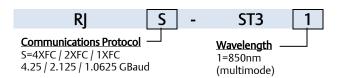
4x / 2x / 1x Fiber Channel Applications, 850nm Micro Module 4.25 / 2.125 / 1.0625 GBaud

Key Features & Benefits


- 4.25 GBaud Fiber Channel Compliant
- 2.125 GBaud Fiber Channel Compliant
- 1.0625 GBaud Fiber Channel Compliant
- 100Ω differential DC coupled inputs/outputs
- Industry Standard LC Connector Interface
- Metal housing
- Single +3.3V Power Supply
- RoHS Compliant

The Emerson Network Power Connectivity Solutions RJS-ST31 transceiver module is a high performance integrated full duplex data link for bi-directional communication over multimode optical fiber. It has been designed for use in space constrained applications, and offers the mandatory FC compliance commonly provided by SFF and SFP transceivers. This optoelectronic transceiver module is a Class 1 Laser product compliant with FDA Radiation Performance Standards, 21 CFR Subchapter J. This component is also Class 1 Laser compliant according to International Safety Standard IEC-825-1/EN 60825.

Ordering Information

Short Wavelength Optics

The use of short wavelength VCSELs (Vertical Cavity Surface Emitting Lasers) supports high performance data links. The transmitter input is driven with LVPECL logic levels, and its output can be shut down through the use of the Transmit Disable (TX_DIS) input. The optical receiver consists of a PIN and preamplifier assembly and CMOS limiting post-amplifier. Outputs from the receiver are CML logic level differential data, and an LVTTL signal detect output. The RX data outputs are squelched (JAM) when Signal Detect is inactive.

Absolute Maximum Ratings

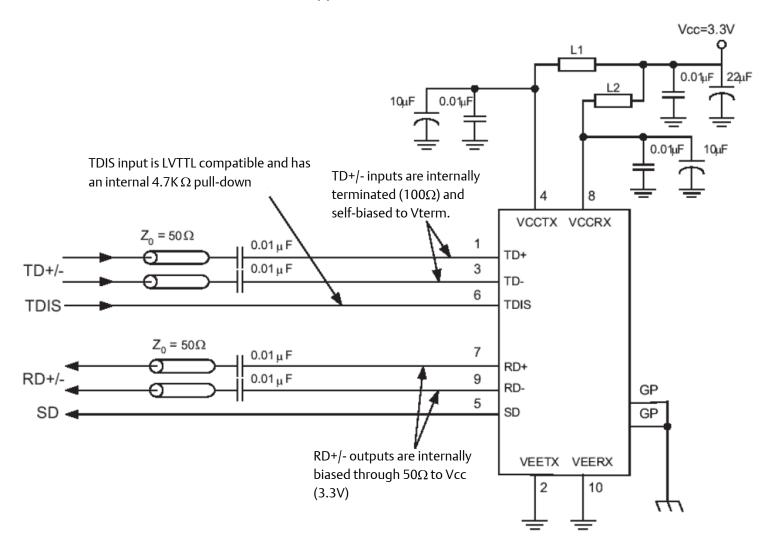
Absolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.

Parameter	Symbol	MIN	Typical	MAX	Unit
Storage Temperature	T_{STG}	-40		+85	°C
Supply Voltage	$V_{cc}T, V_{cc}R$			+4.5	VDC
Data AC Voltage (Differential)	TX+, TX-			2.2	Vpp
Data DC Voltage	TX+, TX-	-0.5		V _{cc}	Vpk

Recommended Operating Conditions

Parameter	Symbol	MIN	Typical	MAX	Unit			
Operating Case Temperature	Tc	0		+70	°C			
Supply Voltage	$V_{DD}T$, $V_{DD}R$	+3.135	+3.3	+3.465	VDC			
Baud Rate	BRate	1.0625		4.25	GBaud			

