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Creating Programs 
That Learn
By Stephan Evanczuk for Mouser Electronics

Artificial intelligence lies at the heart 
of dramatic advances in automotive, 
healthcare, industrial systems, and 
an expanding number of application 
areas. As interest continues to rise, 
the nature of AI has elicited some 
confusion and even fear about 
the growing role of AI in everyday 
life. The type of AI that enables an 
increasing number of smart products 
builds on straightforward but 
nontrivial engineering methods to 
deliver capabilities far removed from 
the civilization-ending AI of science 
fiction. 

Definitions of AI range from its most 
advanced—and still conceptual—
form, where machines are human-
like in behavior, to a more familiar 
form where machines are trained 
to perform specific tasks. In its 
most advanced form, true artificial 
intelligences would operate without 
the explicit direction and control of 
humans to arrive independently at 
some conclusion or take some action 
just as a human might. At the more 
familiar engineering-oriented end of 
the AI spectrum, machine-learning 
(ML) methods typically provide the 
computational foundation for current 
AI applications. These methods 
generate responses to input data 
with impressive speed and accuracy 
without using code explicitly written 

to provide those responses. While 
software developers write code 
to process data in conventional 
systems, ML developers use data 
to teach ML algorithms such as 
artificial neural network models to 
generate desired responses to data. 

How is a basic 
neural network 
model built?
Among the most familiar types of 
machine learning, neural network 
models pass data from their input 
layer through hidden layers to an 
output layer (Figure 1). As described, 
the hidden layers are trained to 
perform a series of transformations 
that extract the features needed 
to distinguish between different 
classes of input data. These 

transformations culminate in 
values loaded into the output layer, 
where each output unit provides a 
value representing the probability 
that the input data belongs in a 
particular class. With this approach, 
developers can classify data such 
as images or sensor measurements 
using an appropriate neural network 
architecture. 

Neural network architectures take 
many forms, ranging from the simple 
type of feedforward neural network 
shown in Figure 1 to deep neural 
networks (DNNs) built with several 
hidden layers and individual layers 
containing hundreds of thousands 
of neurons. Nevertheless, different 
architectures typically build on an 
artificial neuron unit with multiple 
inputs and a single output (Figure 2). 

Figure 1: Neural networks comprise layers of artificial neurons trained to distinguish 
between different input data classes. (Source: adapted from Wikipedia)
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In a feedforward neural network, a 
particular neuron nij in hidden layer 
j sums its i inputs, xi, adjusted by an 
input-specific weight wij, and adds 
a layer-specific bias factor bj (not 
shown in the figure) as follows:

Sj = Σwijxi+bj

Finally, the summed value Sj is 
converted to a single value output by 
an activation function. Depending on 
requirements, these functions can 
take many forms, such as a simple 
step function, arc tangent, or non-
linear mapping such as a rectified 
linear unit (ReLU), which outputs 0 
for Sj<=0 or Sj for Sj>0. 

Although they are all designed to 
extract the distinguishing features 
of data, different architectures 
might use significantly different 
transformations. For example, 
convolutional neural networks 
(CNNs) used in image-recognition 
applications use kernel convolutions. 
In this, functions, called kernels, 

perform convolutions on the input 
image to transform it into feature 
maps. Subsequent layers perform 
more convolutions or other functions, 
further extracting and transforming 
features until the CNN model 
generates a similar classification 
probability output as in simpler 
neural networks. 

However, for developers, the 
underlying math for popular 
neural network architectures is 
largely transparent because of the 
availability of ML development tools 
(discussed elsewhere in this issue). 
Using those tools, developers can 
fairly easily implement a neural 
network model and begin training 
it using a set of data called the 
training set. This training data set 
includes a representative set of 
data observations and the correct 
classification for each observation—
and represents one of the more 
challenging aspects of neural 
network model development. 

How is a neural 
network model 
trained and 
deployed?
In the past, developers creating 
training sets had little option but to 
work through the many thousands of 
observations required in a typical set, 
manually labeling each observation 
with its correct name. For example, 
to create a training set for a road 
sign recognition application, they 
need to view images of road signs 
and label each image with the 
correct sign name. Public domain 
sets of prelabeled data let many 
machine-learning researchers avoid 
this task and focus on algorithm 
development. For production ML 
applications, however, the labeling 
task can present a significant 
challenge. Advanced ML developers 
often use pre-trained models in a 
process called transfer learning to 
help ease this problem.

