
Feature article

Reference: EM018

Energy debugging – the next step in MCU software
optimisation

Knowing where your application is consuming resources is a
crucial step in minimising energy usage

Øyvind Janbu, Chief Technology Officer, Energy Micro

Almost all applications running on microcontrollers today need to be far more
aware of how they consume the precious resources available to them, in terms
of memory, clock cycles and perhaps most importantly, energy. And while
engineers may instinctively know how much power or energy an application
should consume, it is only through closer examination that instincts are borne
out. Typically, the examination is in the form of a simple current measurement
averaged over a given time and then extrapolated to deduce a total lifetime
expectancy for, say, a single battery cell.

With much greater emphasis now on configurable and programmable solutions,
most typically in the form of a microcontroller, a larger proportion of the energy
consumed can be directly attributed to the activity of the processing core and its
many peripherals, which is the main reason why the semiconductor industry is
now seeing a significant increase in the availability of ‘ultra low-power’
microcontroller solutions.

Traditionally, 8-bit or 16-bit devices have been used in the most energy
sensitive applications because their cores are small, have relatively few gates
and produce low levels of leakage current. Applications today however demand
far more processing capability than the 8-or 16-bit cores can muster.

It has generally been assumed that the current drawn by a 32-bit core in its
power down mode must simply be too great for energy sensitive applications.
This today is a misconception. By harnessing the full range of low power
design techniques now available, 32-bit cores can be implemented that offer
low power modes as good as or better than 8-bit alternatives.

Energy Micro’s EFM32 Gecko microcontroller is a new breed of energy friendly
devices single-mindedly developed to minimise the product of current and time
(i.e. the real energy) over all phases of MCU operation. Simply illustrated in

 2

Figure 1, compared to smaller processor cores, such an ARM Cortex™-M3
based device will finish a task quicker, enabling it to spend more time in low
power modes, thereby lowering the average power consumption even further.

Illustrated in Figure 2, the Gecko has proved capable of consuming a quarter of
the energy required by alternative 8-bit, 16-bit or 32-bit solutions. This
performance is achieved in no small measure through a combination of a low
energy peripheral set, a peripheral reflex system (enabling peripherals to
function autonomously of the core), five distinct and graded low energy modes
and very fast wake-up times.

In achieving the lowest possible energy consumption in a target application,
what simply cannot be overlooked however is the crucial role application source
code has to play. Source code needs to be engineered to make best use of low
energy peripherals and best use of low energy modes if battery cell lifetime is to
be maximised to the very fullest extent.

As source code bases grow in size of course it becomes increasingly difficult to
identify, for example, while-loops that should be replaced with an interrupt
service routine: a simple code oversight that could cause the processor to
remain fully active while waiting for an external event instead of going into an
energy saving sleep mode.

This kind of pseudo-random event can easily be missed when examining the
code or testing under ideal conditions, and is difficult to capture during soak
test. Similarly, identifying sections of code that consume a disproportionate
amount of energy may be impossible to identify from a pure code listing alone,
even for the most experienced engineer.

While a multimeter reading or oscilloscope trace may produce an average level
of energy consumption over a given time it cannot identify the current
consumed by specific events. Likewise, a logic analyser can display when and
how many times a particular routine is executed but it cannot correlate that with
power surges.

Through the use of innovative technology, Energy Micro has overcome these
limitations by developing a solution that provides not only the level of
instantaneous energy being used but also correlates that information with the
actual code being executed at the time.

The energyAware Profiler is an ‘energy debugging’ tool for the PC that makes
use of the dedicated Advanced Energy Monitoring (AEM) system present on
existing EFM32 Gecko development kits. While the AEM is capable of
displaying the application’s real-time current consumption on the development
kits’ on-board LCD display, as shown in Figure 3, the real power of energy
debugging is realised when the Profiler software is used.

The software runs under Windows and interfaces with the development kit via
its USB interface. Basic data transferred from the development kit allows the
PC to display a real-time energy profile of the application code running on the
target MCU.

 3

A default configuration displays energy levels over time, allowing an engineer to
identify specific areas of concern where the energy used is perhaps higher than
expected. Extrapolating this over time can also give a more accurate indication
of life expectancy for a battery-powered application, than estimates based on
best- and worse-case figures in a datasheet.

When used with the energyAware Profiler, the AEM system uses an ARM-
based serial interface to collect additional information from the application. The
data passed to it is decoded by the AEM system’s hardware which is then
passed on to the PC. The non-intrusive nature of this activity means that the
energy profile of the target isn’t altered by it in any way.

The additional data includes important debug information, including the
Program Counter, which allows the energyAware Profiler to identify the actual
source code being executed at a given moment in time as shown on the energy
graph. This instantly gives the engineer a pointer to any part of the program
that causes high energy consumption, allowing the code to be optimised to
lower the overall energy usage. This is illustrated in Figure 4.

