
/IntelRealSense

/IntelRealSense

intel.com/RealSense
intel.com/RealSense/SDK

SDK Design Guidelines
version 2

https://www.facebook.com/IntelRealSense

http://www.intel.com/realsense

http://www.intel.com/realsense/SDK

https://twitter.com/IntelRealSense

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or
death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF
EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or
other countries.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
Intel and Intel RealSense are trademarks of Intel Corporation in the U.S. and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright© 2014, Intel Corporation. All rights reserved.

Contents

35 Face
Face Detection
Head Orientation
Landmark Tracking
Facial Expressions
Emotion Recognition
Avatar Control
Use Cases
Best Practices

44 Speech
Speech Recognition

Command Mode
Dictation Mode

Speech Synthesis
Best Practices

50 Background Removal
Background Removal
Use Cases
Best Practices

54 Object Tracking
Object Tracking

57 Samples

04 Introduction
 Welcome

Intel RealSense SDK Architecture
Camera Specs
Capture Volumes

10 Overview
Input Modalities
High-Level Design Principles

14 Hands
Contour Mode
Skeleton Tracking
Gesture Recognition

Gestures
Common Actions
Supported Hand Positions

Best Practices
Designing Gesture Interactions
How to Minimize Fatigue

Visual Feedback
General Principles
User/World Interactions
Action/Object Interactions
Cursor Interactions

Intel® RealSense™ technology will change
how you interact- not simply with your
devices, but with the world around you.
You'll work and play like never before,
because your devices can see, hear, and
feel you.

Welcome!
Imagine new ways of navigating the
world with more senses and sensors
integrated into the computing
platforms of the future. Give your users
a new, natural, engaging way to
experience your applications. At Intel
we are excited to provide the tools as
the foundation for this journey with the
Intel® RealSense™ SDK—and look
forward to seeing what you come up
with.

Over the new few months, you will be
able to incorporate new capabilities
into your applications including
close-range hand tracking, speech
recognition, face tracking, background
segmentation, and object tracking, to
fundamentally change how people
interact with their devices and the
world around them.

Introduction

04

Applications that integrate the Intel RealSense SDK sit on a few layers of SDK components. The base of the
components is the SDK core. One of its jobs is to manage the two types of modules: input/output modules and
capability modules, representing different input modalities. These modules provide the SDK functionalities to your
application.

The I/O modules capture input data from your device and send that data to an output device or to the capability
modules. The capability modules include various pattern detection and recognition algorithms, like face tracking and
recognition, hand tracking, gesture recognition, and voice recognition and synthesis.

Another job the SDK core performs is organizing the execution pipeline. It is possible to have multiple modules
contained within the pipeline at the same time, so it is essential that the pipeline have a manager. If you want to use
more than one camera or other input device in your application, you may require multiple pipelines, each with its own
manager.

Intel RealSense SDK Architecture

SDK Application SDK Samples/Demos/Tools

SDK Interfaces

SDK Core
Module Management
Pipeline Execution
Interoperability

C# Interface Unity Interface Processing Interface Java* Interface ...

I/O
Module

Capability
Module

Multiple Modalities M
ul

tip
le

 Im
pl

em
en

ta
tio

ns

Capability
Module

052014 Intel® RealSense™ SDK Design Guidelines | Introduction | SDK Architecture

Hardware and Software Requirements and Supported Tools

Additional SDK Features

Required Hardware

Required OS Microsoft Windows* 8.1 OS (64-bit) Desktop Mode
Microsoft Windows 8.1 New UI (Metro) Mode (coming soon)**

Supported Programming Languages C++, C#, Java*, JavaScript

Supported IDE Microsoft Visual Studio* C++ 2010-2013 with service pack 1 or newer

Supported Development Optional Tools Microsoft .NET* 4.0 Framework for C# development
Unity* PRO 4.1.0 or later for Unity game development
Processing* 2.1.2 or later for Processing framework development
Java JDK 1.7.0_11 or higher for Java development

A system with a minimum of a 4th generation Intel® Core™ processor,
either IA-32 or Intel® 64, with integrated or peripheral depth camera

* Other names and brands may be claimed as the property of others.
** Roadmap notice: All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Input Device Management

Multi-mode Support

Power Management State

Extensible Framework

Privacy Notification Tool

Easily share camera between applications

Support multiple usage modes within single app (e.g., finger
tracking + speech + face tracking) or between apps

Manage battery life

Plug in your own algorithms, add in new usage modes, and
support new devices

Notify user when camera is turned on by an app

062014 Intel® RealSense™ SDK Design Guidelines | Introduction | Features and Requirements

Camera Specs
Color Camera Depth (IR) Camera

Resolution

Active Pixels

Up to 640x480@60FPS (VGA), HVGA@120FPS.
Up to 640x480@120FPS (IR)

Up to 1080p@30FPS (FHD)

640 x 480 (VGA)1920x1080 (2M)

Aspect Ratio
4:3

Frame Rate
30/60/120FPS* (Depth), 120FPS (IR)

16:9

30/60/120FPS*

Field of View (DxVxH)
90° x 59° x 73° (Cone)
IR Projector FOV- N/A x 56° x 72° (Pyramid)

77° x 43° x 70° (Cone)

Color Formats
N/AYUV4:2:2 (Skype/Lync Modes**)

Depth Data Types
Depth, Texture Mapping,
Infrared, World Mapping

N/A

*F
ra

m
e

ra
te

 d
ep

en
de

nt
 o

n
re

so
lu

tio
n

**
 R

an
ge

 a
nd

 a
cc

ur
ac

y
m

ay
 v

ar
y

ba
se

d
on

 ta
rg

et
ed

 s
of

tw
ar

e
us

ag
e

Imaging Component Overview

Effective Range for Gestures HVGA mode: 20–55cm
VGA mode: 20–60cm

Effective Range for Face Tracking 2D Facial tracking: 35-120cm
3D Facial tracking: 35-70cm

Effective Range 0.2m-1.2m

Environment
Indoor/Outdoor
(Depending on Conditions)

SoC Color Camera

IR Laser Projector

IR depth camera

Green LED

USB3 Imaging ASIC

Alignment Hole

Alignment Hole

072014 Intel® RealSense™ SDK Design Guidelines | Introduction | Camera Specs

The capture volume of a depth-sensing camera is visualized as a frustum defined by near and far planes and a field of
view (FOV). Capture volume constraints limit the practical range of motion of the user and the physical space within
which users can interact successfully. You must make sure to be aware of, and make your users aware of, the available
interaction zone. Enthusiastic users can inadvertently move outside of the capture volume, so the feedback you
provide must take these situations into account.

Capture Volumes

The user is performing a hand gesture inside the camera’s capture volume. The user is performing a hand gesture outside of the capture volume. The
camera will not see this gesture.