Figure 2: An artificial neuron produces an output based on an activation function that operates 
on the sum of the neuron’s weighted inputs. (Source: Wikipedia)



7 |

Although emerging tools and 
services help facilitate data 
preparation, the training set 
characteristics nevertheless play a 
critical role in the effectiveness of 
the neural network model and overall 
application. The decisions made 
in choosing which observations 
to include and exclude have 
fundamental implications, including 
flexibility, specificity, and fairness 
that require careful consideration. As 
a result, the level of effort required 
to create an optimal training set can 
rival the effort required to implement 
the machine-learning program itself. 
After the training set is created 
and the neural network model is 
implemented, the model’s training 
process iteratively runs the training 
data. At each iteration, the training 
process calculates a loss function 
that measures the difference 
between the desired result provided 
by the data labels and the calculated 
result generated by the model. Using 
a method called back propagation, 
that error information is used by 
the training process to adjust the 
weights and other model parameters 
for the next iteration. This process 
continues until the loss function 
falls within some threshold or fails 
to improve after some specified 
number of iterations. 

When training completes, the model 
is converted to an inference model 
by performing several optimizations, 
including removing unneeded 
structures such as the back 
propagation mechanism, eliminating 
neurons that contribute little to the 
classification process, and even 
merging layers. Programs implement 
the inference model by loading a 
compact representation saved in 
various standard formats by ML tools 
and frameworks. 

Neural networks 
not always the 
best solution
Although neural networks might 
be the more recognizable type 
of machine learning, they are by 
no means the only or even best 
choice for some applications. 
Neural networks fall into ML called 
supervised learning because they 
rely on labeled data sets to train 
the algorithm. In sensor-based 
applications such as the Internet of 
Things (IoT) or industrial systems, 
other supervised learning algorithms 
like support vector machines 
(SVMs) or decision trees provide 
an alternative that is simpler, more 
compact, and equally effective. 

SVM methods classify data by 
finding where input data points 
lie within an n-dimensional space 
defined by the training data. 
Decision-tree methods use training 
data to construct a model that 
efficiently decomposes input data 
into a series of optimized decisions. 
As with the output layer of a neural 
network, the decision tree’s final leaf 
nodes provide the probability that 
the data falls into a particular class. 
This approach is particularly efficient 
for classifying sensor data such as 
simultaneous accelerometer and 
gyroscope measurements to detect 
a complex movement. Support for 
decision trees is integrated into 
some inertial measurement units 
from STMicroelectronics. 

These supervised learning methods 
are perhaps the most recognizable 
ML form. Still, other types of ML, 
including unsupervised learning, 
reinforcement learning, and many 

others, are already being applied to 
practical engineering problems. As 
the name suggests, unsupervised 
learning finds relationships within 
unlabeled data, using clustering 
techniques to identify similar 
characteristics. These techniques 
are particularly useful during training 
set development and feature 
engineering, where developers 
optimize the selection of data 
characteristics or features to be 
used for training and inference. 
Reinforcement learning finds 
applications in robotics systems 
programming, using utility measures 
to optimize training, not unlike loss 
functions in neural network training. 

Conclusion
Machine-learning methods such 
as neural networks form the 
foundation of a growing array of 
smart products able to recognize 
and classify specific images or 
sensor measurements based 
on sophisticated mathematical 
concepts. For developers, 
implementing neural network models 
and other ML-based solutions in 
their applications follows a well-
supported development process that 
is straightforward but by no means 
simple. 
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Machine Learning 
Requires Multiple Steps
By M. Tim Jones for Mouser Electronics

Introduction
Deploying machine learning (ML) 
is a multi-step process. It involves 
selecting a model, training it for 
a specific task, validating it with 
test data, and then deploying and 
monitoring the model in production. 
Here, we’ll discuss these steps and 
break them down to introduce you 
to ML.

