Testing information	
Assembly site	Tongfu Microelectronics (China)
Package description	DPAK
Molding compound	HF Epoxy Resin
Frame material	Raw Copper
Die attach material	Soft Solder UMICORE Pb/Sn/Ag
Wire bonding process	Ultra Thermosonic
Wires bonding materials	Gate: Al (5mils) Source: Al (5mils)
Lead finishing/bump solder material	Pure Tin

D.U.T.: STGD7NC60HT4

PACKAGE: DPAK

Wafer/Die Information	
Technology	IGBT Planar
Wafer Fab	IGBT Catania (Italy)
Die finishing back side	IGBT Cr/Ni/Ag
Die size	IGBT 3500 x 2880 μm^2
Metal	IGBT AISi
Passivation type	IGBT SiN (nitride)

Assembly/Testing information	
Assembly site	Tongfu Microelectronics (China)
Package description	DPAK
Molding compound	HF Epoxy Resin
Frame material	Raw Copper
Die attach material	Soft Solder UMICORE Pb/Sn/Ag
Wire bonding process	Ultra Thermosonic
Wires bonding materials	Gate: Al (5mils) Source: Al (10mils)
Lead finishing/bump solder material	Pure Tin

5 TESTS RESULTS SUMMARY

5.1 Test vehicles

Lot	Part Number	Silicon Lines	Package	Wafer Fab	Assy Plant	Comments
1	STGD5H60DFSF	EI62	DPAK	Catania (Italy)	Tongfu Microelectronics (China)	
2	STGD6NC60HDT4	IV62				
3	STGD7NC60HT4	IV64				

5.2 Reliability test plan summary

#	Stress (Abrv)	P C	Std ref.	Conditions	Sample Size (S.S.)	Steps	Failure/SS				
							Lot 1	Lot 2	Lot 3		
1	TEST		User specification	All qualification parts tested per the requirements of the appropriate device specification.			0/190	0/190	0/190		
2	External visual		JESD22 B-101	All devices submitted for testing			0/190	0/190	0/190		
Silicon Oriented Test											
3	HTRB	N	JESD22 A-108	T _j = 150°C ; BIAS = 480V	45 x lot	1000H	04/2018	04/2018	04/2018		
4	HTGB	N	JESD22 A-108	T _j =150°C ; BIAS= 25V	45 x lot	1000H	04/2018	04/2018	04/2018		
Package Oriented Test											
5	Pre-conditioning		JESD22 A-113	Dryng 24H @ 125°C Store 168H @ TA=85°C RH=85% IR Reflow @ 260°C 3 times	All devices to be subjected to H3TRB, TC, AC	Final	04/2018	04/2018	04/2018		
6	TC	Y	JESD22 A-104	TA=-65°C TO 150°C 1 HOURS / CYCLE	25 x lot	500cy	04/2018	04/2018	04/2018		
7	AC	Y	JESD22 A-102	TA=121°C ; PA=2ATM	25 x lot	96H	04/2018	04/2018	04/2018		

8	H3TRB	Y	JESD22 A-101	TA=85°C ; RH=85% BIAS=80V	25 x lot	1000H	04/2018	04/2018	04/2018
9	IOL	N	MIL-STD-750 Method 1037	ΔT _j ≥105°C	25 x lot	10Kcy	04/2018	04/2018	04/2018
10	ESD		ESDA- JEDEC_JES- 001 ANSI-ESD S5.3.1	CDM / HBM	3 x lot		04/2018	04/2018	04/2018
11	Physical Dimension		JESD22 B-100		30 x lot		0/30	0/30	0/30
12	Solderability		J-STD-002		10 x lot		0/10	0/10	0/10
13	Terminal Strength		MIL-STD-750 Method 2036		30		0/30	0/30	0/30
14	Bond Shear		JESD22 B-116		10 bonds from min of 5 devices		0/5	0/5	0/5
15	Resistance to Solder Heat		JESD22 A-111		12		0/12	0/12	0/12

6 ANNEXES 6.0

6.1 Tests Description

Test name	Description	Purpose
HTRB High Temperature Reverse Bias	The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.
HTGB / HTFB High Temperature Forward (Gate) Bias		To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
IOL / TF Intermittent Operating Life	The device is submitted to cycled temperature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
H3TRB/THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.