

LMP91000 Evaluation Board User Guide (551600558-001 REV A)

The LMP91000 evalboard (LMP91000SDEVAL) can be used as stand-alone or as part of SensorAFE eval platform (refer to SensorAFE platform http://www.national.com/sensorAFE for software and required hardware). It allows configuring the LMP91000 through the I²C interface and testing the device with real gas sensors (3-lead amperometric cells and 2-lead galvanic cells).

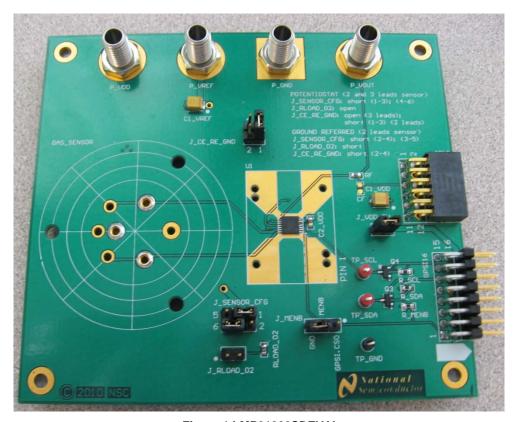


Figure 1 LMP91000SDEVAL

1. Gas sensor connection

The LMP91000 evalboard is not provided with any gas sensor. It supports 3-lead electrochemical cells and 2-lead galvanic cell. Before connecting the gas sensor configure the jumpers according to the tables below.

3-lead amperometric cell (Toxic gas sensor)

Jumper name	Configuration
J_SENSOR_CFG	4-6 shorted; 1-3 shorted
J_RLOAD_02	open
J CE RE GND	open

2-lead galvanic cell ground referred (O2 gas sensor)

Do not connect any supply voltage at P_VREF plug.

Jumper name	Configuration
J_SENSOR_CFG	2-4 shorted; 3-5 shorted
J_RLOAD_O2	1-2 shorted
J_CE_RE_GND	2-4 shorted

2-lead galvanic cell in potentiostat configuration (O2 gas sensor)

Jumper name	Configuration
J_SENSOR_CFG	4-6 shorted; 1-3 shorted
J_RLOAD_02	open
J_CE_RE_GND	1-3 shorted

2. Stand alone usage

2.1 JUMPERS

In order to use the LMP91000SDEVAL in standalone mode, the following jumpers need to be configured as follow:

Jumper name	Configuration
J_VDD	open
J_MENB	GND – MENB shorted

The I2C bus is already provided with 10kohm pull-up resistors and level shift circuit which allows supplying the LMP91000 at a voltage higher or equal to the I2C's external microcontroller (*refers to Schematic*). Connect the external microcontroller to GPSI16 as the pin out below.

SCL	Pin12
SDA	Pin 11
V_pull-up	Pin 13 (Max 5.25V)
GND	Pin 2

2.2 POWER SUPPLY

Connect a supply voltage (2.7V to 5.25V) between P_VDD and GND banana plugs.

2.3 VOLTAGE REFERENCE

If the LMP91000 is configured in order to receive an external voltage reference, connect a supply voltage or reference source (1.5V ≤VREF≤ Supply Voltage) between P_VREF and GND banana plugs.

2.4 CONFIGURATION OF THE LMP91000

Before configuring the LMP91000, be sure that the jumpers have been configured according the previous tables, the gas sensor is connected to the board, the power supplies are connected to the board and they are powered on, the microcontroller for I2C is connected to the board. The registers in the LMP91000 are configured thorough the I²C interface, refers to the Datasheet of the LMP91000 for timing information and registers' address.