The graph represents energy usage by the width and height of the trace;
magnitude against time. It follows therefore that isolated peaks – which would
be easily identified using an oscilloscope to monitor the power supply’s current
– may not actually warrant further investigation, while long periods of relatively
little activity could in fact represent idle loops that could be easily replaced with
an interrupt-driven event, which would allow the device to enter an energy-
saving sleep mode in the interim.

By seeing this information graphically represented and instantly correlated to
the source code, the engineer is quickly able to identify, dismiss and prioritise
specific routines within a program that could represent unnecessary energy
usage. This can easily translate into an order of magnitude lower energy
consumed and, therefore, a much more efficient application.

It is commonplace for engineering teams to refer to datasheets when
establishing the nominal power for a device or application. However as
intimated earlier, energy and power are simply not the same; many low power
devices use more energy because they are active over a long period of time.
For this reason, the time axis for power management cannot be ignored but is
rarely accessible in a reliable way.

Clearly in this scenario the software’s profile is crucial. Unfortunately most
software engineers aren’t aware of the extent to which code can be overtly
‘energy efficient’. This is not a criticism, it is an observation; software isn’t seen
as inherently resource hungry beyond the conventional terms of clock cycles
and memory. However, today every clock cycle used is power spent and
minimising that is a key challenge for engineers developing ultra-low energy
applications.

Furthermore while minimising clock cycles directly relates to less energy used,
optimising exactly when the clock cycles are used also gives a better overall

 4

energy profile. It is clear, therefore, that a functionally correct program isn’t
necessarily optimised for energy efficiency by design.

The energyAware Profiler technology developed for the EFM32 Gecko MCU
has a dynamic range from 100nA to 50mA, and fine-tuning of the application
should be carried out at the same time as the functional debugging to maximise
the results from the development time.

Energy debugging and software profiling is becoming more crucial in ultra-low
power applications and technologies. While the EFM32 Gecko MCU is an
inherently low power technology, maintaining lower energy usage is intrinsically
linked to the application’s performance over time. This makes it transient and
subject to application-specific conditions and as such it is difficult to simulate.
While a datasheet may give an engineer a good idea of the amount of power a
device uses under given conditions, it isn’t until the application is actually
running that the datasheet figures are really tested.

With experience and enough time, engineers would be able to develop code
that is functionally correct and energy-optimised, but with the help of
energyAware Profiler that time and expertise is reduced significantly, making it
accessible to all engineering teams whatever their time pressures. The use of
low power technology, coupled with an energy profiling solution, means
engineering teams are now better equipped to tackle the challenge of designing
truly low energy solutions.

Figure captions:

Figure 1: An energy friendly MCU core saves power in several distinct areas
over a complete wake/operate/return-to-sleep cycle. The blue area indicates
the energy saved by a more capable 32-bit core completing a task in fewer
cycles than an 8-bit core would require and consuming less current in both
active and sleep modes.

Figure 2: Chip architecture for Energy Micro’s ARM® Cortex™-M3 based
EFM32 Gecko microcontroller.

Figure 3: Development kit for the energy friendly EFM32 Gecko microcontroller
complete with Advanced Energy Monitoring.

Figure 4: energyAware Profiler provides three simultaneous views; a graph of
real-time application current consumption, an object code listing and an energy
profile of individual application functions.

About the author:

Øyvind Janbu co-founded Energy Micro in 2007 and has been the company's
CTO since its inception. He has more than 12 years semiconductor industry
experience, covering research, development and management. Øyvind
previously held key positions with Chipcon, working on digital and analog
design, embedded microcontroller design and ZigBee software. He was a

 5

contributing editor for the IEEE 802.15.4-2006 wireless PAN standard and holds
an MSEE from NTNU in Trondheim, Norway.

For further information and reader enquiries:

Øyvind Borgan, Energy Micro AS, PO Box 4633, Nydalen, N-405 Oslo, Norway

Tel: +47 23 00 98 00 o.borgan@energymicro.com
Fax: +47 23 00 98 01 www.energymicro.com

For further information or to discuss feature article opportunities:

Rob Davies, Publitek Limited, 18 Brock Street, Bath, BA1 2LW, United Kingdom

Tel: +44 (0)1225 470 000 rob.davies@publitek.com
Fax: +44 (0)1225 470 047 www.publitek.com

About Energy Micro
Energy Micro develops, markets and sells the world's most energy friendly microcontrollers,
based on the industry leading ARM® Cortex™-M3 32-bit architecture. The company was
founded in 2007 by experienced semiconductor professionals with previous expertise from
Chipcon, Texas Instruments, Atmel and Nordic Semiconductor. More information on Energy
Micro is available at www.energymicro.com

http://www.publitek.com/
http://www.energymicro.com/

	Feature article
	Energy debugging – the next step in MCU software optimisation Knowing where your application is consuming resources is a crucial step in minimising energy usage

