

Dual Interface EEPROM

Product presentation

December 2011

Dual Interface EEPROM – Introduction

Enabling a wide range of use cases...

Dual Interface EEPROM - Concept

Read and write parameters from *inside* (I²C) and *outside* (RF) the application

Dual Interface EEPROM - How it works

- Based on Passive RFID technology
 - Just add a 13.56 MHz inductive antenna onto your PCB

Inductive antenna

No battery needed to operate the dual interface EEPROM in RF mode

Dual Interface EEPROM: targeted applications

Industrial Medical Metering **Factory automation**

Peripherals, Communication, **Consumer Electronics**

- Parameter update
- **Diagnostics**
- **Maintenance**
- **Traceability**
- **Asset tracking**
- **Activation**

- Calibration
- Parameter update
- **Diagnostics**
- **Maintenance**
- **Asset tracking**
- **Activation**

Smart sensors, **RFID**

- **Data loggers**
- Identification
- **Traceability**
- Sensors/cold chain

Dual Interface EEPROM... New perspectives for parameters management

Operating data

User settings

Traceability information

Application data

Event log

Identification data

STMicroelectronics

Dual Interface EEPROM...

Convenient zero-power RF data download

On-The-Go Data Download

CPR card

Pedometer

Fitness

watch

Pulse

Oximeter

M24LR64

Inside

Patient Monitoring

Thermometer

Meter

Scale

Glucose

Weight

Home or Hospital Data Analysis

Dual Interface EEPROM... Improved consumer experience

Dual Interface EEPROM... Improved customer service

Static information Model ID Serial Number

Manufacturing plant

Date code

BOM version

Firmware version

Dynamic information

- Tamper detection information
- Incidents/defaults logs
- Tracking of critical components
- Last maintenance records

RF operations working even when device powered off!

Dual Interface EEPROM... Enabling battery-less applications

Innovative energy harvesting function enabling battery-less designs!

A few mA at ~2V delivered to your MCU and other components

Dual Interface EEPROM - benefits

Dual Interface EEPROM conclusion

Innovation based on 2 industry-standard protocols

Enables cost reduction and flexibility at all product life steps

If you would like more details, go to the next slide

Product Features

M24LR64 block diagram

M24LR16E block diagram

External power supply

I²C interface

RF WIP_BUSY (Digital output)

Vout (energy harvesting from RF)

ISO 15693 RF interface

Antenna Integration

Antenna integration

On-board

On-board inductor

Pros

Integrated and compact solution

Cons

Probably less space available on the PCB for a large antenna. Read range may then be smaller

Pros

- Small footprint
- Standard component (4.7µH)
- Small design effort

Cons

- Limited read range
- More sensitive to orientation vs reader antenna

Off-board or Daughter board

I²C interface

Pros

- Antenna may be placed closer to the outside of the device
- Larger antenna may be designed
- Eventually, better read ranges
- A 2-layer PCB is good enough

Cons

 Unless the antenna is connected, the M24LR64 may not be accessed in RF mode

Designers support – antenna design

- There are other options for integrating the antenna into your PCB. An example is « surrounding antenna »
- Contact your ST technical support for specific antenna design support

Designers support - antenna integration

- ST provides documents helping customers design the antenna by themselves
 - Application note
 - AN2972 Designing an antenna for the M24LR64-R dual interface
 - AN3178 Using a surface-mount inductor as M24LR64-R antenna
 - Software
 - Executable meant for computing a 13.56 MHz antenna
 - Reference designs

RF reader-writers

4 types of RF reader-writers

 Commercial ISO15693 RFID reader-writers, available through partners

ST's 13.56MHz transceiver IC for embedded RF reader-writer

Mobile phones with ISO15693 capable NFC function

ST's evaluation kits for evaluation / development

Commercial RF reader-writers

- ISO15693 standard at 13.56 MHz Firmware upgrade might be required
- Exists in various form factors providing wide range of price and performance

Check out the video at www/st/com/edemoroom (Play « Dual Interface EEPROM RF technology »)

STMicroelectronics

Commercial RF reader-writer partners

 ST is developing a network of reader partners, which are supporting the M24LR64.