ML refers to systems that, without 
explicit instruction, are capable 
of learning and improving. These 
systems learn from data to perform 
a particular task or function. In 
some cases, learning, or more 
specific training, occurs in a 
supervised manner where incorrect 
outputs result in adjusting the 
model to nudge it toward the 
correct output. In other cases, 
unsupervised learning occurs 
where the system organizes the 
data to reveal previously unknown 
patterns. Most ML models follow 
these two paradigms (supervised 
vs. unsupervised learning).

Let’s now dig into what is meant 
by a model and then explore how 
data becomes the fuel for machine 
learning.

Machine-Learning 
Model

A model is an abstraction of a 
solution for machine learning. The 
model defines the architecture 
which, once trained, becomes an 
implementation. Therefore, we 
don’t deploy models. We deploy 
implementations of models trained 
from data (more on this in the next 
section). So models plus data plus 
training equal instances of ML 
solutions (Figure 1).

 
ML solutions represent a system. 
They accept inputs, perform the 
computation of different types 
within the network and then 
provide an output. The input and 
output represent numerical data 
which means that, in some cases, 

translation is required. For example, 
feeding text data into a deep-
learning network requires encoding 
words into a numerical form that 
is commonly a high-dimensional 
vector given various words that 
could be used. Similarly, outputs 
might require translation from a 
numerical form back into a textual 
form.

ML models come in many types, 
including neural network models, 
Bayesian models, regression 
models, clustering models, and 
more. The model that you choose 
is based upon the problem at hand.

In the context of neural networks, 
models range from shallow multi-
layer networks to deep neural 
networks that include many layers 
of specialized neurons (processing 
units). Deep neural networks also 
have a range of models available 
based upon your target application. 
For example: 

• If your application is focused 
on identifying objects within 
images, then the Convolutional 
Neural Network (CNN) is 
an ideal model. CNNs have 
been applied to skin-cancer 
detection and outperform the 
average dermatologist. 

Figure 1: From Machine Learning Model 
to Solution. (Source: Author)
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• If your application involves 
predicting or generating 
complex sequences (such as 
human language sentences), 
then Recurrent Neural 
Networks (RNN) or Long-Short-
Term-Memory networks (LSTM) 
are ideal models. LSTMs have 
also been applied to machine 
translation of human languages. 

• If your application involves 
describing the contents of an 
image in human language, then 
a combination of a CNN and 
an LSTM can be used (where 
the image is fed into the CNN 
and the output of the CNN 
represents the input to the 
LSTM, which emits the word 
sequences). 

• If your application involves 
generating realistic images 
(such as landscapes or faces), 
then a Generative Adversarial 
Network (GAN) represents the 
current state-of-the-art model.

These models represent some 
of the more popular deep neural 
network architectures in use 
today. Deep neural networks are 
popular because they can accept 
unstructured data such as images, 
video, or audio information. The 
layers within the network construct 
a hierarchy of features that allow 
them to classify very complex 
information. Deep neural networks 
have demonstrated state-of-the-art 
performance over a wide number 
of problem domains. But like other 
ML models, their accuracy is 
dependent upon data. Let’s explore 
this aspect next.

Data and training

Data is the fuel that drives machine 
learning, not just in operation but 
also constructing an ML solution 
through model training. In the 
context of training data for deep 
neural networks, it’s important to 
explore the necessary data in the 
context of quantity and quality.

Deep neural networks require large 
amounts of data for training. One 
rule of thumb for image-based 
classification is 1,000 images 
per class. But the answer is 
dependent upon the complexity of 
the model and tolerance for error. 
Some examples from production 
ML solutions yield a spectrum of 
dataset sizes. A facial detection 
and recognition system required 
450,000 images, and a question-
and-answer chatbot was trained 
with 200,000 questions paired 
with 2 million answers. Smaller 
datasets can also suffice based 
upon the problem being solved. A 
sentiment analysis solution that 
determines the polarity of opinion 
from written text required only tens 
of thousands of samples.

Data quality is just as important 
as the quantity. Given the large 
datasets required for training, 
even small amounts of erroneous 
training data can lead to a poor 
solution. Depending upon the type 

of data necessary, your data might 
go through a cleansing process. 
This ensures that the dataset is 
consistent, lacks duplicate data, 
is accurate, and complete (lacks 
invalid or incomplete data). Tools 
exist to support this process. 
Validating data for bias is also 
important to ensure that data does 
not lead to a biased ML solution.