3. Using as part of Sensor AFE evaluation platform

3.1 EVALBOARDS CONNECTION

In this case the LMP91000SDEVAL is part of the evaluation platform (LMP91000SDEVAL + ADC161S626BEB + SPIO4 board), the 3 boards need to be connected as follow:

- LMP91000SDEVAL to ADC161S626BEB through the AB12 and GPSI16 connectors (note the white arrow on the boards to align the boards);
- ADC161S626BEB to SPIO4 though the SPIO-GPSI16 connector (note the white arrow on the boards to align the boards);

Then the SPIO4 needs to be connected to a PC via USB cable

Figure 2 Sensor AFE evaluation platform

3.2 JUMPERS

In order to use the LMP91000SDEVAL in the evaluation platform the following jumpers need to be configured as follow:

Jumper name	Configuration
J_VDD	P_VDD - GPSI_5V shorted
J_MENB	MENB - GPSI.CS0 shorted

On the ADC161S626BEB make sure to configure the jumpers as follow

Jumper name	Configuration
VREF_SELECT	VREF - ON BOARD REF shorted
VIO_SELECT	VDDIO - VA shorted
VA_SELECT	+5V - VA shorted

3.3 POWER SUPPLY

All the required power supplies are provided by the SPIO4 board once connected to a PC via USB cable. Do not connect any supply voltage to the P_VDD banana connector. This connector can be used as a monitor of the Voltage reference.

3.4 VOLTAGE REFERENCE

If the LMP91000 is configured in order to receive an external voltage reference:

- Connect a supply voltage or reference source (1.5V ≤VREF≤ Supply Voltage) between P_VREF and GND banana plugs.
- Or alternatively is possible to use the voltage reference (4.096V) provided by the ADC161S626BEB. Do not connect any supply voltage to the P_VREF banana connector. This connector can be used as a monitor of the Voltage reference.

3.5 CONFIGURATION OF THE LMP91000

Refer to LMP91000 Sensor AFE User Guide for further information.

4. Connectors, Jumpers, Test Point

4.1 POWER SUPPLY

P_VDD	banana plug for the positive power supply of the LMP91000 and pull-up resistor of I ² C.
P_GND	banana plug for ground connection.

4.2 SIGNAL CONNECTORS

Reference Signals

- tto to	
P_VREF	banana plug for internal zero voltage generation, only when the LMP91000 is
	configured to receive an external reference

Output signals

P_OUT	Banana plug for the ground referred output of the LMP91000.

4.3 JUMPERS

The evalboard has 5 jumpers

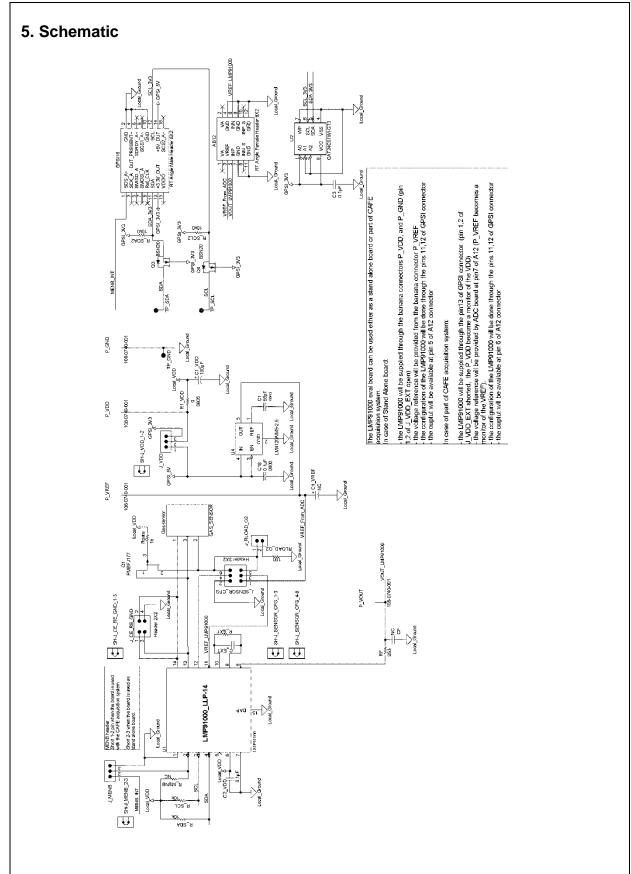
J_CE_RE_GND	It is a 4pin header which allows either shorting CE (Counter Electrode) with RE (Reference Electrode) or CE with GND.
J_SENSOR_CFG	It is a 6pin header which multiplexes the gas sensor leads to the LMP91000 input pins according to the connected sensor and circuit topology.
J_RLOAD_O2	It is a simple jumper which connects the load resistor to a galvanic cell (like O2 gas sensor)
J_MENB	It is a 3 pin header which configures the Module Enable of the LMP91000 either manual or controlled by external microcontroller.
J_VDD	It is a 3 pin header which selects the supply voltage when the evalboard is connected to the USI2 or SPIO4 boards.