More information available at <u>www.st.com/dualeeprom</u>

Embedded reader-writer: CR95HF chip

- ST ISO15693 products will be supported by the CR95HF with
 - Software libraries
 - Reference design
 - Application notes

Encryption

(e.g. STM32 UM0586)

Library

M24LR64, M24LR16E 64-Kbit and 16-Kbit **Dual I/F EEPROM**

> LRi1K, LRi2K, LRiS2K 1 and 2-Kbit ISO15693

> > LRiS64K 64-Kbit ISO15693 w/ password protection

Other ISO15693 Support of other ISO15693 devices

Design your own embedded RF reader-writer

UART Host controller SPI **Optional** AES

STMicroelectronics

ISO15693

Memory

Library

CR95HF with Dual Interface EEPROM

Enabling innovative interactive data exchange

CR95HF technical support

CR95HF drivers (ANSI C)

- Source code CR95HF drivers v1.0.rar
- Application note AN3355

Schematics and gerber files

- Schematics (0017031-B-SCM.pdf)
- Gerber files (0017031-B-Gerber.zip)

PC demonstration software

- M24LRxx Application Software 2.0.zip

Antenna design guidelines

- -Application note AN3394
- -Antenna design simplified basic tool

DEMO-CR95HF-A

CR95HF ordering information

NFC: mobile phones as RF reader-writers

Compatible with ISO15693-capable NFC phones

Dual EE NFC Android App

Works with DATALOG-M24LR-A reference design

- Dual EE app on the Android market
- Source code at www.st.com/dualeeprom

Nfc-Vreader Android App

- Reader-writer application
- Works with ISO15693 products
- Contact your local sales team for support

Evaluation Kits

Designers support Development kit – "DEVKIT-M24LR-A"

ANT1-M24LR-A

ANT2-M24LR-A

ANT3-M24LR-A

NB: SDK dll source files available for Windows for free. Charges apply for other platforms such as .Net, Java,...

Designers support Starter kit – "STARTKIT-M24LR-A"

NB: basic dll source files available for Windows only

ANT1-M24LR-A

ANT2-M24LR-A

Designers support Evaluation kits summary

Development kit

Purpose	Evaluation, proof-of-concept	Development, advanced evaluation
RF operating distance	Up to 8 cm*	Up to 40 cm*
RF and I ² C communication speed	Slow read 64k-bit : 1'24'' write 64k-bit : 5'34''	Fast read 64k-bit : 0'08" write 64k-bit : 0'31"
RF capabilities	1 tag at a time	Multi-tag capability
Software	Windows dll source code	Windows SDK for free (others platforms SDK with charge) FEIG download access code available
Ordering information	STARTKIT-M24LR-A	DEVKIT-M24LR-A

Reference Designs

A wide range of antenna boards...

Contact your local ST sales team for more details

M24LR64-R Datalogger reference design

- DATALOG-M24LR-A is a complete reference design with
 - Hardware design (including antenna design)
 - MCU firmware (STM8L)
 - PC software

Turn-key data logging design

DATALOG-M24LR-A

M24LR64-R Datalogger reference design

- Demonstrates the use of the M24LR64 in a data logging application (medical, industrial sensors, ...)
- helps customers get started with their RFID-enabled datalogger design
- Can be extended to also sense shocks/vibrations, pressure, light...

M24LR64-R Datalogger supporting material

The M24LR64-R Datalogger supporting material can be downloaded at www.st.com/dualeeprom

Ordering Information

Dual Interface EEPROM Nomenclature for package delivery

Dual Interface EEPROM Nomenclature for die delivery

M24LR64-RS185/2 – die format

- M24LR64 chip in die form (meant for wire bonding technology)
- Ultra thin: 140µm thickness +/-10µm
- Sawn wafers on UV tape and 8" ring

- provided by ST Z version: bad chips identified with ink dots on wafer
- 6 months lifetime @25 degC (UV tape limited)
- Production Minimum Ordering Quantity (MOQ) is 5 wafers, i.e. approximately 42.5ku

See TN0185 for complete die form delivery information