

TCD4027-26.0M Microcell, Femtocell TCVCXO Oscillator

June 2010

- Pletronics' TCD4 Series is a temperature compensated voltage controlled crystal oscillator with a clipped sinewave output.
- The package is designed for high density surface mount designs.
- · Tape and Reel packaging is available.

- 26 MHz
- 3.2 x 5 mm LCC Ceramic Package
- Optional Voltage Control Function

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.10 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020D.1

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +6.5V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

ESD Rating

Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

June 2010

Part Marking:

2600.yww • PLExYWWz 2600 = 26.0 frequency in MHz

yww = Year and Week of the crystal manufacture

PLE = Pletronics

X = Model number, normally a "B"

YWW = Year and Week of assembly of the TCXO

Z = internal factory code

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm)
Font is Courier New
Bar code is 39-Full ASCII
The bar code will show TCD4027-26.0M for the Part Number

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

Customer P/N:

12345678

RoHS Compliant

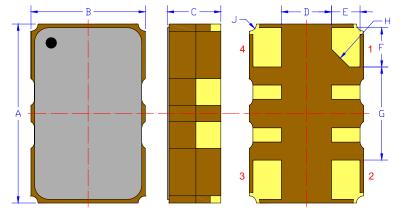
2nd LvL Interconnect

Category=e4

Max Safe Temp=260C for 10s 2X Max

June 2010

Electrical Specification for specified Vcc over the specified temperature range


Item	Min	TYP	Max	Unit	Condition
Frequency Stability over temperature	-100	-	+100	ppb	Over 0°C-70°C at fixed supply voltage + load (reference to midpoint min/max frequency)
Holdover	-100	0	100	ppb	Over 0°C-70°C for 24 hours
Frequency Calibration	-2.0	-	+2.0	ppm	Frequency offset at 25°C, 60 minutes after reflow.
Supply voltage stability	•	•	10	ppb	± 2% variation in supply voltage at 25°C
Load sensitivity	-5	•	5	ppb	2% variation in magnitude from 10K ohm ±10% 10 pF
Aging rate following reflow		±10 ±3 ±1	1 1 1	ppb/day	1 day after reflow 7 days after reflow 30 days after reflow
Long term stability (Aging)	-1000	•	1000	ppb	Long term stability after 1 year
Long term stability (Aging)	-1000	•	1500	ppb	Long term stability after 5 years
Output Waveform	Clipped Sinewave				DC Coupled
Output Level	0.8	-	-	V p-p	Load: 10K ohm <u>+</u> 10% 10 pF <u>+</u> 10%, DC Coupled
Phase Noise 10 Hz 100Hz 1 KHz 10KHz		-100 -120 -134 -144		dBc/Hz	Typical values for a 26.0 MHz oscillator at 25°C
Jitter	•	•	1.7	pS	Frequency offset from carrier 10Hz to 1MHz
V Supply Range ¹ V _{cc}	2.7	3.3	3.5	Volts	
Supply Current I _{CC}	•	•	3.0	mA	
Long term stability	-1500	-	1500	ppb	Long term stability after 5 years
Vcontrol Range	0.5	-	2.50	Volts	1.50 volts nominal
Frequency Pullability	4.5	-	10	±ppm	Slope positive
Linearity	-	0.05	2.0	%	In accordance with MIL-PRF-55310
Operating Temperature Range	0	•	+70	°C	
Storage Temperature Range	-55	•	+95	°C	

Note: For correct operation a 10nF supply de-coupling capacitor should be placed next to the device.