4.4 TEST POINTS

The test points are connected as follows.

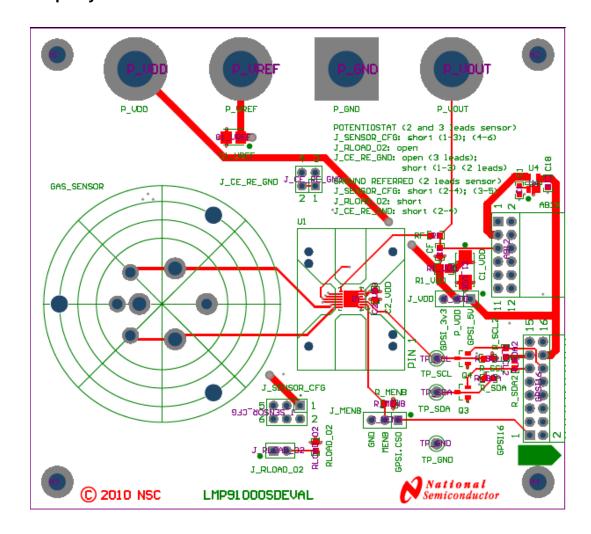
TP_SCL	CLOCK of I ² C
TP_SDA	DATA of I ² C
TP_GND	Ground

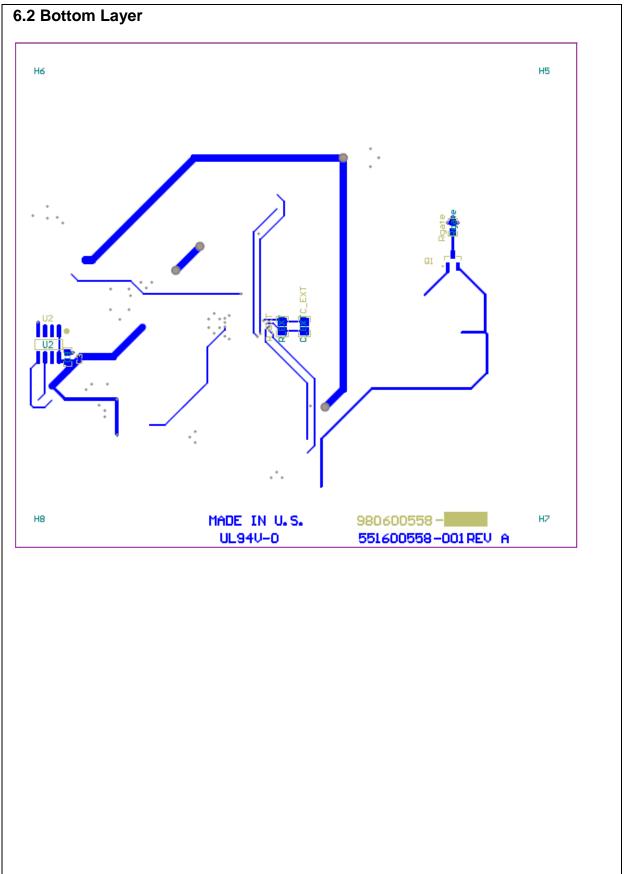
4.5 SPECIAL CONNECTORS

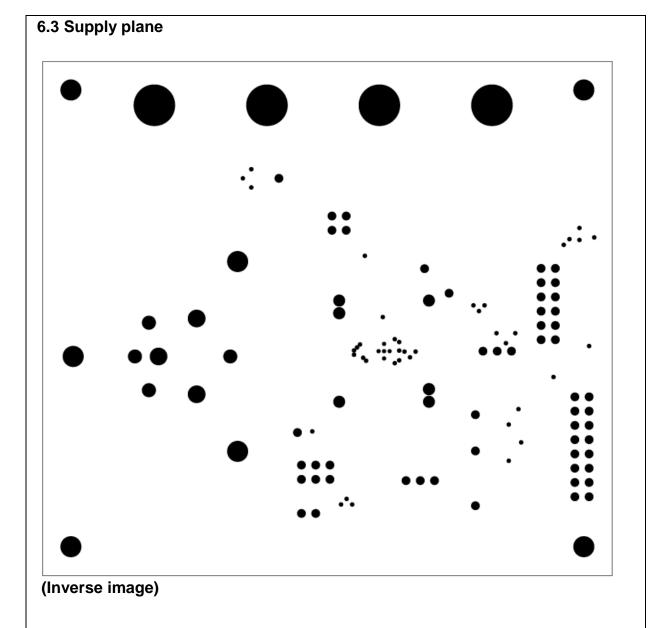

For NSC's data capture boards

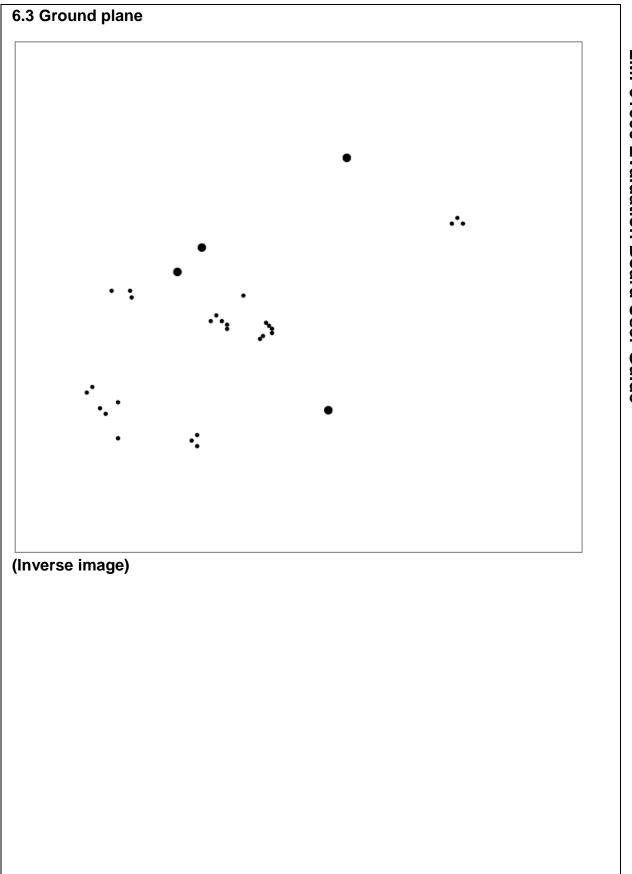
AB12	12 pin female for SPIO4 and ADC1x1S626 boards interface
GPSI16	16 pin header for USI2, SPIO4 and ADC1x1S626 boards interface

4.6 OTHER COMPONENTS


The evalboard is already populated with a JFET (Q1) which shorts the RE and WE pin of the Gas sensor when the supply voltage is removed from the board. It allows leaving connected not biased gas sensor to the evalboard also when the board is not powered.


Moreover if an external filter (capacitance) or external gain at the TIA stage is needed, the board is provided with two footprints to solder 0805 SMT capacitance and resistor.




