

Product/Process Change Notice - PCN 21_0198 Rev. -

Analog Devices, Inc. One Analog Way, Wilmington, MA 01887

This notice is to inform you of a change that will be made to certain ADI products (see Appendix A) that you may have purchased in the last 2 years. **Any inquiries or requests with this PCN (additional data or samples) must be sent to ADI within 30 days of publication date.** ADI contact information is listed below.

PCN Title: LTC2980 Datasheet Limit Change

Publication Date: 02-Sep-2021

Effectivity Date: 05-Dec-2021 *(the earliest date that a customer could expect to receive changed material)*

Revision Description:

Initial Release

Description Of Change:

Please be advised that Analog Devices has made minor changes to the LTC2980 product datasheet to facilitate improvement in manufacturing capability. The changes are shown on the attached page of the marked-up datasheet.

Electrical Characteristics table changes (page 4 of datasheet):

Full-Scale Output Voltage VFS_VDACP (DAC Code = 0x3FF, DAC Polarity = 1, Buffer Gain Setting_0) from 1.32 – 1.44V to 1.29 – 1.44V.

Full-Scale Output Voltage VFS_VDACP (DAC Code = 0x3FF, DAC Polarity = 1, Buffer Gain Setting_1) from 2.53 – 2.77V to 2.48 – 2.77V.

Integral Nonlinearity INL_VDACP removal of temperature range dot from specification.

Reason For Change:

To facilitate improvement in manufacturing capability.

Impact of the change (positive or negative) on fit, form, function & reliability:

This datasheet change does not impact the fit, form, function, or reliability of the LTC2980.

Product Identification *(this section will describe how to identify the changed material)*

The new silicon can be identified with date code and lot traceability identification.

Summary of Supporting Information:

Changes will be reflected on the new product datasheet. See changes on Electrical Characteristics table on page 4.

Comments

Changes will be reflected on the new product datasheet. See changes on Electrical Characteristics table on page 4.

Supporting Documents

Attachment 1: Type: Datasheet Specification Comparison

ADI_PCN_21_0198_Rev_-LTC2980_Marked-up_Datasheet.pdf

For questions on this PCN, please send an email to the regional contacts below or contact your local ADI sales representatives.

Americas:
PCN_Americas@analog.com

Europe:
PCN_Europe@analog.com

Japan:
PCN_Japan@analog.com

Rest of Asia:
PCN_ROA@analog.com

Appendix A - Affected ADI Models

Added Parts On This Revision - Product Family / Model Number (3)

LTC2980/LTC2980IY#PBF

LTC2980/LTC2980CY#PBF

LTC2980/LTC2980IY#PBF

[] [] []

Appendix B - Revision History

Rev	Publish Date	Effectivity Date	Rev Description
Rev. -	02-Sep-2021	05-Dec-2021	Initial Release

Analog Devices, Inc.

DocId:8649 Parent DocId:None Layout Rev:8

ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_J = 25^\circ\text{C}$. $V_{\text{PWR}} = V_{\text{IN_SNS}} = 12\text{V}$, V_{DD33} , V_{DD25} and REF pins floating, unless otherwise indicated. (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text{UPDATE_ADC}}$	Update Time	Odd Numbered Channels in Current Sense Mode (Note 7)		160		ms
$C_{\text{IN_ADC}}$	Input Sampling Capacitance			1		pF
$f_{\text{IN_ADC}}$	Input Sampling Frequency			62.5		kHz
$I_{\text{IN_ADC}}$	Input Leakage Current	$V_{\text{IN_ADC}} = 0\text{V}$, $0\text{V} \leq V_{\text{COMMONMODE}} \leq 6\text{V}$, Current Sense Mode	●		± 0.5	μA
	Differential Input Current	$V_{\text{IN_ADC}} = 0.17\text{V}$, Current Sense Mode	●	80	250	nA
		$V_{\text{IN_ADC}} = 6\text{V}$, Voltage Sense Mode	●	10	15	μA