082014 Intel® RealSense™ SDK Design Guidelines | Introduction | Capture Volumes

Short Range: 20-55cm (HVGA, 120FPS) Long Range: 20-60cm (VGA, 60FPS)

For slower hand movements
Hand skeleton motions up to .75m/s

Single hand 2 hands

Each of the effective ranges cater to specific interactions:

Contour mode blob tracking works up to 1m/s for up to 2 blobs in VGA mode from 20-85cm, and up to 2m/s in HVGA
mode from 20-75cm. 3D face tracking works best in the 35-70cm range, while 2D face tracking works from 35-120cm,

For slow and fast hand movements
Hand skeleton motion up to 2m/s

MIN 20cm

HVGA mode: 20–55cm

VGA mode: 20–60cm

MAX 120cm

There are 2 different effective ranges for skeleton tracking that your user can interact within: either short range 20-55cm
(HVGA, 120FPS), or long range 20-60cm (VGA, 60FPS). You can choose which range to operate in, and can switch
between them within or between apps as appropriate. Long range sees more of the hands and other objects but it runs
at a lower frame rate and won't capture fine-scale or fast motions. Use short range to capture those. Fast interactions
will be more common in action and first person shooter games, while most navigational interactions can be slower. .

Integrated Depth Camera

092014 Intel® RealSense™ SDK Design Guidelines | Introduction | Integrated Depth Camera

The new Intel® RealSense™ technology offers amazing opportunities to completely redefine how we interact with
our computing devices. To design a successful app for this platform, you must understand its strengths. Make sure
to take advantage of combining different input modalities. This will make it a more exciting and natural experience
for the user, and can minimize fatigue of the hands, fingers, or voice.

Design in such a way that extending to different modalities and combinations of modalities is easy. Also keep in mind
that some of your users may prefer certain modalities over others, or have differing abilities. Regardless of the input
method used, it is always critical to study and evaluate how users actually engage with their devices and then to build
the interface in support of those natural movements. Here’s a quick rundown of some traditional and RealSense
modalities, and what each is best used for:

Input Modalities

Overview

Hands. Mid-air hand
gestures allow for very rich
and engaging interaction
with 2D or 3D objects. They
also allow easier, more literal
direct manipulation. How-
ever, mid-air gesture can be
tiring over long periods, and
precision is limited.

Keyboard. Allows for quick
and accurate text entry for
adults, when voice cannot be
used. Keyboard shortcuts
can be quick escapes, but
are not intuitive.

Speech. Human language is
a powerful and compelling
means of expression. Voice
is also useful when a user is
not within range of a
computer’s other sensors.
Environmental noise and
social appropriateness
should be considered.

Mouse. The best modality
for the accurate indication of
a 2D point. Large-scale
screen movements can be
made with small mouse
movements.

Touch. Very concrete and
easy to understand, with the
additional benefit of having
tactile feedback to touch
events and fairly good
precision. However, touch is
limited to 2D interaction. It is
not as flexible as mid-air
gesture.

Face. The best modality for
sensing natural expression,
emotion, and engagement.
Precision is limited, and
there is large variability of
expressions across ages,
cultures, and personalities.

10

In
te

l®
 R

ea
lS

en
se

™e
na

bl
ed

 In
pu

ts
O

th
er

 c
om

m
on

 in
pu

ts

2014 Intel® RealSense™ SDK Design Guidelines | Overview Chapter

Designing and implementing applications for the platform with Intel RealSense technology requires a very different
mindset than designing for traditional platforms, such as Windows* or Mac* OS X, or even new platforms like iOS* or
Android*. When designing your app, you’ll want your interactions to be:

Designed to strengths. Mid-air gesture input is very different from mouse input or touch input. Each modality has its
strengths and weaknesses—use each when appropriate.

Reality-inspired, but not a clone of reality. You should draw inspiration from the real world. Intel RealSense builds off of
our natural skills used in every-day life. Every day we use our hands to pick up and manipulate objects and our voices
to communicate. Leverage these natural human capabilities. However, do not slavishly imitate reality. In a virtual
environment, we can relax the rules of the physical world to make interaction easier. For example, it is very difficult for
users to precisely wrap their virtual fingers around a virtual object in order to pick it up. With the Intel RealSense SDK, it
may be easier for users to perform a grasp action within a short proximity of a virtual object in order to pick it up.

Literal, not abstract. Visual cues and interaction styles built from real-world equivalents are easier to understand than
abstract symbolic alternatives. Also, symbolism can vary by geography and culture, and doesn’t necessarily translate.
Literal design metaphors, such as switches and knobs, are culturally universal.

Intuitive. Your application should be approachable and immediately usable. Visual cues should be built in to guide the
user. Voice input commands should be based around natural language usage, and your app should be flexible and
tolerant in interpreting input.

Consistent. Users should perform similar operations in different parts of your application in similar ways. Where
guidelines for interaction exist, as described in this document, you should follow them. Consistency across applications
in the Intel RealSense ecosystem builds understanding and trust in the user.

High-Level Design Principles

112014 Intel® RealSense™ SDK Design Guidelines | Overview Chapter | Design Principles

Extensible. Keep future SDK enhancements in mind. Unlike mouse interfaces, the power, robustness, and flexibility of
platforms with Intel RealSense will improve over time. How will your app function in the future when sensing of hand
poses improves dramatically? How about when understanding natural language improves? Design your app such that
it can be improved as technology improves and new senses are integrated together.

Reliable and Recoverable. It only takes a small number of false positives to discourage a user from your application.
Focus on simplicity where possible to minimize errors. Forgive your users when they make errors, and find ways to help
users recover gracefully. For example, if a user’s hand goes out of the field of view of the camera, make sure that your
application doesn’t crash or do something completely unexpected. Intelligently handle such types of situations and
provide feedback.

Contextually appropriate. Are you designing a game? A medical application? A corporate content-sharing application?
Make sure that the interactions you provide match the context. For example, users expect to have more fun
interactions in a game, but may want more straightforward interactions in a more serious context. Pay attention to
modalities (e.g., don’t rely on voice in a noisy environment).

Comfortable. Make sure using the application does not require hand positions or other physical activity that is
obviously awkward, painful, or extremely tiring.

Designed with the user in mind. Take user-centered design seriously. Make sure you know who your audience is before
choosing the users you work with. Not all users will perform the actions the same ways, or want the same experience.
Your intended users need to test even the best-designed applications. Don’t do this right before you plan to launch
your application or product. Unexpected issues will come up and require you to redesign your application. Iterate!
Test, evaluate, tune, and retest!