June 2010

Mechanical:

	Inches	mm
Α	0.197 <u>+</u> 0.008	5.00 <u>+</u> 0.20
В	0.126 <u>+</u> 0.008	3.20 <u>+</u> 0.20
С	0.059 max	1.50 max
D ¹	0.0.55	1.40
E ¹	0.031	0.80
F ¹	0.043	1.10
G ¹	0.102	2.60
H ¹	0.013C	0.50C
J ¹	0.008	0.20R

Not to Scale

¹ Typical dimensions

Contacts:

Gold 11.8 to 39.4 μ inches (0.3 to1.0 μ m)

over

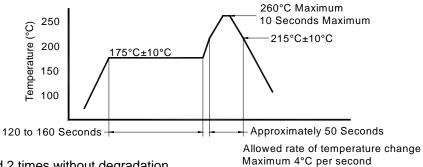
Nickel 50 to 350 μinches (1.27 to 8.89 μm)

Pad	Function	Note
1	Vcontrol Input	If this function is not specified, recommend connecting this pad to ground.
2	Ground (GND)	
3	Output	The output is DC coupled. Most common used with external coupling capacitor. 0.001 to 0.01uF recommended
4	Supply Voltage (V _{CC})	Connect an appropriate power supply bypass capacitors as close as possible.
-	N. C.	All other pads on the bottom shall not be connected. These are internally connected and were for the TCXO compensation process

Layout and application information

All connection points in the designated region have solder mask cover to avoid any electrical connections

For Optimum Stability and Jitter Performance, Pletronics recommends:

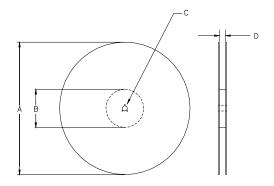

0.14 (3.6mm) 0.09(2.2mm)

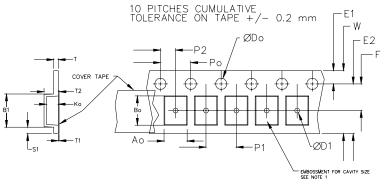
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.
- minimize air flow across the device

June 2010

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1								
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max
8mm		1.0			2.0			
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05			
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1
24mm		1.5			<u>+</u> 0.1			

Variable Dimensions Table 2							
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

			REE			
	Α	inches	7.0	10.0	13.0	
		mm	177.8	254.0	330.2	
	В	inches	2.50	4.00	3.75	
		mm	63.5	101.6	95.3	Tape Width
	С	mm	13	Width		
	D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0
•	Reel dimensions may vary from the above					

USER DIRECTION OF UNREELING ----

June 2010

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

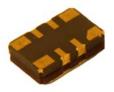
PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.


Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: <u>www.pletronics.com</u>

Copyright © 2010, Pletronics Inc.

TCD4029-26.0M Microcell, Femtocell TCVCXO Oscillator

June 2010

- Pletronics' TCD4 Series is a temperature compensated voltage controlled crystal oscillator with a clipped sinewave output.
- The package is designed for high density surface mount designs.
- · Tape and Reel packaging is available.

- 26 MHz
- 3.2 x 5 mm LCC Ceramic Package
- Optional Voltage Control Function

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.10 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020D.1

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +6.5V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

ESD Rating

Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

June 2010

Part Marking:

26.00 frequency in MHz 2600

Year and Week of the crystal manufacture VWW

PLE **Pletronics**

Model number, normally a "B" Χ

YWW Year and Week of assembly of the TCXO

Ζ internal factory code

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII The bar code will show TCD4029-26.0M for the Part Number Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

Customer P/N:

12345678

D/C TC512SA

RoHS Compliant

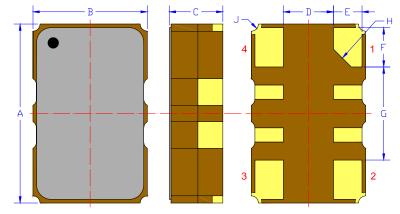
2nd LvL Interconnect

Category=e4

Max Safe Temp=260C for 10s 2X Max

June 2010

Electrical Specification for specified Vcc over the specified temperature range


Item	Min	TYP	Max	Unit	Condition
Frequency Stability over temperature	-100	1	+100	ppb	Over 0°C-80°C at fixed supply voltage + load (reference to midpoint min/max frequency)
Holdover	-100	0	100	ppb	Over 0°C-80°C for 24 hours
Frequency Calibration	-2.0	•	+2.0	ppm	Frequency offset at 25°C, 60 minutes after reflow.
Supply voltage stability	ı	ı	10	ppb	± 2% variation in supply voltage at 25°C
Load sensitivity	-5	ı	5	ppb	2% variation in magnitude from 10K ohm ±10% 10 pF
Aging rate following reflow	- - -	±10 ±3 ±1	- - -	ppb/day	1 day after reflow 7 days after reflow 30 days after reflow
Long term stability (Aging)	-1000	-	1000	ppb	Long term stability after 1 year
Long term stability (Aging)	-1000	-	1500	ppb	Long term stability after 5 years
Output Waveform		Clipped	Sinewave		DC Coupled
Output Level	0.8	•	•	V p-p	Load: 10K ohm ± 10% 10 pF ±10%, DC Coupled
Phase Noise 10 Hz 100Hz 1 KHz 10KHz		-100 -120 -134 -144		dBc/Hz	Typical values for a 26.0 MHz oscillator at 25°C
Jitter	•	-	1.7	pS	Frequency offset from carrier 10Hz to 1MHz
V Supply Range ¹ V _{CC}	2.7	3.3	3.5	Volts	
Supply Current I _{CC}	1	-	3.0	mA	
Long term stability	-1500	-	1500	ppb	Long term stability after 5 years
Vcontrol Range	0.5	•	2.50	Volts	1.50 volts nominal
Frequency Pullability	4.5	-	10	±ppm	Slope positive
Linearity	1	0.05	2.0	%	In accordance with MIL-PRF-55310
Operating Temperature Range	0	•	+80	°C	
Storage Temperature Range	-55	-	+95	°C	

Note: For correct operation a 10nF supply de-coupling capacitor should be placed next to the device.

June 2010

Mechanical:

	Inches	mm
Α	0.197 <u>+</u> 0.008	5.00 <u>+</u> 0.20
В	0.126 <u>+</u> 0.008	3.20 <u>+</u> 0.20
С	0.059 max	1.50 max
D ¹	0.0.55	1.40
E ¹	0.031	0.80
F ¹	0.043	1.10
G ¹	0.102	2.60
H ¹	0.013C	0.50C
J ¹	0.008	0.20R

Not to Scale

¹ Typical dimensions

Contacts:

Gold 11.8 to 39.4 μ inches (0.3 to1.0 μ m)

over

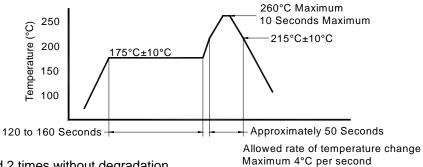
Nickel 50 to 350 μinches (1.27 to 8.89 μm)

Pad	Function	Note
1	Vcontrol Input	If this function is not specified, recommend connecting this pad to ground.
2	Ground (GND)	
3	Output	The output is DC coupled. Most common used with external coupling capacitor. 0.001 to 0.01uF recommended
4	Supply Voltage (V _{CC})	Connect an appropriate power supply bypass capacitors as close as possible.
-	N. C.	All other pads on the bottom shall not be connected. These are internally connected and were for the TCXO compensation process

Layout and application information

All connection points in the designated region have solder mask cover to avoid any electrical connections

For Optimum Stability and Jitter Performance, Pletronics recommends:

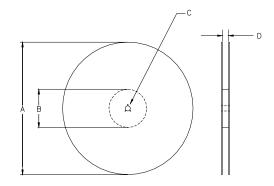

0.09(2.2mm)

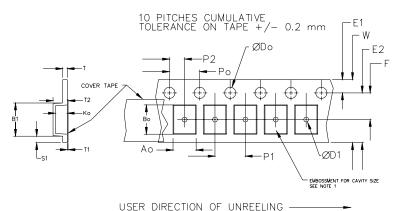
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.
- minimize air flow across the device

June 2010

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1								
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max
8mm		1.0			2.0			
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05			
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1
24mm		1.5			<u>+</u> 0.1			

	Variable Dimensions Table 2						
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

		REE			
Α	inches	7.0	7.0 10.0		
	mm	177.8	254.0	330.2	
В	inches	2.50	4.00	3.75	
	mm	63.5	101.6	95.3	Tape Width
С	mm	13	widin		
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0

Reel dimensions may vary from the above

June 2010

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: <u>www.pletronics.com</u>

Copyright © 2010, Pletronics Inc.