ML training operates on numerical 
data, so a pre-processing step 
can be required depending upon 
your solution. For example, if your 
data is human language, it must 
first be translated into a numerical 
form to process. Images can be 
pre-processed for consistency. For 
example, images fed into a deep 
neural network would be resized 
and smoothed to remove noise 
(among other operations).

One of the biggest problems in 
ML is acquiring a dataset to train 
your ML solution. This could be the 
largest endeavor depending upon 
your problem because it might not 
exist and require a separate effort 
to capture.

Finally, the dataset should be 
segmented between training data 
and test data. The training portion 
is used to train the model, and 
once trained, the test data is used 
to validate the accuracy of the 
solution (Figure 2). 
 

Figure 2: Dataset Splitting for Training and Validation. (Source: Author)
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Tools exist to accomplish this 
process, and most frameworks 
include split functions to segregate 
training and test data. Let’s now 
explore some of the frameworks 
that simplify the construction of 
machine-learning solutions.

Framework
It’s no longer necessary to build 
your machine-learning model from 
the ground up. Instead, you can 
rely on a framework that includes 
these models and other tools to 
prepare data and validate your 
solution. This same framework also 
provides the environment through 
which you’ll deploy your solution for 
production. Choosing a framework 
is typically done based upon 
familiarity, but if you’re starting 
out, you can choose one that fits 
your application and the model you 
intend to use.

TensorFlow is the best of the deep-
learning frameworks. It supports all 
popular models (CNN, RNN, LSTM, 
etc.) and allows you to develop in 
Python or C++. You can deploy 
TensorFlow solutions on high-end 
servers down to mobile devices. If 
you’re just starting, TensorFlow is 
the place to start, if nothing else 
than for its tutorials and breadth of 
documentation.

CAFFE started as an academic 
project, but after being released 
into open source, has grown into a 
popular deep-learning framework. 
CAFFE is written in C++ but 

also supports Python for model 
development. Like TensorFlow, it 
supports a wide range of deep-
learning models.  

Facebook began work on a 
derivative of CAFFE called Caffe2 
that included new models. But 
rather than bifurcate the CAFFE 
project, it was instead merged into 
another framework called PyTorch. 
PyTorch is based upon the wealth 
of information available, including 
hands-on tutorials to build different 
types of solutions.

The R language and environment 
is a popular tool for ML and data 
science. It’s interactive, which 
allows you to prototype and build 
a solution incrementally while 
seeing the results in stages. Along 
with Keras (an open-source neural 
network library), you can build 
CNNs and RNNs with minimal 
development.

Model auditing
Once your model is trained 
and meeting your accuracy 
requirement, you deploy it in 
production. But once there, you’ll 
need to audit your solution to 
ensure it meets your requirements. 
This is particularly important based 
upon the decisions made by your 
model and how they can impact 
people.

Some machine-learning models are 
transparent and can be understood 
(such as decision trees). But 

other models such as deep neural 
networks are considered black-
box, and decisions are made 
by millions of calculations that 
the model itself cannot explain. 
Therefore, while periodic auditing 
was once acceptable, continuous 
auditing quickly became the norm 
in these black-box situations 
because mistakes are inevitable. 
Once a mistake is discovered, this 
information can be used as data to 
tweak the model.

The other consideration is the 
lifetime of the solution. Models 
decay and input data can evolve, 
resulting in changes in the model’s 
performance. Therefore, accepting 
that a solution will be brittle over 
time, ML solutions must change 
along with the world around them
.

Conclusion
To deploy a machine-learning 
solution, we start with a problem 
and then consider possible models 
that solve it. Acquiring data is 
next, and once properly cleansed 
and segmented, the model can 
be trained and validated using an 
ML framework. Not all frameworks 
are the same and based upon your 
model and experience, one of many 
can be selected and applied. This 
framework is then used to deploy 
the ML solution, and with proper 
auditing, the solution operates in 
the real world with live data.
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Agency, Autonomy, and Protection 
in Artificial Intelligence

By Sally Eaves for Mouser Electronics

Artificial intelligence (AI) is a key 
component advancing intelligent 
smart environments, spanning 
home, work, health, education, 
supply chain, factory, city, and 
society. Although fairness and bias 
are currently human-designed 
aspects of AI, other aspects such 
as agency and autonomy present 
the potential for a duality between 
greater goods and harmful acts. 
For those who design, develop, and 
implement AI systems, challenges 
include reducing the risk of harm, 
balancing human control and 
machine autonomy, and solving 
problems through governance, 
standardization, and innovation. 
Here, we’ll explore concepts of 
agency and autonomy, discuss 
the ever-present role of bias, and 
describe challenges in protecting 
humans from potential harm.