12 2014 Intel® RealSense™ SDK Design Guidelines | Overview Chapter | Design Principles

Robust across a variety of platforms.
Consider the form factor your app will be running on, along with the context of your application, and design
accordingly. Users might be running your application on a notebook, Ultrabook™ device, All-in-one (AIO), or 2-in-1.
These different platforms present different ergonomic limitations. Keep in mind the following variables:

Screen Size
Smaller laptops and Ultrabook™ systems commonly have 13-inch screens and, occasionally, even smaller
screens. AIOs may have 24-inch screens or larger. This presents a design challenge for generating application UI
and related artwork and for designing interactions. You must be flexible in supporting different screen sizes.

Screen Distance
Users are normally closer to laptop screens than AIOs. Likewise, a laptop screen is often lower than an AIO
screen, relative to the user’s face and hands. This directly ties in to the interaction zone that you will need to
design for.

When using a laptop, the user’s hands tend to be very close to the screen.
The screen is usually lower, relative to the user’s head.

When using an AIO, user’s hands are farther away from the screen. The screen
is also higher, relative to the user’s head.

13 2014 Intel® RealSense™ SDK Design Guidelines | Overview Chapter | Design Principles

Contour Mode
Skeleton Tracking
Gesture Recognition
Best Practices
Visual Feedback

This section describes how you
can use advanced 3D hand track-
ing with the Intel® RealSense™
SDK. It covers skeleton tracking
and gestures, as well as best
practices for designing and imple-
menting mid-air gesture interac-
tions.

14

Hands

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter |

The Intel RealSense SDK provides articulated hand and finger skeleton tracking, as well as object tracking. For simpler,
quicker blob tracking, the SDK also has a mode called contour mode. Contour mode can track up to 2 blobs in the
scene. These blobs can be anything (e.g., an open hand, a fist, a hand holding a phone, 2 hands touching) that is a
connected component.

A blob is formed and selected by choosing the biggest blob that passes a virtual wall. You can adjust the distance of the
virtual wall (the default is 55cm). You can also decide the max depth of the object that is to be tracked (the default is
30cm). This is useful, for example, for only segmenting the hand without the arm. You can also set the minimal blob size.

Each blob has a mask, a contour line, and a pixel count associated with it. The blob also has information about its location
in 3D space and its extremity points. The blobs and contours are smoothed- this can also be controlled through the SDK.

Contour Mode

152014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Contour Mode

Virtual Wall

Maximum Depth

Closest point to the screen

Blob Mask Contour Pixel Count

Skeleton Tracking
As part of the Intel RealSense SDK, you
have access to a precise and accurate
full-hand skeleton which segments the
hand from the background and requires no
calibration. The skeleton tracks the position
and orientation of 22 joints on a hand. By
having this 3D model, you can robustly
handle missing information such as fingers
out of the FOV and occlusions. The default
skeleton is proportional to the user’s hand.
The SDK also provides a normalized
skeleton with generic hand proportions.
Different hand sizes are supported.

The left and right hands are labeled, as
well as each finger. This allows for
two-handed interactions. Up to 2 hands
can be recognized in the FOV, regardless of
handedness (e.g., 2 right hands can be
recognized from 2 people at the same time
if they are in the interaction zone). You can
also access a parameter of how “folded”
each of the fingers are on a spectrum of
“stretched” to “folded to palm”. There is
also a “hand openness” parameter, a
continuous value for closing a hand to a fist
or full-hand pinch.

To allow continuity of the user experience
and to make things more natural for the
user, no calibration pose is needed for
accurate hand skeleton tracking. However,
it can help. If necessary, depending upon
your application, you may want to include
a one-time calibration step at the
beginning of the app, or make it a fun,
hidden part of gameplay.

16

Pinky Fingertip

Index Fingertip

Thumb Fingertip

Thumb Joint C

Thumb Joint B

Thumb Joint A

Pinky Joint C

Pinky Joint B

Pinky Joint A

Palm

Wrist

Ring Fingertip

Middle Fingertip

Right HandLeft Hand

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Skeleton Tracking

Here are the gestures currently recognized as part of the Intel RealSense SDK:
Gestures

Gesture Recognition
Gestures can refer to static poses (e.g., open hand), or to the movement within and between poses, commonly called
gestures (e.g., wave).

The Intel RealSense SDK has a set of built-in gestures to start from. There will be a larger set of gestures as the SDK
matures. All single-handed gestures can be performed with either the right or left hand. You can use these gestures as is,
combine them into composite gestures, or create custom gestures that aren’t included in the SDK using the hand skeleton
points. If you choose to create a custom gesture, ensure that it is important to your application design. Make sure there are
no conflicts in the gesture definitions that are used in the same context (e.g., if you enable Big 5 and Wave in the same
level of the game, when the user waves, the spread hand gesture will be triggered as well).

Big 5
Pose

V-Sign
Pose

Open the hand completely
(stretch all fingers). Hand
should be facing the camera
and with the
index/middle/ring fingers
pointing upwards.

Extend the index and
middle fingers and curl
the other fingers. Have
some sensitivity in the
hand orientation as long
as its fingers are stretched
up.

Wave
Gesture
Wave an open hand
facing the screen. Wave
length can be any number
of repetitions.

Tap
Gesture

Keep your hand in a
natural relaxed pose and
move it in Z as if you are
pressing a button.

172014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Gesture recognition

Side-Swipe
Gesture

Swipe is triggered when the user
swipes to the left with right hand or
swipes to the right with the left
hand. User needs to be inside the
FOV when they start to swipe. The
swipe is moving the hand from one
side to the other when the palm is
facing the side and fingers are more
or less towards the camera.

Pinch with index and thumb. Hand
orientation is vertical. The pinched
fingers can be anywhere between
pointing directly to the screen or in
profile. Other fingers can be
stretched or relaxed but not folded.

Two-Finger Pinch Open
Pose

The gestures currently recognized as part of the Intel RealSense SDK

18

Thumbs Down
Pose

Thumb stretched down and the
other fingers folded. Pose can be in
different orientations as long as the
orientation of the thumb is down.

Thumbs Up
Pose

Thumb stretched up and the other
fingers folded. Pose can be in
different orientations as long as the
orientation of the thumb is up.

Fist
Pose

All fingers folded into a fist. Fist can
be in different orientations as long as
palm is in the general direction of
the camera.

Full hand pinch
Pose

Pinch with all fingers extended and
touching the thumb. The pinched
fingers can be pointing directly to
the screen or in slight profile.

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Gesture recognition

REGISTRATION CONTINUATION TERMINATION

REGISTRATION CONTINUATION TERMINATION

Think of the poses and gestures in the Intel RealSense SDK as primitives that can be used alone or in combinations to
perform certain actions. Below are some common actions that may come up in many applications. When these actions
exist in your application, they should generally be performed using the given gestures. Providing feedback for these
gestures is critical, and is discussed in the Visual Feedback section. We don’t require that you conform to these guidelines,
but if you depart from these guidelines you should have a compelling user experience reason to do so. This set of
universal gestures will become learned by users as standard and will become more expansive over time.

