
# Surface Mount EMI Filters 3 Terminal EMI Chips

=07

The high current 3 terminal chips are an extension to the Syfer 3 terminal EMI chip range, and are capable of carrying currents up to 2A. Suitable for use on DC lines on pcbs, they can prevent the radiation of interference emanating from high speed signal lines and IC's and also prevent the propagation of high frequency noise on power lines. Improved high frequency filtering performance is offered as a result of the DC current being fed directly through the EMI chip.





Typical performance is shown in the graph above. The actual performance will be influenced by the amount of series inductance added by the interconnections.

## **Specifications**

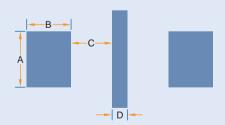
**Dimensions mm (inches)** 

|    | 0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1206                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| L  | $2.0 \pm 0.3 (0.079 \pm 0.012)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.2 \pm 0.3 \ (0.126 \pm 0.012)$ |
| W  | $1.25 \pm 0.2 (0.049 \pm 0.008)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.6 \pm 0.2 \ (0.063 \pm 0.008)$ |
| T  | $1.0 \pm 0.15 (0.039 \pm 0.006)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.1 \pm 0.2 \ (0.043 \pm 0.008)$ |
| L1 | $0.60 \pm 0.2 (0.024 \pm 0.008)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.95 \pm 0.3  (0.037 \pm 0.012)$ |
| L2 | $0.3 \pm 0.15  (0.012 \pm 0.006)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.5 \pm 0.25 (0.02 \pm 0.01)$    |
|    | and the second s |                                   |

#### 1806

| L  | 4.5 ± 0.35 (0.177 ± 0.014)        |  |
|----|-----------------------------------|--|
| W  | $1.6 \pm 0.2 \ (0.063 \pm 0.008)$ |  |
| T  | $1.1 \pm 0.2  (0.043 \pm 0.008)$  |  |
| L1 | $1.4 \pm 0.3  (0.055 \pm 0.012)$  |  |
| L2 | $0.5 \pm 0.25  (0.02 \pm 0.01)$   |  |

**Electrical Configuration Capacitance Measurement** Current Rating Temperature Rating Capacitance Tolerance Rated Voltage **Voltage Proof** 


**Insulation Resistance** DC Resistance (max.) **Solderability** 

C Filters At 1000hr point 0805 1A, 1206 & 1806 2A -55°C to 125°C ±20% 100V DC, 50V DC where shown 2.5 x Rated Volts for 5 seconds. Charging current limited to 50mA max. 100Gohms or 1000S, whichever is the less <0.06 Ohms IEC 68 - 2 - 20

| 1A        | 2A        | 2A        |  |
|-----------|-----------|-----------|--|
| 0805      | 1206      | 1806      |  |
| X7R       | X7R       | X7R       |  |
| 1.0nF     | 10nF      | 22nF      |  |
| 1.5nF     | 15nF      | 33nF      |  |
| 2.2nF     | 22nF      | 47nF/50V  |  |
| 3.3nF     | 33nF/50V  | 68nF/50V  |  |
| 4.7nF/50V | 47nF/50V  | 100nF/50V |  |
| 6.8nF/50V | 68nF/50V  | 150nF/50V |  |
| 10nF/50V  | 100nF/50V | 200nF/50V |  |
| 15nF/50V  |           |           |  |
| 22nF/50V  |           |           |  |
| 33nF/50V  |           |           |  |
| 47nF/50V  |           |           |  |

| Reeled quantities | 0805  | 1206  | 1806  |
|-------------------|-------|-------|-------|
| 178mm (7") reel   | 3000  | 2500  | 2500  |
| 330mm (13") reel  | 12000 | 10000 | 10000 |

## **Recommended Solder Lands**



### **Dimensions mm (inches)**

| Chip Size | A            | В           | С           | D           |
|-----------|--------------|-------------|-------------|-------------|
| 0805      | 0.95 (0.037) | 0.9 (0.035) | 0.3 (0.012) | 0.4 (0.016) |
| 1206      | 1.2 (0.047)  | 0.9 (0.035) | 0.6 (0.024) | 0.8 (0.03)  |
| 1806      | 1.2 (0.047)  | 1.4 (0.055) | 0.8 (0.03)  | 1.4 (0.055) |