TCD4032-19.2M Microcell, Femtocell TCVCXO Oscillator

June 2010

- Pletronics' TCD4 Series is a temperature compensated voltage controlled crystal oscillator with a clipped sinewave output.
- The package is designed for high density surface mount designs.
- · Tape and Reel packaging is available.

- 19.2 MHz
- 3.2 x 5 mm LCC Ceramic Package
- Optional Voltage Control Function

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.10 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020D.1

Second Level Interconnect code: e4

Absolute Maximum Ratings:

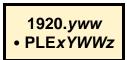
Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +6.5V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

ESD Rating


Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

TCD4032-19.2M TCVCXO Oscillator

June 2010

Part Marking:

1920 = 19.20 frequency in MHz

yww = Year and Week of the crystal manufacture

PLE = Pletronics

X = Model number, normally a "B"

YWW = Year and Week of assembly of the TCXO

Z = internal factory code

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm)
Font is Courier New
Bar code is 39-Full ASCII
The bar code will show TCD4032-19.2M for the Part Number

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

Customer P/N:

12345678

RoHS Compliant

2nd LvL Interconnect

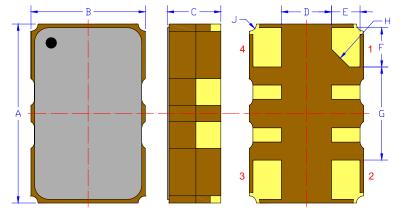
Category=e4

Max Safe Temp=260C for 10s 2X Max

June 2010

Electrical Specification for specified Vcc over the specified temperature range

Item	Min	TYP	Max	Unit	Condition
Frequency Stability over temperature	-100	-	+100	ppb	Over 0°C-80°C at fixed supply voltage + load (reference to midpoint min/max frequency)
Holdover	-100	0	100	ppb	Over 0°C-80°C for 24 hours
Frequency Calibration	-2.0	ı	+2.0	ppm	Frequency offset at 25°C, 60 minutes after reflow.
Supply voltage stability	-	•	10	ppb	± 2% variation in supply voltage at 25°C
Load sensitivity	-5	ı	5	ppb	2% variation in magnitude from 10K ohm ±10% 10 pF
Aging rate following reflow	- - -	±10 ±3 ±1	-	ppb/day	1 day after reflow 7 days after reflow 30 days after reflow
Long term stability (Aging)	-1000	-	1000	ppb	Long term stability after 1 year
Long term stability (Aging)	-1000	•	1500	ppb	Long term stability after 5 years
Output Waveform	С		Clipped Sinewave		DC Coupled
Output Level	0.8	•	•	V p-p	Load: 10K ohm ± 10% 10 pF ±10%, DC Coupled
Phase Noise 10 Hz 100Hz 1 KHz 10KHz	- - -	-100 -120 -134 -144		dBc/Hz	Typical values for a 19.2 MHz oscillator at 25°C
Jitter	-	-	1.7	pS	Frequency offset from carrier 10Hz to 1MHz
V Supply Range ¹ V _{cc}	2.7	3.3	3.5	Volts	
Supply Current I _{CC}	-	•	3.0	mA	
Long term stability	-1500	•	1500	ppb	Long term stability after 5 years
Vcontrol Range	0.5	-	2.50	Volts	1.50 volts nominal
Frequency Pullability	4.5	-	10	±ppm	Slope positive
Linearity	-	0.05	2.0	%	In accordance with MIL-PRF-55310
Operating Temperature Range	0	-	+80	°C	
Storage Temperature Range	-55	-	+95	°C	


Note: 1 For correct operation a 10nF supply de-coupling capacitor should be placed next to the device.