All dynamic gestures require a specific pose to register the gesture recognition system, as well as a pose to terminate the
action. For actions that are only using a single SDK primitive (like Big 5, or wave), no explicit activation or closure pose is
needed. There are a few ways of activating a dynamic gesture, including using a time variable, a pinch pose, an open hand
pose, or having the user enter a virtual plane.

Common Actions

Types of actions

19

Pinch detected. Movement is tracked. Big 5 completes action.

Big 5 detected. An amount of time passes. Action is completed
after time has passed.

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Common Actions

Here is a list of common actions, along with examples of how to implement them using the gestures in the SDK* or the
touchless controller interface**:

Grab and Release*

Scroll**

Swipe

1) perform the pinch gesture to grab an object, and 2) separate
the thumb and index finger to release

1) engage the system, 2) move the cursor with your palm to one
of the screen edges, and 3) hold the cursor at the edge to scroll
in that direction

Escape/Reset**

Go Back**

Push to Select**

Hover Select*

1) engage the system, 2) move your open palm in parallel to the
screen to get the cursor over the desired item, and 3) push
forward towards the screen to select the item

1) perform the Big 5 gesture, and 2) wait for x seconds to select
the item

1) engage the system, and 2) wave with an open palm from side
to side naturally to reset or escape from an application mode.

1) present your open palm to the camera in a natural pose at a
distance of about 1' (30cm)

1) engage the system, and 2) rotate your hand so that the
back of your hand is facing the screen

20

Engage**

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Common Actions Examples

Hand facing camera, fingers stretched or curled Strong self-occlusions

Hand holding objects

Hand touching body parts

Some back hand but in general hand towards camera

Weak self-occlusions

Fingers touching, no strong self-occlusions

21

Both skeleton tracking and gesture tracking will work best in certain scenarios. Supported and unsupported single and
2-handed positions are shown below.

Single-Handed:

Supported hand positions

unsupported

su
pp

or
te

d

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Single-Handed Supported Positions

lim
ited

Not touching, not occluding

Close proximity, not occluding

Touching, not occluding

Touching, strong occlusions

Occlusion (50% overlap), not touching

Occlusion (>50% overlap), not touching-
expect “recent position” not full tracking

2-Handed:
unsupported

su
pp

or
te

d

222014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | 2-Handed Supported Positions

Rate- Vs. Absolute-Controlled Gesture Models

You can use an absolute-controlled model or a rate-controlled model to
control gesture-adjusted parameters such as rotation, translation (of
object or view), and zoom level. In an absolute model, the magnitude to
which the hand is rotated or translated in the gesture is translated directly
into the parameter being adjusted, e.g., rotation or translation. For
example, a 90-degree rotation by the input hand results in a 90-degree
rotation of the virtual object.

In a rate-controlled model, the magnitude of rotation/translation is
translated into the rate of change of the parameter, e.g. rotational velocity
or linear velocity. For example, a 90-degree rotation could be translated
into a rate of change of 10 degrees/second (or some other constant rate).
With a rate-controlled model, users release the object or return their
hands to the starting state to stop the change.

Relative Vs. Absolute Motion

Be aware of the relationship of the interaction zone to the screen
coordinates of the application. Relative motion allows the user to reset her
hand representation on the screen to a location more comfortable for her
hand (e.g., as one would lift a mouse and reposition it so that it is still on
the mouse pad). Absolute motion preserves spatial relationships.
Applications should use the motion model that makes the most sense for
the particular context.

Other Considerations

Action on the screen directly reflects hand’s position
input.

User’s hand in a position that triggers an action which
happens in predetermined increments.

232014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Other Considerations

For applications involving mid-air gestures, keep in mind the problem of a user’s hands occluding the user’s view of the
screen. It is awkward if users raise their hand to grab an object on the screen, but can’t see the object because their
hand caused the object to be hidden. When mapping the hand to the screen coordinates, map them in such a way that
the hand is not in the line of sight of the screen object to be manipulated.

The user’s hand is mapped on the screen on the line of sight, which leads to
occlusion and inability for the user to see the action on the screen.

The user’s hand is mapped onto the screen away from the line of sight, and
the user can naturally navigate without occluding the screen.

Occlusion

242014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Occlusion

Best Practices

Don’t model your app on existing user interfaces - build user experiences that are tuned for gesture input. Leverage the
3rd dimensionality of the hand, and don’t force gesture when other methods work better.

Do not design for a mouse or touchscreen!

Typing using gesture is not convenient. In an instance when your application
requires typing data, using the keyboard or touchscreen is a preferred input
mode.

Moving an object in x-y-z space would be challenging to accomplish with
mouse and keyboard, and is a good example of a natural experience enabled
by hand tracking.

Q W E R T YA
Z X C V B N

S

SH_

D F G H

252014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Best Practices

Gestures should not require unreasonable effort to learn or remember.

Where possible make use of our predefined gestures and actions. Introduce your own gesture primitives only
when there is a compelling reason to do so. A small set of general-purpose natural gestures is preferable to a
larger set of specialized gestures. As more apps come out, users will come to expect certain interactions,
which will improve the perceived intuitiveness.

Give an escape plan. Make it easy for the user to back out of a gesture. Consider providing the equivalent of a
“home button”.

Teach the gestures to the user. Some options:
 Tutorial at the beginning of the app
 Explicit in-app instructions/reminders
 Well designed visual feedback within app
 Easy help option/menu

Designing Gesture Interactions

Simple

Support both right- and left-handed gestures.

Accommodate hands of varying sizes and amounts of motor control. Some people may have issues with the
standard settings and the application will need to work with them. For example, to accommodate an older
person with hand jitter, the jitter threshold should be customizable. Another example is accommodating a
young child or an excitable person who makes much larger gestures than you might expect.

Flexible

262014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Designing Gesture Interactions

Gestures are understandable. Use appropriate mappings of motions to conceptual actions.

As part of your app design, you need to teach the user that they are being recognized and will be interacting
in a new way with the system, especially before this modality becomes commonplace.

Stay away from abstract gestures that require users to memorize a sequence of poses. Abstract gestures are
gestures that do not have a real-life equivalent and don’t fit any existing mental models. An example of a
confusing pose is “v-sign” to delete something, as opposed to placing or throwing an item into a trash can.

Some gestures will be innate to the user (e.g., grabbing an object on the screen), while some will have to be
learned (e.g., waving to escape a mode). Make sure you keep the number of learned gestures small for a low
cognitive load on the user.