Module Specifications – Electrical: 0°C<Tc<+70°C, +3.135<Vcc<+3.465V


Parameter	Sym	MIN	Тур	MAX	Unit	Notes	
Supply Current			125	195	mA	0°C <tc<+70°c, +3.135<vcc<+3.465v<="" td=""></tc<+70°c,>	
Transmitter							
Input Swing (Differential)	Vin	500		2200	mVpp		
Input Impedance (Differential)	Rin		100		Ω	Internally terminated	
TX_DISABLE Input Voltage – High	ViH	2		3.465	V		
TX_DISABLE Input Voltage – Low	ViL	0		0.8	V		
Receiver							
Output Swing (Differential)		300		1200	mVpp		
Output Impedance (Differential)	Rout		100		Ω		
Single Detect Output Voltage – High	VroH	Vcc-0.5		Vcc+0.3	V	Io = 400μA; Host Vcc	
Single Detect Output Voltage – Low	VroL	0		0.8	V	Io = -4.0mA	

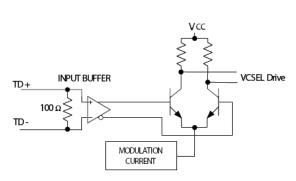
Module Specifications – Optical: 0°C<Tc<+70°C, +3.135<Vcc<+3.465V

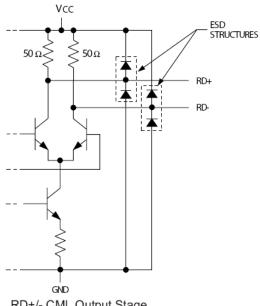
Parameter	Sym	MINI.	Tvp	MAX	Unit	Notes	
Parameter	Зупі	IVIIIV	Тур	IVIAA	Ullit	Notes	
Transmission Distance							
50μm Core Diameter MMF		150	250			BER<1.0E-12 @ 4.25 GBaud	
		300	500		M	BER<1.0E-12 @ 2.125 GBaud	
		550	1000			BER<1.0E-12 @ 1.25/1.0625 GBaud	
62.5μm Core Diameter MMF		70	150			BER<1.0E-12 @ 4.25 GBaud	
		150	300		M	BER<1.0E-12 @ 2.125 GBaud	
		300	500			BER<1.0E-12 @ 1.25/1.0625 GBaud	
Transmitter							
Optical Center Wavelength	λ	830	850	860	nm		
Spectral Width	Δλ			0.85	nm	RMS	
Optical Transmit Power	Popt	-9		-3	dBm	Average @ 850nm	
Optical Modulation Amplitude		247			μW	Pk-pk @ 4.25 GBaud	
	OMA	196			μW	Pk-pk @ 2.125 GBaud	
		156			μW	Pk-pk @ 1.0625 GBaud	
Relative Intensity Noise	RIN			-118	dB/Hz	Measured with -12dB optical return loss	
Output Eye	Complies with ANSI FC-PI Specification and Class 1 Laser Eye Safety						
Receiver							
Optical Input Wavelength	λ	830		860	nm		
	Pr	-15		0	dBm	BER<1.0E-12 @ 4.25 GBaud	
Optical Input Power		-18		0		BER<1.0E-12 @ 2.125 GBaud	
		-20		0		BER<1.0E-12 @ 1.25/1.0625 GBaud	
Optical Modulation Input		61			μW	Pk-pk @ 4.25 GBaud	
	OMA	49				Pk-pk @ 2.125 GBaud	
		31				Pk-pk @ 1.0625 GBaud	
Optical Return Loss	ORL	12			dB		
SD – Deasserted	Pd	-29			dBm		
SD – Asserted	Pa			-15	dBm	4.25 GBaud	
				-18		2.125 GBaud	
				-20		1.25/1.0625 GBaud	
SD – Hysteresis	Pa-Pd		2.25	3.5	dB		
•							

Emerson Network Power

Application Schematic

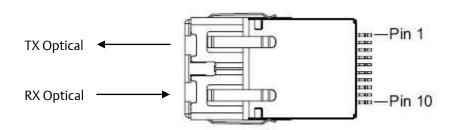
Notes:


- 1) L1 and L2 = MuRata BLM21A601S or equivalent (600Ω at 100MHz or better).
- 2) Route the differential pairs (TD+/- and RD+/-) together using 50Ω impedance matched traces.
- 3) Use separate power supply filtering for VCCTX and VCCRX, as shown.
- $4) \qquad \text{Use low ESR capacitors such as NPO or COG for AC Coupling of the TD+/- and RD+/- data signals.} \\$
- 5) Ground Posts (GP) are isolated from Signal Ground (Vee), and may be connected to Chassis Ground (as shown) or to Signal Ground if a Chassis Ground is not available.



Emerson Network Power

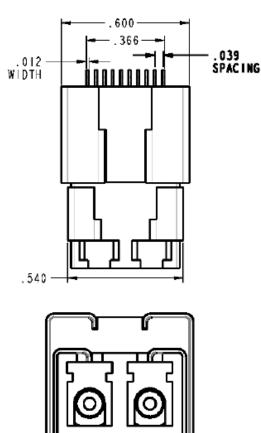
Data I/O Detail Diagrams

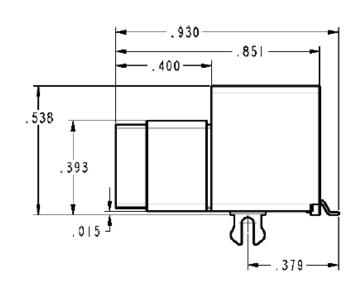

TD+/- LVPECL Input Stage

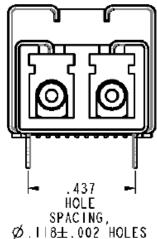
RD+/- CML Output Stage

Low Profile Optical Transceiver

Top View Shown


Pin Functions


Pin Number	Symbol	Description	Logic Family
1	TD+	Transmitter Data Non-Inverted Differential Input	LVPECL
2	TX_GND	Transmitter Ground	N/A
3	TD-	Transmitter Data Inverted Differential Input	LVPECL
4	Vcc_TX	Transmitter 3.3V Supply	N/A
5	SD	Optical Signal Detect. Logic 1 = Valid Input Level	LVTTL
6	TX_DIS	Transmitter Disable Logic 1 = Transmitter Disabled	LVTTL
7	RD+	Receiver Data Non-Inverted Differential Output	CML
8	Vcc_RX	Receiver 3.3V Supply	N/A
9	RD-	Receiver Data Inverted Differential Output	CML
10	RX_GND	Receiver Ground	N/A
Attaching Posts		The attaching posts are at case potential and may be connected to Chassis Ground	N/A


Page 4 of 5

Emerson Network Power

Mechanical Dimensions

IMPORTANT NOTICE

Stratos International, Inc. reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice. Stratos International, Inc. recommends that its customers obtain the latest version of the publications to verify, before placing orders, that the information being relied on is current. Stratos International, Inc. warrants performance of its optical link products to current specifications in accordance with the Stratos International, Inc. standard warranty. Testing and other quality control techniques are utilized to the extent that Stratos International, Inc. has determined it to be necessarily to support this warranty. Specific testing of all parameters of each optical link product is not necessarily performed on all optical link products. Stratos International, Inc. products are not designed for use in life support appliances, devices, or systems where malfunction of a Stratos International, Inc. product can reasonably be expected to result in a personal injury. Stratos International, Inc. customers using or selling optical link products for use in such applications do so at their own risk and agree to fully indemnify Stratos International, Inc. for any damages resulting from such improper use or sale. Stratos International, Inc. assumes no liability for Stratos International, Inc. applications assistance, customer product design, software performance, or infringement of patents or services described here in. Nor does Stratos International, Inc. warrant or represent that a license, either expressed or implied is granted under any patent right, copyright, or intellectual property right, and makes no representations or warranties that these products are free from patent, copyright, or intellectual property rights. Applications that are described herein for any of the optical link products are for illustrative purposes only. Stratos International, Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