6. Board Layout

6.1 Top Layer

7. BOM

Item	Designator	Description	Manufacturer	Part Number	Quantity
			Sullins		
		RT Angle Female Header 6X2			
	1 AB12	TIN	Solutions	PPTC062LJBN-RC	1
	Board Foot1,				
	Board Foot2,				
	Board Foot3,	BUMPON HEMISPHERE			
	2 Board Foot4	.44X.20 BLACK	3M	SJ-5003 (BLACK)	4
		CAP, TANT, 100uF, 10V, +/-			
	3C1_VDD		AVX	TPSC107K010R0100	1
		CAP, CERM, 0.1uF, 16V, +/-			
4	4 C2_VDD, C3	5%, X7R, 0603	AVX	0603YC104JAT2A	2
		SPIO-GPSI16 Header, 8-Pin,			
ţ	5GPSI16	Dual row, Right Angle	Tyco Electronics	9-146309-0	1
		Header, TH, 100mil, 2x2, Gold			
		plated, 230 mil above			
(6J_CE_RE_GND	insulator	Samtec Inc.	TSW-102-07-G-D	1
		Header, TH, 100mil, 1x3, Gold			
		plated, 230 mil above			
-	7 J_MENB, J_VDD	I	Samtec Inc.	TSW-103-07-G-S	2
	. 0	Header, TH, 100mil, 1x2, Gold		1011 100 01 0 0	_
		plated, 230 mil above			
9	BJ_RLOAD_02	insulator	Samtec Inc.	TSW-102-07-G-S	1
•	DD_NLOAD_02	Header, TH, 100mil, 3x2, Gold		1377-102-07-9-3	1
	9 J SENSOR CFG	plated, 230 mil above insulator	Comtoo Inc	TCW 102 07 C D	1
			Samtec Inc.	TSW-103-07-G-D	l l
4.	P_GND, P_VDD,	Standard Banana Jack,	Johnson	100 0740 004	
10	P_VOUT, P_VREF		Components	108-0740-001	4
		P-channel Silicon Junction			
1.	1 Q1	Field-effect Transistor	NXP Semi.	PMBFJ177,215	1
		N-channel Enhancement			
12	2 Q3, Q4		NXP Semi.	BSN20,215	2
		RES, 0 ohm, 5%, 0.125W,			
1	3R1_VDD	0805	Vishay-Dale	CRCW08050000Z0EA	1
		RES, 953 ohm, 0.5%, 0.1W,			
14	4RF	0603	Yageo America	RT0603DRE07953RL	1
		RES, 1.00k ohm, 1%, 0.1W,			
15	5 Rgate	0603	Vishay-Dale	CRCW06031K00FKEA	1
		RES, 100 ohm, 0.5%, 0.1W,			
16	6RLOAD_O2	0603	Yageo America	RT0603DRE07100RL	1
	R_SCL, R_SCL2,	RES, 10k ohm, 5%, 0.1W,			
17	7 R_SDA, R_SDA2		Vishay-Dale	CRCW060310K0JNEA	4
		Solder mount socket, for .059	,		
	lead gas sensor		WEARNES		
15	8 holder	pins	CAMBION	450-3326-01-03-00	3
	9 U1	LMP91000	NSC	LMP91000SD	1
13	1	IC EEPROM 2KBIT 400KHZ	1100	LIVII 310000D	
20	0U2		ON Semi	CAT24C01WI-GT3	1
20	002	8TSSOP Precision Micropower Low	ON Seill	UN124001VVI-G13	NP
~	4		NCC	L NA4400 A INA5 O 5	I NP
	1 U4	Dropout Voltage Reference	NSC	LM4120AIM5-2.5	NID
	2 C1	1			NP
23	3 C18				NP
	C_EXT, CF,				NP
	4R_EXT				
2	5R_MENB				NP
	6C1_VREF				NP

BY USING THIS PRODUCT, YOU ARE AGREEING TO BE BOUND BY THE TERMS AND CONDITIONS OF NATIONAL SEMICONDUCTOR'S END USER LICENSE AGREEMENT. DO NOT USE THIS PRODUCT UNTIL YOU HAVE READ AND AGREED TO THE TERMS AND CONDITIONS OF THAT AGREEMENT. IF YOU DO NOT AGREE WITH THEM, CONTACT THE VENDOR WITHIN TEN (10) DAYS OF RECEIPT FOR INSTRUCTIONS ON RETURN OF THE UNUSED PRODUCT FOR A REFUND OF THE PURCHASE PRICE PAID, IF ANY.

The LMP91000SDEVAL Evaluation Board is intended for product evaluation purposes only and is not intended for resale to end consumers, is not authorized for such use and is not designed for compliance with European EMC Directive 89/336/EEC, or for compliance with any other electromagnetic compatibility requirements.

National Semiconductor Corporation does not assume any responsibility for use of any circuitry or software supplied or described. No circuit patent licenses are implied.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor	National	
Americas	Fax: +49 (0) 1 80-530 85 86	Asia Pacific Customer	Semiconductor	
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Response Group	Japan Ltd.	
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 699508 6208	Tel: 65-2544466	Tel: 81-3-5639-7560	
Email: support@nsc.com	English Tel: +49 (0) 870 24 0 2171	Fax: 65-2504466	Fax: 81-3-5639-7507	
	French Tel: +49 (0) 141 91 8790	Email:sea.support@nsc.com		
www.national.com				

National does not assume any responsibility for any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specification.