

SUCCESS EPCOS Capacitors

EPCOS Inc. Capacitors Group April, 2012

EV / HV / E-Mobility

Battery charger system & Inverter On Board and Off Board Assembly Trend: Wireless Charging

DC/DC Converter Filtering

DC Link

E-Mobility

DC Link Braking Energy Recuperation

Hybrid / Electric Vehicle

Battery Electric Vehicle (BEV) Block Diagram

The battery charger performs three electronic functions.

- 1. Enhanced phase adjustments made to the wall socket's alternating current.
- 2. The voltage is rectified to direct current (DC) voltage.
- 3. The final step is to up-convert the household voltage; enough to charge an EV with 40-mile all-electric range

Battery Charger Circuit Diagram

- 1. Filter Capacitor EMI protection X & Y caps
- 2. DC Link Capacitor Alu Snap-in, MKP Cap
- 3. Output Capacitor MKT and MKP caps

Battery Charger Circuit Diagram

1. Filter Capacitor - Due to the connection to the net for the external charging for the battery and the high currents we are facing inside the car, on some positions real X2 and Y2 capacitors with the standard safety approvals (ENEC and UL) are necessary.

Filter Capacitor for Charging / Plug In System

Technical requirements:

Operation Temp: Capacitance range: Voltage rate: Standard Safety	105C 1nF - 45µF 300V _{AC}	=			
Approvals	UL / ENEC				
	EMI X2 /				
EPCOS solution:	Y2 Cap				
			AE	C-Q200	
approved a second	Film	MKP	МКТ	MKP	
CO TAL CTAL	Capacitor	X2	X2	Y2	
B32022 X2 MCPSH	Boxed	B3292X	B3293X	B3202X	
40/100/2VB	Cap. range	0.01 -	0.047 -	InF -	
T	(μF)	45µF	10µ⊢	1µF	
	voltage	•	-		
	range (V_{AC})	305	305	300	
			Heavy Du	ty	
			85/85/100	0/	Recent test results:
			240		Up to 2000Hrs!!!

DC Film Capacitors Heavy Duty X2 Series, B3293x

EPCOS has designed and developed a new series of MKT film capacitors for AC applications (B3293x - Heavy Duty X2 series).

This series offers high durability and very low capacitance drift even after being subjected to tests of **1000-hours** at **85°C / 85%RH and 240Vac**. Their maximum capacitance change is expected to be less than 10%. The B3293# series cover a capacitance range from 0.047μ F to 10μ F and are designed for a nominal voltage of 305 Vac. Their maximum operating temperature is 105° C. In addition, capacitance values up to and including 2.2μ F are safety certified as X2's capacitors.

Some features for the Heavy Duty Design:

Internal series connection

Voltage per connection is divided by half so that avoiding the undesirable effects of AC voltage (i.e. partial discharges).

• Polyester (PET) as dielectric material

Due to its higher dielectric constant than polypropylene (PP), it allows a higher density of capacitance per volume, reaching smaller sizes. Better resistance to higher temperatures (i.e. 125° C)

• Electrode metallization

No use of Zn material, for high resistance to humidity.

Battery Charger Circuit Diagram

2. DC Link Capacitors - The main objective is energy storage. A high energy and high capacitance by voltage product that can withstand high temperatures and offer long life.

DC Link Capacitor – Film Capacitors

Techical requirements: OperationTemperature: 105CCapacitance range: Up to 480μ F Voltage rate: Up to $1300V_{DC}$ High Reliability

EPCOS solution:

Capacitor	MKP
	DC Link
	1.5 - 480µF
Cap. range(µF)	(std)
voltage range (Vpc) 450-1300
-	

DC Link Capacitors High Density DC Link B3277x series

Lead Spac	es (mm): 3	7.5 ~ 52.5		
Climatic Ca	ategory: 40/	/100/56		
UN / UOP	450V	700V	900V	1100V
10 µF				
12 µF				
15 µF				
20 µF				
25 µF				
30 µF				
35 µF				
40 µF				
50 µF				
60 µF				
70 µF				
100 µF				
110 uE				

C (µF)	450 Vdc	575 Vdc	800 Vdc	900 Vdc	1100 Vdc	1300 Vdc
14						
25						
40						
60						
75						
80						
90						
100						
110						
120						
130						
140						
170						
180						
210						
250						
270						
320						
360						
480						

Low-Profile Capacitors, B32*6T series

NEW!!!

- Low-profile with heights of only 15 or 19 mm
- Good self-healing properties
- High reliability
- Long useful life
- Very high mechanical resistance to vibrations and shocks

Product S	eries:	B3722					
Dielectric:	M	٢P					
Lead Spaces: 37.5 - 52.5mm							
Climatic C	atergory: 4	0/85/56					
CV	450	575	800	900	1100	1300	
9							
13							
14							
17							
20							
17							
22							
25							
30							
40							
55							

DC Link Capacitor – ALU Capacitor

Technical requirements:

Operation temperature: Service Life Ripple capability: Capacitance range: Voltage: 105C 15 years / 120,000 km 8Arms, 60C, 10kHz 1,500µF - 2,000µF 450Vdc

EPCOS solution

Туре

Series Operation Temp Cap. range (µF) voltage (V_{DC})

Qualified according

Snap-in

B43540 / B43508 up to 105C 100 - 470µF 450V

AEC Q200 (*) (*) in qualification - Jun. 2012 Samples available

Battery Charger Circuit Diagram

3. Output Capacitor - Capability to withstand over-voltages, and transients coming from the mains. Capability to withstand high current pulses together with a high frequency harmonics

International approvals such as UL/IEC are not always required for this position.