Design for the right space. Be aware of designing for a larger world space (e.g., with larger gestures, more arm
movement) versus a smaller more constrained space (e.g., manipulating a single object).

Distinguish between environmental and object interaction.

Gestures can have different meanings in different cultures so be conscious of context when designing your
app. For example, the “thumbs up” and “peace” signs both have positive connotations in North America but
quite the opposite in Greece and areas of the Middle East, respectively. It may be a good idea to do a quick
check on gestures before going live in other countries.

Be aware of which gestures should be actionable. What will you do if the user fixes her hair, drinks some
coffee, or turns to talk to a friend? The user should not have to keep their hands out of view of the camera in
order to avoid accidental gestures. Normal resting hand poses or activity should not trigger gestures.

Natural and Intuitive

Design gestures to be ergonomically comfortable. If the user gets tired or uncomfortable, they will likely stop
using your application. See next section for specific tips on how to avoid user fatigue.

Comfortable

272014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Designing Gesture Interactions

How to Minimize Fatigue
28

Gestural input is naturally fatiguing as it relies on several large muscles to sustain the whole arm in the air. It is a serious
problem and should not be disregarded; otherwise, users may quickly abandon the application. With these new modalities,
the goal is to move away from unnatural postures and not have to conform to “technology”- to free us from awkward poses
and become more natural in our interactions with technology. By carefully balancing the following guidelines, you can
alleviate the issue of fatigue as much as possible:

Break up activities into small, short actions. Try to keep actions relatively brief with rest periods in between rather
than having users move all over the screen. Long-lasting gestures, especially ones where the arms must be held in a static
pose, quickly induce fatigue in the user’s arm and shoulder (e.g., holding the arm up for several seconds to make a selection).

Design for breaks. Users naturally, and often subconsciously, take quick breaks. Short, frequent breaks are better than
long, infrequent ones.

Allow users to interact with elbows rested on a surface. Perhaps the best way to alleviate arm fatigue is by resting
elbows on a chair’s armrest. Support this kind of input when possible. This, however, reduces the usable range of motion of
the hand to an arc in the left and right direction. Evaluate whether interaction can be designed around this type of motion.

Do not require many repeating gestures. If you require users to constantly move their hands in a certain way for a long
period of time (e.g., moving through a long list of items by panning right), they will become tired and frustrated very quickly.

Avoid actions that require your users to lift their hand above the height of their shoulder. This can get pretty
tiring pretty quickly, and it can even be challenging for some users to have to lift their arms high.

Design for left-right or arced gesture movements. Whenever presented with a choice, design for movement in the
left-right directions versus up-down for ease and ergonomic considerations.

Allow for relative motion instead of absolute motion wherever it makes sense. Relative motion allows the user
to reset her hand representation on the screen to a location more comfortable for her hand. Do not feel the need to map the
interaction zone 1:1 with the screen coordinates as this could get very tiring.

Do not require precise input. Precision is a good thing. . . up to a point. Imagine using your finger instead of a mouse to
select a specific “cell” in Excel. This would be incredibly frustrating and tiring. Users naturally tense up their muscles when
trying to perform very precise actions. This, in turn, accelerates fatigue. Allow for gross gestures and make your interactive
objects large (see more in the Visual Feedback section).

2014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | How to Minimize Fatigue

Here are some basic principles for usable feedback and effective visual communication using gestures:

Create visual UIs that consider human body ergonomics.
Designers will have to step outside the existing WIMP paradigm, and
create interfaces that are well attuned to human motions. One
example is creating an arc-based menu that enables a user to rest
their elbow on their desk while still controlling the menu.

Keep in mind the cycle of interaction
Be responsive
Show feedback within 100 ms.

Be informative
Show not just what happened but what to do about it
Don’t be distracting or intrusive

Use animation with natural physics
Map on-screen motion appropriately to the user’s motion. For example, an
upward motion of the hand should map to an upward motion on the
screen, not a downward or sideways motion.

Make sure that your visual designs for icons or text feedback
are legible and written to communicate effectively.

General Principles for Good Visual Feedback

Visual Feedback
For apps that use gesture, effective feedback is especially critical. This is a novel input modality for most people, and there
are no explicit physical confirmations of interaction (as with keyboard, mice, and touchscreens). When developing your
app, you need to ensure that user understands how to control an application and feels the system is responsive, accurate,
and satisfying.

What
can I do?

How do
I do it?

What
happened?

What does
it mean?

USER

SYSTEM

fe
ed

 -
fo

rw
ar

d feedback
Don Norman’s user action framework

292014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Visual Feedback

When designing your app, you need to communicate information to the user about how the camera is seeing them. Are
they in the interaction zone? How should they position themselves in front of the camera?

The field of view/interaction zone of the camera is discussed in the Introduction. Here are a few recommended ways of
giving user feedback- choose the one that makes sense for your particular app, and don’t combine them.

View of User
User Viewport- in some apps, it can be helpful for the
user to see a small viewport that shows them as the
camera sees them. Recommended for: Applications that
use precise hand and finger gestures. The user viewport is
the best way to show users the full picture of what the
system is doing with their movement, but it also can be
intimidating, so don’t overuse it – consider it when simpler
prompts (see below) aren’t enough, or as part of your
application’s tutorial or help experience only.

User Overlay- in certain apps, a video feed of the user is
helpful and appropriate. It places the user behind the 2D
scene. This is recommended for games and creativity
apps with the user interacting 1:1 with 2D items on the
screen, or for video conferencing or editing. Design screen
elements to be seen against video of the user. Mirror the
video to match the user’s motions.

We will cover 3 general levels of interaction and feedback that you should pay attention to when building your app:
User/World, Actions/Objects, and Cursors.

User/World Interactions

Viewport reflects a depth image of what the camera is
detecting.

User is shown with a 2D color camera feed and has the
ability to interact with 2D objects or interface items.

302014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | User/World Interactions

Distance Prompts
Simple prompts indicate the near and far boundaries of the interaction zone. Without prompts, users see the system
become unresponsive and don’t understand what to do next. Filter the distance data and show the prompt after a
slight delay. Use positive instructions instead of error alerts.

World Diagrams
World diagrams orient the user and introduce them to the notion of a depth camera with an interaction zone. This is
recommended for help screens and tutorials, and games for users new to the camera. Don’t show this every time, only
during a tutorial or on a help screen. Don’t make it too technical and consider the audience.

!
M O V E C L O S E R

!
M O V E B A C K

Introduce the user to the optimum interaction range, using diagrams similar to the above.

312014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | User/World Interactions

When designing apps for gesture, you need to consider how to visually show the user how they will be interacting with
objects on the screen.

