

WF103: Site Surveys for Wireless Networks

Jared Hofhiens

RF Embedded Product Manager

Agenda

• Theory

- Practice
- Application

• Link budget

Fresnel Zone

- Football-shaped path
- Acceptable = 60% of Zone 1 + 3 meters

Fresnel Zone

DIG

- Football-shaped path
- Acceptable = 60% of Zone 1 + 3 meters
- Raise antennas to help clear the zone

- Fresnel Zone
 - Football-shaped path
 - Acceptable = 60% of Zone 1 + 3 meters
 - Raise antennas to help clear the zone
 - Formula use a "Fresnel Zone Calculator" online

• Fresnel Zone diameters

Range Distance900 MHz Modems Required Fresnel Zone Diameter		2.4 GHz Modems Required Fresnel Zone Diameter	
1000 ft. (300 m)	16 ft. (5 m)	11 ft. (3.4 m)	
1 Mile (1.6 km)	32 ft. (10 m)	21 ft. (6.4 m)	
5 Miles (8 km)	68 ft. (21 m)	43 ft. (13 m)	
10 Miles (16 km)	95 ft. (29 m)	59 ft. (18 m)	

• Free Space Loss

 $36.56 + 20Log_{10}(Frequency) + 20Log_{10}(Dist in miles)$

- Use an online Free Space Loss calculator

Range Distance	900 MHz Free Space Loss	2.4 GHz Free Space Loss	
1000 ft. (300 m)	81 dB	90 dB	
1 Mile (1.6 km)	96 dB	104 dB	
5 Miles (8 km)	110 dB	118	
10 Miles (16 km)	116 dB	124	

• Link budget – path loss

Material	Attenuation @900 MHz
Glass 0.25" (6mm)	0.8 dB
Glass 0.5" (13mm)	2 dB
Lumber 3" (76mm)	2.8 dB
Brick 3.5" (89mm)	3.5 dB
Brick 7" (178mm)	5 dB
Brick 10.5" (267mm)	7 dB
Concrete 4" (102mm)	12 dB
Masonry Block 8" (203mm)	12 dB
Brick faced concrete 7.5" (192mm)	14 dB
Masonry Block 16" (406mm)	17 dB
Concrete 8" (203mm)	23 dB
Reinforced Concrete 3.5" (203mm)	27 dB
Masonry Block 24" (610mm)	28 dB
Concrete 12" (305mm)	35 dB

- Antenna cables
 - Mounting and cable considerations

Cable Type	dB Loss at 900 MHz per 100' (dB loss per 100m)	dB Loss at 2.4 GHz per 100' (dB loss per 100m)	Diameter Inches (mm)
RG-58	14.5 (47.4)	25.3 (83.2)	0.195 (4.95)
RG-174	25.9 (85.0)	44.4 (145.84)	0.100 (2.54)
RG-316	24.7 (81.0)	42.4 (139.0)	0.102 (2.59)
LMR-195 *	11.1 (36.5)	19.0 (62.4)	0.195 (4.95)
LMR-240	7.6 (24.8)	12.9 (42.4)	0.240 (6.10)
LMR-600	2.5 (8.2)	4.4 (14.5)	0.590 (14.99)

* We often use LMR-195

• Link budget

Fade Margin (dB) = TX power + TX antenna - path Loss + RX antenna - RX sensitivity - total connector and cable losses

•Design for 20 dB Fade Margin

• Pop quiz

Frequency:	900 MHz
TX Power:	20 dBm
RX Sensitivity:	-102 dBm
RF Cables:	2 dB on TX side; 0 dB on RX side
Antenna Gain:	8 dBi on TX side; 2 dBi on RX side

- Link budget = ? 20 - (-102) - 2 + 8 + 2 = 130 dB
- How far can we transmit?
 Design for 20 dB fade margin → We can spend 110 dB
 Answer: 5 miles line-of-sight
 Bonus How high do antennas need to be off the ground?
 Answer: 34 feet (68 ft Fresnel Zone diameter)

- Site Survey = Range + Interference Testing
- Why Range Test?

DICI

Live Demo – X-CTU "Range Test"

Fresnel Zone

- Football-shaped path
- Raise antennas to help clear the zone
- Expected ranges:
 - 1) Indoor
 - 2) Outdoor

- RSSI Received Signal Strength Indicator
 - Read memory register (e.g. X-CTU "Range Test")
 - Connect PWM output (e.g. green "RSSI" LEDs)

• Identify interference

- RSSI's dirty little secret: Interference
- Take a look around

- Identify interference
 - ATED (XBee 802.15.4) displays ambient RF noise level of all channels on the XBee

• Identify interference

Digi

– Spectrum analyzer

Site Survey = Range + Interference Testing

Bottom Line:

Packets received more important than RSSI

- Overcome interference: Hardware
 - Proximity to interferer
 - Antenna antidotes
 - Filters

- Overcome interference: Software
 - Channel/Hopping Pattern/Address
 - Retries/Acknowledgements
 - Protocol/Timing/Packetizing/Payload (Number of Bytes)

- Overcoming interference: Channel/Address
 - Which 2 will communicate?
 Match channels (HP) and addresses (DT)
 - Isolate networks using unique channel (HP)
 - XBee: set DH & DL on transmitter to match SH & SL on receiver

- Overcoming interference: Retries/Acknowledgements
 - Broadcast
 - Unicast

Digi

– Do you want retries?