DAC Output Characteristics

$N_{\text{V}_{\text{DACP}}}$	Resolution		1.29		10	Bits		
$V_{\text{FS_VDACP}}$	Full-Scale Output Voltage (Programmable)	DAC Code = 0x3FF DAC Polarity = 1	Buffer Gain Setting_0 Buffer Gain Setting_1	● ●	1.32 2.53	1.38 2.65	1.44 2.77	V V
$\text{INL}_{\text{V}_{\text{DACP}}}$	Integral Nonlinearity	(Note 8)		✗	2.48	± 2	LSB	
$\text{DNL}_{\text{V}_{\text{DACP}}}$	Differential Nonlinearity	(Note 8)		●		± 2.4	LSB	
$V_{\text{OS_VDACP}}$	Offset Voltage	(Note 8)		●		± 10	mV	
V_{DACP}	Load Regulation ($V_{\text{DACP}_n} - V_{\text{DACM}_n}$)	$V_{\text{DACP}_n} = 2.65\text{V}$, I_{VDACP_n} Sourcing = 2mA			100	ppm/mA		
		$V_{\text{DACP}_n} = 0.1\text{V}$, I_{VDACP_n} Sinking = 2mA			100	ppm/mA		
	PSRR ($V_{\text{DACP}_n} - V_{\text{DACM}_n}$)	DC: $3.13\text{V} \leq V_{\text{DD33}} \leq 3.47\text{V}$, $V_{\text{PWR}} = V_{\text{DD33}}$			60	dB		
		100mV Step in 20ns with 50pF Load			40	dB		
	DC CMRR ($V_{\text{DACP}_n} - V_{\text{DACM}_n}$)	$-0.1\text{V} \leq V_{\text{DACM}_n} \leq 0.1\text{V}$			60	dB		
	Leakage Current	V_{DACP_n} Hi-Z, $0\text{V} \leq V_{\text{DACP}_n} \leq 6\text{V}$	●		± 100	nA		
	Short-Circuit Current Low	V_{DACP_n} Shorted to GND	●	-10	-4	mA		
	Short-Circuit Current High	V_{DACP_n} Shorted to V_{DD33}	●	4	10	mA		
C_{OUT}	Output Capacitance	V_{DACP_n} Hi-Z			10	pF		
$t_{\text{s_VDACP}}$	DAC Output Update Rate	Fast Servo Mode			500	μs		

DAC Soft-Connect Comparator Characteristics

$V_{\text{OS_CMP}}$	Offset Voltage	$V_{\text{DACP}_n} = 0.2\text{V}$	●	± 1	± 18	mV
		$V_{\text{DACP}_n} = 1.3\text{V}$	●	± 2	± 26	mV
		$V_{\text{DACP}_n} = 2.65\text{V}$	●	± 3	± 52	mV

Voltage Supervisor Characteristics

$V_{\text{IN_VS}}$	Input Voltage Range (Programmable)	$V_{\text{IN_VS}} = (V_{\text{SENSEP}_n} - V_{\text{SENSEM}_n})$	Low Resolution Mode	●	0	6	V
		Single-Ended Voltage: V_{SENSEM_n}	High Resolution Mode	●	0	3.8	
N_{VS}	Voltage Sensing Resolution	0V to 3.8V Range: High Resolution Mode		●	-0.1	0.1	V
		0V to 6V Range: Low Resolution Mode			4	8	
$T_{\text{UE_VS}}$	Total Unadjusted Error	2V $\leq V_{\text{IN_VS}} \leq 6\text{V}$, Low Resolution Mode		●		± 1.25	% of Reading
		1.5V $< V_{\text{IN_VS}} \leq 3.8\text{V}$, High Resolution Mode		●		± 1.0	
		0.8V $\leq V_{\text{IN_VS}} \leq 1.5\text{V}$, High Resolution Mode		●		± 1.5	
$t_{\text{s_vs}}$	Update Period				12.21		μs