Actionable Buttons
Show what to do and what is actionable. Use color and animation to draw objects according to interaction state (e.g., hover,
selected, not selected). Distinguish actionable 3D objects from the rest of the scene. Use standard selection gestures, and
suggest the select action.

Action/Object Interactions

Hover

Press

Navigating towards an actionable button

Navigating towards an actionable button Holding hand still for a specified amount of time Use indicator to show the progress.

Pushing hand towards the screen to select

322014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Action/Object Interactions

Grabbable Objects
� Objects should be large enough to account for slight hand jitter
� Objects should be far enough apart so users won’t inadvertendtly grab the wrong object.
� Avoid placing interaction elements too close to the edge of the screen, so the user doesn’t get frustrated with popping
out of the field of view.
� If the interface relies heavily on grabbing and moving, it should be obvious to the user where a grabbed object can be
dropped
� If the hand becomes untracked while the user is moving an object the moved object should reset to its origin, and the
tracking failure should be communicated to the user.

Consider the dimensions of input
2D input is most robust and will be most familiar to users. Since we are currently using 2D displays, use it for all simple
interactions, especially in productivity apps. 2.5D adds simple depth input for special actions. Full 3D-space interaction is
most challenging for users. To show that the user is operating in a 3D space, aggressively use depth cues- shadowing,
shading, texture, and perspective.

2D 2.5D 3D

Detecting inputs in x-y axises and
z input for simple actions

Full 3D input trackingReading inputs in x-y axis

332014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Action/Object Interactions

For air gestures, users prefer a cursor that mimics their hand over an abstract design. Cursors are recommended for
apps that do pointing and selecting. Do not use a cursor for apps that implement a user overlay or user viewport, or
with apps that use heavy 3D interaction. A 2D visual cursor assumes that the user is mostly operating on a plane in 3D
space that is parallel to the screen. Make sure to smooth the cursor motion to avoid visual jitter. Animate the cursor to
show the appropriate level of detail. If relevant to your interactions, you should show individual finger motions.

A cursor will focus the user’s attention; don’t use it if it’s not necessary. Put important alerts about system state at the
cursor.

Dynamic Hand Cursor

Cursor Interactions

Here is an example of a dynamic hand cursor showing the left or right hand according to which is seen.

Here we see the dynamic hand cursor giving visual feedback that the user has made a pinch gesture.

342014 Intel® RealSense™ SDK Design Guidelines | Hands Chapter | Cursor Interactions

Face Detection and Recognition
Head Orientation
Landmark Tracking
Facial Expressions
Emotion Recognition
Avatar Control
Use Cases + Best Practices

This section describes how you
can use advanced 2D and 3D face
tracking with the Intel® RealSense™
SDK. It covers face detection, head
orientation, landmark tracking,
avatar control, and emotion recog-
nition, as well as best practices for
designing and implementing
interactions that use face data.

Face

352014 Intel® RealSense™ SDK Design Guidelines | Face Chapter |

One face has
complete landmark tracking

Up to four faces
can be tracked at the same time

Face Detection
The Intel RealSense SDK provides accurate 3D detection and tracking of all faces in the scene at a range of up to 1.2
meters. There is a maximum number of 4 faces that can be tracked. You can choose which 4 to detect (e.g., 4 closest to
the screen, 4 most right). Each marked face will be outlined with an approximated rectangle (you can get the x, y, and z
coordinates of this rectangle). Compared to 2D tracking, 3D head tracking capability maintains tracking with much
greater head movement. It works in wide lighting conditions. You can get alerts for when the face is in the FOV, partially
in the FOV, or occluded.

36

Face Recognition
The SDK provides the ability to recognize specific faces. Once a face is registered, an ID is assigned to it and some
information about it is stored in the memory of the Face library. If the same face is registered multiple times, it will
improve the chances of correct recognition of that face in the future. Whenever there is an unrecognized face in the
frame, the recognition module will compare it against the available data in the database, and if it finds a match it will
return the stored ID for that face.

Users do not need to worry abut their images being stored. The data saved is a collection of features gathered from the
image by the algorithm.

2014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Face Detection

Head Orientation

The SDK provides you with the 3D orientation of the head. This gives you an idea of where the user’s head is pointing (in
some cases, you could infer they are likely looking in that direction as well). You can experiment with this as a very coarse
version of eye tracking. Stay tuned for finer-tuned gaze tracking in the next release! For now, tracking head movements
works best on the yaw and pitch axes.

roll

pitch

yaw

372014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Face Orientation

Landmark Tracking
The SDK provides 3D tracking of 78
points of interest on the face for
accurate facial attribute recognition
and analysis. The position of the
points of interest are provided in
image and world coordinates. Facial
landmark tracking supports avatar
creation and facial animation and
mimicry, as well as simple expression
recognition. You can use this points
directly, or use relative positions of
the points to trigger actions.

You have easy access to a subset of
face landmark regions (left and right
eyes, left and right eyebrows, nose,
mouth, and jaw). Labeled landmarks
are shown in their relative regions.

Landmark tracking is supported for
users with and without facial hair and
glasses. Initialization (when the face
first enters the FOV and is being
detected) works best with the frontal
face +/- 15 degrees on the yaw axis.
Roll and pitch should be close to 0
degrees. Landmark tracking works
best when the user’s head is within
30 degrees of the screen (both yaw
and pitch).Positions of 78 points tracking points on the face

Highlighted are named landmark for key tracking points

LEFT EYE

LEFT EYEBROW

MOUTH

NOSE

RIGHT EYE

JAW

RIGHT EYEBROW

382014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Landmark Tracking

Pupil Move
(Left, right, up, down)

Facial Expressions

The SDK also includes higher-level facial expression recognition. This can make the creation of cartoonish avatars easier.
Each of the expressions have an intensity level from 0 to 100 to allow for smoother, more natural animation.

The following expressions are in the SDK:

Smile Mouth Opened

Eye-brow Raised Eye-brow LoweredEye Closed

39

KissTongue out

2014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Facial Expressions

Emotion Recognition
Emotient’s emotion recognition algorithms in our SDK use 2D RGB data. The Emotion module is not part of the Face
module. The faces in an image or video are located in real-time up to 30fps, and interpolation and smoothing of face data
is extracted from consecutive frames of a video. For emotion recognition to work, the faces in the image have to be at least
48x48 pixels. You can query for the largest face in the FOV. The algorithms are not limited to RGB data and can be used
with greyscale data as well.

With the SDK, you can detect and estimate the intensity of the six primary expressions of emotion (anger, disgust, fear, joy,
sadness, surprise) seen below:

The emotion channels operate independently of one another. There are 2 ways to access the channel data- either by
intensity (between 0 and 1) or evidence (the odds in log scale of a target expression being present). See the SDK
documentation for more details. You can also access aggregate indicators of positive and negative emotion. There is a
neutral emotion channel to help calibrate the other channels, and an experimental contempt channel. Currently, joy,
surprise, and disgust are the easiest emotions to recognize.