Agency 

Definitions of agency vary 
significantly, but most focus 
on making something happen, 
including making something 
happen for something or someone 
else. A related concept is whether 
the agent can choose what to do, 
instead of being told what to do. 
Consider a decision that appears 

irrational to others. Out of all the 
different options available, the 
perceived irrational decision is 
made for reasons known only 
to the person making it. What 
characterizes the human agent is 
intelligence and our ability to select 
from a range of options. 

The ability to choose what to do 
invites questions about enabling 
AI systems to make such decisions 
for themselves. What happens if 
AI makes a seemingly irrational 
decision to us as humans? Is it a 
malfunction, or is it reasoning that 
is not accessible to us? Drawing 
on science fiction, perhaps the 
classic case is HAL9000, the 
sentient computer in 2001: A 
Space Odyssey. So the question 
becomes: What autonomy should 
AI-empowered agents/devices 
possess? 

Autonomy
Autonomy invokes independence 
in decision-making and goal-
setting, and it implies self-
sustainment, with autonomy 
motivating agency. The nature 
of the independence differs 
from automated technologies: 
Automated technology is self-

acting, as opposed to autonomous 
or self-regulating technology that 
can adapt to situations. 

However, automation and 
independence are not black-and-
white distinctions. They’re a matter 
of degrees. Take, for example, the 
concept of AI-, Internet of Things-, 
and sensor-enabled driverless cars. 
Today, reaching the much-hyped 
fully autonomous vehicle is still 
some way off. Although we have 
seen innovation toward this vision 
and acceleration of other benefits—
such as making human driving 
smarter and safer—significant 
moments have caused pause for 
reflection. One such moment was 
a March 2019 pedestrian fatality 
involving a self-driving car. 

Such consequences raise the 
question: How much autonomy 
can be achieved, or is indeed 
desirable? The answer depends 
on degrees of autonomy and 
supervision:

Degrees of Autonomy 

The U.S. National Highway Traffic 
Safety Administration (NHTSA) has 
defined six levels of autonomy in 
driverless cars, ranging from Level 
0 to Level 5: 
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• Level 0: Humans do all the 
driving.

• Level 1: Some assistance is 
provided to the person driving, 
in steering, accelerating, or 
braking. 

• Level 2: More advanced 
assistance that controls 
steering, accelerating, and 
braking but requires constant 
human monitoring.

• Level 3: In specific 
circumstances, the vehicle can 
carry out all parts of the driving 
but with the person ready to 
intervene when required by the 
system.

• Level 4: In specified 
circumstances, the vehicle can 
do all required to drive without 
a person paying attention.

• Level 5: Fully autonomous self-
driving vehicle with the human 
as a passenger.

Despite outlining degrees of 
autonomy, ethics and legal 
questions remain. For example, 
how should a car decide between 
crashing and killing five school 
children at a bus stop or killing 
its two elderly passengers? Who 
is ultimately responsible when 
autonomous systems fail? Can and 
should self-learning robots be held 
responsible for their actions and 
be held liable if people are hurt or 
property damaged? 

Degrees of Supervision

Part of the answer might lie 
in further defining degrees of 
autonomy according to degrees 
of supervision. Like autonomy, 
supervision can also be described 
on a spectrum, such as definitions 
identified by a company called re2 
robotics: 

• Tele-Operation: Intuitive human 
control of a robot. 

• Supervised Autonomy: 
Autonomous operation under 
human supervision.

• Fully Autonomous: Complete 
robotic autonomy with no 
supervision required.

Putting these degrees into context, 
supervised autonomy would 
be allowing robots to perform 
duties that would be hazardous 
to humans but still giving robot 
operators full control over specific 
tasks. 