TCD4032-19.2M **TCVCXO** Oscillator

June 2010

Mechanical:

	Inches	mm
Α	0.197 <u>+</u> 0.008	5.00 <u>+</u> 0.20
В	0.126 <u>+</u> 0.008	3.20 <u>+</u> 0.20
С	0.059 max	1.50 max
D ¹	0.0.55	1.40
E ¹	0.031	0.80
F ¹	0.043	1.10
G ¹	0.102	2.60
H ¹	0.013C	0.50C
J ¹	0.008	0.20R

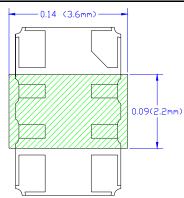
Not to Scale

¹ Typical dimensions

Contacts:

Gold 11.8 to 39.4 µinches (0.3 to 1.0 µm)

Nickel 50 to 350 μinches (1.27 to 8.89 μm)

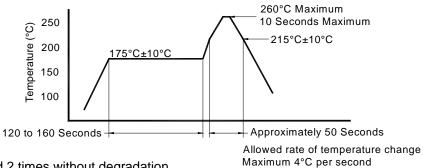

Pad	Function	Note
1	Vcontrol Input	If this function is not specified, recommend connecting this pad to ground.
2	Ground (GND)	
3	Output	The output is DC coupled. Most common used with external coupling capacitor. 0.001 to 0.01uF recommended
4	Supply Voltage (V _{CC})	Connect an appropriate power supply bypass capacitors as close as possible.
-	N. C.	All other pads on the bottom shall not be connected. These are internally connected and were for the TCXO compensation process

Layout and application information

All connection points in the designated region have solder mask cover to avoid any electrical connections

recommends:

- For Optimum Stability and Jitter Performance, Pletronics a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.
- minimize air flow across the device

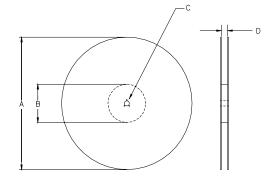


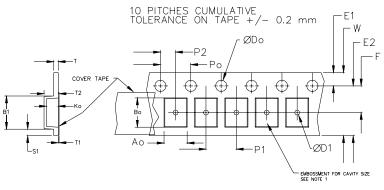
TCD4032-19.2M TCVCXO Oscillator

June 2010

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1									
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max	
8mm		1.0			2.0				
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05				
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1	
24mm		1.5			<u>+</u> 0.1				

Variable Dimensions Table 2								
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko	
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1	

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

			REE			
	Α	inches	7.0	10.0	13.0	
		mm	177.8	254.0	330.2	
	В	inches	2.50	4.00	3.75	
		mm	63.5	101.6	95.3	Tape Width
	С	mm	13	Width		
	D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0
,	Re	el dimen	sions ma	y vary fro	om the ab	ove

USER DIRECTION OF UNREELING -

TCD4032-19.2M TCVCXO Oscillator

June 2010

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

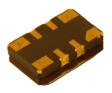
PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.


Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: www.pletronics.com

Copyright © 2010, Pletronics Inc.

TCD4050-20.0M Microcell, Femtocell TCVCXO Oscillator

December 2010

- Pletronics' TCD4 Series is a temperature compensated voltage controlled crystal oscillator with a clipped sinewave output.
- The package is designed for high density surface mount designs.
- · Tape and Reel packaging is available.

- 20 MHz
- 3.2 x 5 mm LCC Ceramic Package
- Optional Voltage Control Function

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.10 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020D.1

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit				
V _{cc} Supply Voltage	-0.5V to +6.5V				
Vi Input Voltage	-0.5V to V _{CC} + 0.5V				
Vo Output Voltage	-0.5V to V _{CC} + 0.5V				

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

ESD Rating

Model	Minimum Voltage	Conditions		
Human Body Model	1500	MIL-STD-883 Method 3115		
Charged Device Model	1000	JESD 22-C101		

December 2010

Part Marking:

2000 20.00 frequency in MHz

Year and Week of the crystal manufacture yww

PLE **Pletronics**

Χ Model number, normally a "B"

YWWYear and Week of assembly of the TCXO

internal factory code Ζ

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII The bar code will show TCD4029-26.0M for the Part Number Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

P/N:

TCD4050-20.0M Customer P/N:

12345678

1000

D/C

MSL: 1

TC512SA

RoHS Compliant

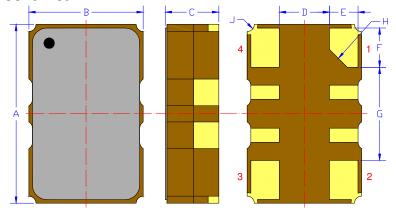
2nd LvL Interconnect

Category=e4

Max Safe Temp=260C for 10s 2X Max

December 2010

Electrical Specification for specified Vcc over the specified temperature range


Item	Min	TYP	Max	Unit	Condition
Frequency Stability over temperature	-100	-	+100	ppb	Over 0°C-80°C at fixed supply voltage + load (reference to midpoint min/max frequency)
Holdover	-100	0	100	ppb	Over 0°C-80°C for 24 hours
Frequency Calibration	-2.0	1	+2.0	ppm	Frequency offset at 25°C, 60 minutes after reflow.
Supply voltage stability	-	-	10	ppb	\pm 2% variation in supply voltage at 25°C
Load sensitivity	-5	-	5	ppb	2% variation in magnitude from 10K ohm <u>+</u> 10% 10 pF
Aging rate following reflow		±10 ±3 ±1		ppb/day	1 day after reflow 7 days after reflow 30 days after reflow
Long term stability (Aging)	-1000	-	1000	ppb	Long term stability after 1 year
Long term stability (Aging)	-1000	•	1500	ppb	Long term stability after 5 years
Output Waveform	Clipped Sinewave				DC Coupled
Output Level	8.0	1	1	V p-p	Load: 10K ohm <u>+</u> 10% 10 pF <u>+</u> 10%, DC Coupled
Phase Noise 10 Hz 100Hz 1 KHz 10KHz		-100 -120 -134 -144		dBc/Hz	Typical values for a 26.0 MHz oscillator at 25°C
Jitter	-	-	1.7	pS	Frequency offset from carrier 10Hz to 1MHz
V Supply Range ¹ V _{cc}	2.7	3.3	3.5	Volts	
Supply Current I _{CC}	1	•	3.0	mA	
Long term stability	-1500	-	1500	ppb	Long term stability after 5 years
Vcontrol Range	0.5	-	2.50	Volts	1.50 volts nominal
Frequency Pullability	4.5	-	10	±ppm	Slope positive
Linearity	-	0.05	2.0	%	In accordance with MIL-PRF-55310
Operating Temperature Range	0	-	+80	°C	
Storage Temperature Range	-55	-	+95	°C	

Note: For correct operation a 10nF supply de-coupling capacitor should be placed next to the device.

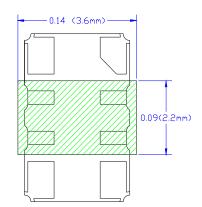
December 2010

Mechanical:

	Inches	mm					
Α	0.197 <u>+</u> 0.008	5.00 <u>+</u> 0.20					
В	0.126 <u>+</u> 0.008	3.20 <u>+</u> 0.20					
С	0.059 max	1.50 max					
D¹	0.0.55	1.40					
E¹	0.031	0.80					
F¹	0.043	1.10					
G¹	0.102	2.60					
H ¹	0.013C	0.50C					
J ¹	0.008	0.20R					

Not to Scale

¹ Typical dimensions

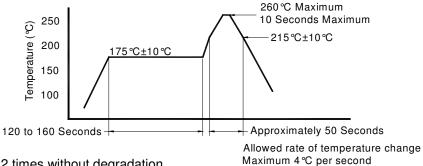

Contacts:

Gold 11.8 to 39.4 μ inches (0.3 to1.0 μ m) over Nickel 50 to 350 μ inches (1.27 to 8.89 μ m)

Pad	Function	Note
1	Vcontrol Input	If this function is not specified, recommend connecting this pad to ground.
2	Ground (GND)	
3	Output	The output is DC coupled. Most common used with external coupling capacitor. 0.001 to 0.01uF recommended
4	Supply Voltage (V _{CC})	Connect an appropriate power supply bypass capacitors as close as possible.
-	N. C.	All other pads on the bottom shall not be connected. These are internally connected and were for the TCXO compensation process

Layout and application information

All connection points in the designated region have solder mask cover to avoid any electrical connections