Facial artifacts, such as glasses or facial hair, may make it advisable to focus on changes in the emotion outputs rather than
absolute values. For example, a person may have facial hair that makes him appear less joyful than he would if he did not
have facial hair.

You can combine a few emotions together to give a guess of negative emotion. For example, you could combine varying
intensities of disgust, fear, and anger and assume your user is likely expressing a negative emotion.

Anger Disgust Fear Joy Sadness Surprise

402014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Emotion Recognition

You can:

Add your own avatar models

Adjust smoothing on the landmarks and expressions for various usages and behaviors

Enable/disable specific expressions or landmark subsets (e.g., you may want to only move the eyes on your avatar)

Allow mirroring (e.g., when the user blinks their right eye, the left eye of the avatar will blink)

Tune the resolution of the animation graphics

Plug the avatar into different environments (you can provide your own background, e.g. an image, video, or camera stream)

Avatar Control

412014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Pulse Estimator

The SDK provides simple avatar control for use in your applications by combining the facial expressions and
landmarks available in the Face module. The SDK provides sample code for a Character Animation that enables your
application to use any face model and animate the user as part of your application. All the code, assets and rigging
are part of the code distribution of the SDK.

Use Cases
There are many reasons why you might want to use head tracking, face tracking, and emotion recognition in your apps.
We outline a few examples that can work well leveraging the Intel RealSense SDK:

Gaming/App Enhancements
Use head tracking and orientation to allow navigation,
parallax, view changes, or to peek around corners. Use
landmark tracking to identify user’s expressions.

Avatar Creation
Create cartoonish or realistic looking avatars that mimic
the user’s face. It is recommended to stick to more
abstracted or cartoonish avatars, to avoid the uncanny
valley effect and to have more robust and predictable
facial mimicry.

Face Augmentation
Use head tracking to augment the user’s face on the
screen in either a cartoonish (e.g., wear a wizard hat)
or realistic (e.g., try out new kinds of glasses) way.

Affective Computing
Identify and respond to user’s mood and level of
engagement, either implicitly or explicitly.

422014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Use Cases

Best Practices

Good lighting is very important especially for 2D RGB tracking
For optimal tracking:
 use indoor, uniform, diffused illumination
 have ambient light or light facing the user’s face (avoid shadows)
 avoid backlighting or other strong directional lighting

Lighting and Environment

Give feedback to the user to make sure they are in a typical working distance away from the computer, for
optimal feature detection.

Notify the user if they are moving too fast to properly track facial features.

User Feedback

Design short interactions

Avoid user fatigue. Do not ask or expect the users to move their head/neck quickly or to tilt their head on any
axis more than 30 degrees from the screen. If you are asking the user to tilt their head, make sure they can still
see relevant cues and information on the screen.

Test emotion detection and landmark-based expression detection by testing with your audience. People
express their emotions very differently based on culture, age, and situation. Also, remember that every face
may have a different baseline for any given emotion.

User Interactions

User Privacy

Communicate to users about where images go and what happens to them. For most applications, you will not
need to save the actual images, but could save the information about them (e.g. emotion intensity, landmark
coordinates, angle, size)

432014 Intel® RealSense™ SDK Design Guidelines | Face Chapter | Best Practices

Speech Recognition
Speech Synthesis
Best Practices

This section describes best
practices for designing and
implementing voice command
and control, dictation, and text to
speech for your applications.
As of now, English is the only
supported language, and speech
recognition works best for adults.

Speech

442014 Intel® RealSense™ SDK Design Guidelines | Speech Chapter

45

Command mode is for issuing commands tied to discrete actions (e.g., saying “fire” to trigger cannon fire in a game).

In command mode, the SDK module recognizes only from a predefined list of context phrases that you have set. The
developer can use multiple command lists, which we will call grammars. Good application design would create multiple
grammars and activate the one that is relevant to the current application state (this limits what the user can do at any
given point in time based on the command grammar used). You can get recognition confidence scores for command and
control grammars. To invoke the command mode, provide a grammar.

Be aware of the different listening modes your application will be in.
Once listening, your application can be listening in command mode or dictation mode.

Speech Recognition

Command Mode Vs. Dictation Mode

Command Mode

“...o
pen my documents...”

“p
lay jazz...”

 “...once upon a time...”

 “meeting notes..”

“e-mail photo”
“mute” “next”

“open”
“save”

“search”“fire!”((((((

2014 Intel® RealSense™ SDK Design Guidelines | Speech Chapter | Speech Recognition

Natural.
The language you use is very important. Ask other
people – friends, family, people on forums, study
participants – how they would want to interact with
your system or initiate certain events.
Responsiveness is important; experiment with
different pause lengths at the end of sentences.

Flexible.
Provide many different options for your grammar to
exert less effort on the user. For example, instead of
constraining the user to say “Pause music”, you
could also accept “Pause my music”, “Pause song”,
“Stop music”, etc.

Simple, yet distinct.
Complicated words and names are not easily
recognized. Make your grammar include commonly
used words. However, very short words can be
difficult to recognize because of sound ambiguity with
other words (e.g., “yes” and “guess”). Be aware of
easily confusable commands. For example, “Create
playlist” and “Create a list” will likely sound the same
to your application. One would be used in a media
player setting, and the other could be in a word
processor setting, but if they are all in one grammar
the application could hav e undesired responses.

When constructing your grammars, keep them:

The SDK provides you with the 3D orientation of the head. This gives you an idea of where the user’s head is pointing (in
some cases, you could infer they are likely looking in that direction as well). You can experiment with this as a very coarse
version of eye tracking. Stay tuned for finer-tuned gaze tracking in the next release! For now, tracking head movements
works best on the yaw and pitch axes.

46

50k 30seccommon limitwords

Dictation mode is for open-ended language from the user (e.g., entering in the text for a Facebook status update). Dictation
mode has a predefined vocabulary. It is a large, generic vocabulary containing 50k+ common words. Highly domain
specific terms (e.g., medical terminology) may not be widely represented in the generic vocabulary file, but you can
customize your app to a specialized domain if desired. You can add in your own custom vocabulary to the dictation engine
if you find that specific words you need are not in the dictionary.

Absence of a provided command grammar will invoke the SDK in dictation mode. Dictation is limited to 30 seconds.
Currently, grammar mode and dictation mode cannot be run at the same time.

Dictation Mode

2014 Intel® RealSense™ SDK Design Guidelines | Speech Chapter | Speech Recognition

Speech Synthesis
You can also generate speech using the built in Nuance speech synthesis that comes with our SDK. Currently a female
voice is used for text-to-speech (TTS). Speech can be synthesized dynamically.