Output Filter Capacitor

Technical requirements:						
Operation Temperature:	105C					
Capacitance Range:	0.47 - 220µF					
Voltage rate:	63-450V _{DC}					
Ripple Capability:	20A, 70C, 10KHz					
Useful life:	100KHrs/70degC					

EPCOS solution:

Film Capacitors

	MKT	MKP	MKP
Film Capacitor	B32524A	AC Filter	DC Link
Boxed	B32526A	B3279x	B3277x
Cap. range (µF)	4.7-220µF	0.82-75µF	1.5 - 480µF
Voltage range	63-250V _{DC}	250-400VAC	450-1300 VDC

Trend: Wireless Charging

Wireless power transfer technology is not a new technology; however, recent developments have allowed it to become more practical, and recent interest in the consumer market has brought it to the center of attention

Wireless charging, also known as inductive charging, removes the need to run a cable from the device to the charging point and instead sends energy between two flat plates – one in the device and one on (or in) the ground below it – which charges the battery.

Trend: Wireless Charging

POWER SUPPLY 2/ TRANSMITTER PAD
WIRELESS ELECTRICITY & DATA TRANSFER
RECEIVER PAD 5/ SYSTEM CONTROLLER 6/ BATTERY

ntom EE (aka 102EX) uses wireless charging technology. A pad connected to a the ground so all the driver need do is drive over it and park in roughly the right position - magnets ensure proper alignment.

Battery Electric Vehicle (BEV) Block Diagram

The DC/DC converter is responsible for converting High DC Voltage from batteries to Low DC Voltage on general applications

DC/DC converter – Filtering

Since in most of the hybrid drives there is no starter and no alternator, the DC/DC converter has to be bi-directional.

The voltage level in the hybrid circuit is at the level of 200 – 400 Vdc.

DC/DC converter for hybrid / electric vehicle

• Used for the conversion of the battery voltage of 14V to a higher voltage level (42V or even more) and vice versa. (Typical application: Power steering)

• The film capacitor is used as an input and output filter

DC/DC converter - Filtering

Requirements:

- Very high reliability
- Vibration resistance
- Excellent current handling capability
- Low ESR

Solutions from Epcos MKT B3252x and MKP B3277x

- different lead configurations for vibration resistance:
 - normal 2-pin
 - 4-pin or multi-pin
 - flat terminals
- Iow ESR at high frequencies
- high current handling capability

Series		B32	B3277x		
Туре		M	МКР		
V _R (Vdc)	63	100	250	400	450
C _R (µF)					
5					
10					
22					
33					
50					
68					
100					
110					
150					
200					
220					

Battery Electric Vehicle (BEV) Block Diagram

The DC Link is responsible for supplying energy or smoothing voltage ripple during the conversion of DC High voltage for the motors.

DC Link Capacitors for Automotive Applications

Customer Demands

- Compact Size
- Higher Temperature Ratings (105 ambient)
- Higher Currents
- Customized terminals
- Lower ESL

Specifications

- Capacitance: 300 to 1000 uF
- Voltage Rating:450 to 600 V DC
- Ripple Current: 112 to 240 A

12 ic

DC/DC Converter - DC Link Capacitor – ALU Capacitor

Function: the inverter controls the energy flow between electric motor and the hybrid battery while the DC/DC converter couples the hybrid battery to the overall power supply system.

Requirements:

- Voltage bank 160V
- High reliability up to
- High current capability 10A / cap
- Vibration resistance up to 40g
- Excellent current handling capability
- Low ESR

Axial / Soldering Star

E-Mobility – New Application

Hybrid DC-Link with MOSFET Technology – <u>110V operating voltage at high ripple current</u>

- Axial-lead capacitor in Soldering star mechanical configuration
- e.g. 21 x 49 mm, 400 μF, 160 V with max. 9 Arms at 125°C

E-Mobility – New Application

 Energy recuperation via braking system, <u>high ripple current and vibration</u> resistance >40 g

The cooperative regenerative braking system ensures that as much braking energy as possible is recuperated and stored as electrical energy.

To do this, the generator is used to slow the vehicle down. As soon as the braking requirements exceed the braking capacity of the generator, the classic wheel brakes are applied.

- Axial-lead capacitor
- e.g. 20 x 29 mm, 500 μF, 63 V with max. 9.5 Arms at 125°C

Comfort Electronics - EMC Protection

Smart Parking

Mirror control

All these motors are causing radiofrequency emissions!!!

Comfort Electronics - EMC Protection

To ensure successful operation of all electronic modules in the car, these interferences must be caught directly at each motor

Requirements:

- thermal stability up to 125°C even up to 150°C for special applications like the waterpump
- high pulse handling capability according ISO 7631
- high reliability
- flexible mounting possibilities

Typical applications:

Comfort Electronics - EMC Protection

MKT boxed B3252x series

- Customized mechanical configuration available
 - Bent leads
 - Longer leads
 - Lead-frames

➢ AEC Q200 qualified

Leadspace	5.0	mm	7.5 mm		10.0 mm		15.0 mm	
Туре	B32	2529	B32520		B32521		B32522	
V _R (Vdc)	63	100	63	100	63	100	63	100
V _{rms} (Vac)	40	63	40	63	40	63	40	63
C _R (μF)								
0.1								
0.22								
0.33								
0.47								
0,68								
1.0								
1.5								
2.2								
3.3								
4.7								
6.8								
10.0								

Why TDK-EPC Capacitors?

- Long-standing experience in developing reliable Capacitors for Automotive applications.
- High end product technologies with long life & high ripple capability
- ✓ ALU Cap with vibration strength up to 40g
- ✓ Wide voltage range from 25V up to 1kV
- Specialist for customized solutions
- Local resource able to provide strong technical support to customers' engineers