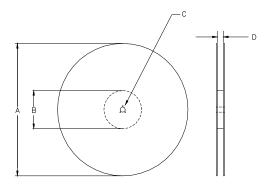

For Optimum Stability and Jitter Performance, Pletronics recommends:

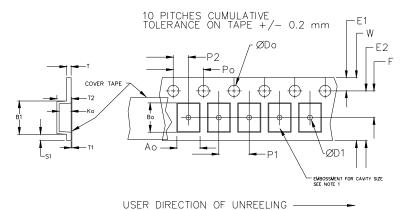
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.
- minimize air flow across the device

December 2010

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1									
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max	
8mm		1.0			2.0				
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05				
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1	
24mm		1.5			<u>+</u> 0.1				

Variable Dimensions Table 2								
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko	
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1	

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

		REE	L DIMENSI	ONS	
Α	inches	7.0	7.0 10.0		
	mm	177.8	254.0	330.2	
В	inches	2.50	4.00	3.75	
	mm	63.5	101.6	95.3	Tape Width
С	mm	13	vviatri		
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0

Reel dimensions may vary from the above

December 2010

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: www.pletronics.com

Copyright © 2010, Pletronics Inc.

TCD4051-10.0M Microcell, Femtocell TCVCXO Oscillator

December 2010

- Pletronics' TCD4 Series is a temperature compensated voltage controlled crystal oscillator with a clipped sinewave output.
- The package is designed for high density surface mount designs.
- · Tape and Reel packaging is available.

- 10 MHz
- 3.2 x 5 mm LCC Ceramic Package
- Optional Voltage Control Function

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.10 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020D.1

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit			
V _{cc} Supply Voltage	-0.5V to +6.5V			
Vi Input Voltage	-0.5V to V _{CC} + 0.5V			
Vo Output Voltage	-0.5V to V _{CC} + 0.5V			

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

ESD Rating

Model	Minimum Voltage	Conditions		
Human Body Model	1500	MIL-STD-883 Method 3115		
Charged Device Model	1000	JESD 22-C101		

December 2010

Part Marking:

2000.yww • PLExYWWz 2000 = 20.00 frequency in MHz

yww = Year and Week of the crystal manufacture

PLE = Pletronics

X = Model number, normally a "B"

YWW = Year and Week of assembly of the TCXO

Z = internal factory code

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm)
Font is Courier New
Bar code is 39-Full ASCII
The bar code will show TCD4029-26.0M for the Part Number

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

TCD4051-10.0M
Customer P/N:

12345678

MSL: 1

RoHS Compliant

2nd LvL Interconnect

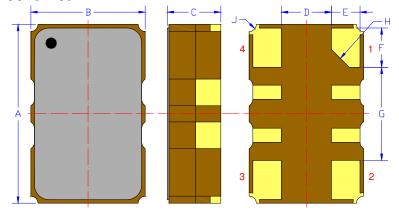
Category=e4

Max Safe Temp=260C for 10s 2X Max

^{*} Device marking will show 20.0 MHz. Actual output frequency will be 10 Mhz

December 2010

Electrical Specification for specified Vcc over the specified temperature range


Item	Min	TYP	Max	Unit	Condition
Frequency Stability over temperature	-100	1	+100	ppb	Over 0°C-80°C at fixed supply voltage + load (reference to midpoint min/max frequency)
Holdover	-100	0	100	ppb	Over 0°C-80°C for 24 hours
Frequency Calibration	-2.0	ı	+2.0	ppm	Frequency offset at 25°C, 60 minutes after reflow.
Supply voltage stability	1	1	10	ppb	± 2% variation in supply voltage at 25°C
Load sensitivity	-5	1	5	ppb	2% variation in magnitude from 10K ohm ±10% 10 pF
Aging rate following reflow	1 1 1	±10 ±3 ±1	1 1 1	ppb/day	1 day after reflow 7 days after reflow 30 days after reflow
Long term stability (Aging)	-1000	•	1000	ppb	Long term stability after 1 year
Long term stability (Aging)	-1000	-	1500	ppb	Long term stability after 5 years
Output Waveform	Clipped Sinewave				DC Coupled
Output Level	0.8	1	•	V p-p	Load: 10K ohm ± 10% 10 pF ±10%, DC Coupled
Phase Noise 10 Hz 100Hz 1 KHz 10KHz	1111	-100 -120 -134 -144		dBc/Hz	Typical values for a 26.0 MHz oscillator at 25°C
Jitter	1	1	1.7	pS	Frequency offset from carrier 10Hz to 1MHz
V Supply Range ¹ V _{CC}	2.7	3.3	3.5	Volts	
Supply Current I _{CC}	-	-	3.0	mA	
Long term stability	-1500	-	1500	ppb	Long term stability after 5 years
Vcontrol Range	0.5	-	2.50	Volts	1.50 volts nominal
Frequency Pullability	4.5	-	10	±ppm	Slope positive
Linearity	-	0.05	2.0	%	In accordance with MIL-PRF-55310
Operating Temperature Range	0	-	+80	°C	
Storage Temperature Range	-55	1	+95	°C	

Note: For correct operation a 10nF supply de-coupling capacitor should be placed next to the device.

December 2010

Mechanical:

	Inches	mm
Α	0.197 <u>+</u> 0.008	5.00 <u>+</u> 0.20
В	0.126 <u>+</u> 0.008	3.20 <u>+</u> 0.20
С	0.059 max	1.50 max
D¹	0.0.55	1.40
E¹	0.031	0.80
F¹	0.043	1.10
G¹	0.102	2.60
H¹	0.013C	0.50C
J ¹	0.008	0.20R

Not to Scale

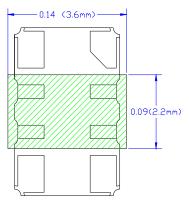
¹ Typical dimensions

Contacts:

Gold 11.8 to 39.4 $\mu inches$ (0.3 to1.0 $\mu m)$

over

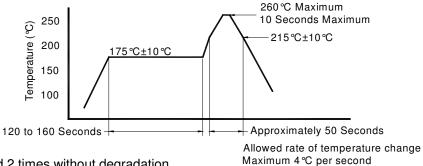
Nickel 50 to 350 μinches (1.27 to 8.89 μm)


Pad	Function	Note
1	Vcontrol Input	If this function is not specified, recommend connecting this pad to ground.
2	Ground (GND)	
3	Output	The output is DC coupled. Most common used with external coupling capacitor. 0.001 to 0.01uF recommended
4	Supply Voltage (V _{CC})	Connect an appropriate power supply bypass capacitors as close as possible.
-	N. C.	All other pads on the bottom shall not be connected. These are internally connected and were for the TCXO compensation process

Layout and application information

All connection points in the designated region have solder mask cover to avoid any electrical connections

For Optimum Stability and Jitter Performance, Pletronics recommends:

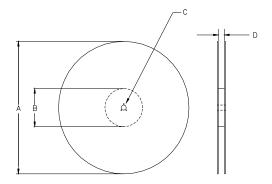

- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.
- minimize air flow across the device

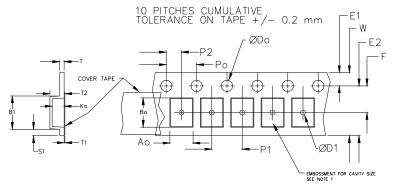
December 2010

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.

Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1								
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max
8mm		1.0			2.0			
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05			
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1
24mm		1.5			<u>+</u> 0.1			


Variable Dimensions Table 2							
Tape B1 E2 Min F P1 T2 W Ao, Bo & Ko Size Max Max Ko						Ao, Bo & Ko	
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not

Not to scale

		REE			
Α	inches	7.0	10.0	13.0	
	mm	177.8	254.0	330.2	
В	inches	2.50	4.00	3.75	
	mm	63.5	101.6	95.3	Tape Width
С	mm	13	vviatri		
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0

Reel dimensions may vary from the above

USER DIRECTION OF UNREELING -

December 2010

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: www.pletronics.com

Copyright © 2010, Pletronics Inc.