Make sure to use speech synthesis where it makes sense. If there is a narrator or a character speaking throughout your
application, it may make more sense to pre-record speech where dynamic speech synthesis isn’t needed. Have an
alternative for people who cannot hear well, or if speakers are muted.

47

Your score is:
Five Hundred and Sixty Five!

5 6 5

2014 Intel® RealSense™ SDK Design Guidelines | Speech Chapter | Speech Synthesis

Here are some best practices for using speech in your applications:

Be aware of speech’s best uses. Some great uses of speech are for short dictations, triggers, or shortcuts.

For example, speech could be used as a shortcut for a multi-menu action (something that requires more than a
first-level menu and a single mouse click). However, to scroll down a menu, it may make more sense to use the
touchscreen or a gesture rather than repeatedly have the user say “Down”, “Down”, “Down”.

Be aware that speech can be socially awkward in public, and background noise can easily get in the way of
successful voice recognition.

Test your application in noisy backgrounds and different environmental spaces to ensure robustness of
sound input.

Environment

People do not speak the way they write. Be aware of pauses and interjections such as “um” and “uh”.

Don’t design your application such that the user must speak constantly. Make verbal interactions short, and
allow for breaks to alleviate fatigue.

Listening to long synthesized speech will be tiresome. Synthesize and speak only short sentences.

Naturalness/Comfort

Best Practices

482014 Intel® RealSense™ SDK Design Guidelines | Speech Chapter | Best Practices

49

Watch out for false positives- some sounds could unexpectedly crop up as background noise. Do not
implement voice commands for
dangerous or unrecoverable actions (such as deleting a file without verification).

Give users the ability to make the system start or stop listening. You can provide a button or key press for
“push to talk” control.

Give users the ability to edit/redo/change their dictation quickly. It might be easier for the user to edit with
the mouse, keyboard, or touchscreen at some point to edit their dictations.

User Control

Teach the user how to use your system as they use it. Give more help initially, then fade it away as the user
gets more comfortable (or have it as a customizable option).

Always show the listening status of the system. Is your application listening? Not listening? Processing
sound? Let the user know how to initiate listening mode.

Let the user know what commands are possible. It is not obvious to the user what your application’s current
grammar is. This information can be shown in an easily accessibly

Let the user know that their commands have been understood. The user needs to know this to trust the
system, and know which part is broken if something doesn’t go the way they planned. One easy way to do
this is to relay back a command. For example, the user could say “Program start”, and the system could
respond by saying “Starting program, please wait”.

If you give verbal feedback, make sure it is necessary, important, and concise! Don’t overuse verbal feedback
as it could get annoying to the user.

If sound is muted, provide visual components and feedback, and have an alternative for any synthesized
speech.

Feedback

2014 Intel® RealSense™ SDK Design Guidelines | Speech Chapter | Best Practices

User Segmentation
Use Cases
Best Practices

This section describes how you
can use advanced
user/background segmentation
techniques with the Intel®
RealSense™ SDK.

50

Background
Removal

The Intel RealSense SDK allows you to remove users’ backgrounds without the need for specialized equipment. You can
mimic green-screen techniques in real-time without post-processing. A segmented image can be generated per frame
which can remove or replace portions of the image behind the user’s head and shoulders. If the user is holding an object,
this will also be segmented.

The resolution of the segmented output image matches the resolution of the input color image, and contains a copy of the
input color data and an alpha channel mask. Pixels that are part of the background have an alpha value less than 128, and
pixels that correspond to the user’s head and torso have an alpha value greater than or equal to 128.

Background Removal

512014 Intel® RealSense™ SDK Design Guidelines | Background Removal Chapter | Background Removal

Real life background Background removal Background replacement

522014 Intel® RealSense™ SDK Design Guidelines | Background Removal Chapter | Use Cases

Use Cases
Some common use cases for background removal include:

Video Chat/TeleconferencingSharing workspacesSharing content

Photography and Video
Selfies/ Enhancements

Placing the user in a
different world

Best Practices

2014 Intel® RealSense™ SDK Design Guidelines | Background Removal Chapter | Best Practices 53

Utilize with good lighting conditions.

Background removal is optimized for a single user to be segmented out of the scene, but will
work for multiple users if they fit into the field of view.

Don’t use for privacy applications in case there is could be confidential information in the
background that is being removed.

Offer the user the ability to turn segmentation on and off.

White backgrounds work best for background removal. Slight user adjustments can affect the
quality of the background removal.

Play around with the visual blending effects of the edges between the segmented object and
the background for different applications.

A person coming in and out of the scene might result in jagged segmentation. You can either
inform the user of this or try to take care of it with visual effects.

54

Object Tracking

The Metaio* 3D object tracking module provides optical-based tracking techniques that can detect and track known or
unknown objects in a video sequence or scene. The Metaio Toolbox is provided to train, create, and edit 3D models that
can be passed to various object detection and tracking algorithms.

The tracking techniques available are 2D object tracking for planar objects, feature-based 3D tracking, edge-based 3D
tracking from CAD models, and instant 3D tracking.

Object Tracking

2D object tracking is configured by providing a
reference image. The algorithm tracks the image in a
video sequence and returns the tracking parameters.

2D Object Tracking
3D feature-based tracking can track any real-world
3D object. Tracking is based on a 3D feature map.

Feature-Based 3D Tracking

552014 Intel® RealSense™ SDK Design Guidelines | Object Tracking Chapter | Object Tracking

* Other names and brands may be claimed as the property of others.

Some 3D objects are hard to detect using only feature-based 3D tracking, such as low-textured, highly reflective objects,
or objects in dynamic lighting conditions. A more precise edge-based tracking can help in these cases. It uses a 3D CAD
model, mesh model, or 3D-point cloud of the target object.

Edge-Based 3D Tracking from CAD Models

Instant 3D tracking (also known as SLAM) allows you to create a point cloud of the scene on the fly and immediately use it
as a tracking reference. With SLAM you don’t need to provide any input files.

Instant 3D Tracking

562014 Intel® RealSense™ SDK Design Guidelines | Object Tracking Chapter | Object Tracking

Samples

57

Intro

Find code samples for accessing the raw color
and depths streams here

Hands

Find code samples for hand analysis
algorithms (including using the 22 hand
skeleton joints and gesture detection) here

Face

Find code samples for face analysis
algorithms (including face detection,
landmark detection, and pose detection) here

Speech

Find code samples for accessing the raw
audio data, and voice recognition and voice
synthesis here

http://www.intel.com/realsense/SDK

http://www.intel.com/realsense/SDK

http://www.intel.com/realsense/SDK

http://www.intel.com/realsense