Bias and its friends

Agency and autonomy matter, 
especially with artificial intelligence 
embedded across all aspects 
of life, increasingly involved in 
highly impactful decisions and 
accelerating with the wider rollout 
of 5G. One of the challenges within 
this smart connected and hybrid 
domain is the bias, conscious or 
otherwise, that can affect AI design, 
development, and application. 

Agency and autonomy can have 
highly sensitive and serious long-
term impacts in terms of unfair 
or discriminatory outcomes. 
One example is an algorithm to 
determine the likelihood of a 
criminal re-offending that has 
revealed a pattern of bias in its 
assessment. This is more than 
the undermining of trust; it is 
exposing people to discriminatory 
and undesirable consequences. 
Protection is vital. 

Protections and 
their challenges
The very possibility of harm from 
artificial intelligence raises the 
question of how people can be 
protected. It provokes questions 
about who or what controls our 
individual and collective lives as 
a society, how much freedom and 
privacy we have, and what checks, 
balances, and accountability are in 
place to stop any of us from being 
harmed. Significant, complex, and 
interlinked questions suggest some 
level of protection is required. 

One of the earliest attempts to 
propose rules for AI systems 
is Asimov’s Law of Robot’s 
published in the short science 
story “Runaround” in 1942. This 
introduces three laws:

1. Prevent harm to humans.  

2. Require robots to be obedient 
to humans unless doing so 
clashes with the first law.  

3. Require robots to protect 
themselves unless doing so 
clashes with the other two laws. 

Are these adequate? Beyond 
any debate on the adequacy 
or necessity of these laws, this 
again draws attention to the 
distinction between automated and 
autonomous technologies. 

Constraining autonomy

AI-enhanced robots with any 
degree of autonomy are part of a 
more general issue relating to how 
much autonomy should be given 
to AI and whether constraints 
should be imposed. For example, 
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is it desirable to have a weapon 
system that will act upon goals 
without human intervention but 
open to human intervention if 
necessary? Can we trust this? 
History is full of examples where 
technology has had negative 
consequences, intended or 
otherwise. Social media is, in 
principle, a good idea because it 
allows people to connect and share. 
However, its dark side has exposed 
many vulnerabilities, including 
cyberbullying, misinformation, and 
identity theft, among others. 

As AI becomes more deeply 
embedded across our increasingly 
smart, intelligent, and connected 
world, the need for constraint 
becomes more complicated. Take, 
for example, facial recognition 
technologies that cross city 
centers and enter into residential 
areas. Although these might 
help make our streets safer, 
they also carry the potential to 
monitor people’s movements and 
activities. Transparency concerning 
data usage is key to trust and 
acceptance, alongside protection 
around privacy and security, 
especially given the increased 
surface area for cybersecurity 
threats. Even smart toys can be 
hacked, so, really, how private can 
we be? 

Governing AI

Although most people recognize 
that AI can bring transformative 
benefits to business and society, 
the potential dark side must be 
recognized, too, because that’s 
how we can best mitigate and 
address it. In a recent article, 
Sundar Pichai, CEO of Alphabet 
and Google, has called for 
regulating AI and acknowledges 
challenges in regulating it. 

Regulation at a national level 
could lead to some nations having 
strong, enforceable governance 
mechanisms but leave others 
with weak regulations that attract 
malicious activity. 

Further, legislation tends to lag 
behind technology developments, 
especially ones as rapidly 
developing as AI. This suggests 
the need for underlying principles 
and values to guide what is 
accepted or permitted. So while 
Google has its principles for the 

“ethical development and use of 
AI in our research and products,” 
for example, reasons are few for 
others to adopt them. 

To counter this, Pichai argues that 
the time is now for international 
alignment. This calls for a global 
effort, as exemplified in May 2019, 
when 42 countries signed up to 
adopt OECD Principles on Artificial 
Intelligence. These comprise 

“five values-based principles 
for the responsible deployment 
of trustworthy AI and five 
recommendations for public policy 
and international co-operation.” 

However, some argue that it will 
be near impossible to regulate AI. 
What if someone or some (political) 
organization decides to ignore 
these principles? For example, 
political agendas can argue for AI 
developments on the grounds of 
national security, particularly in 
the military sector. The malicious 
spread of misinformation and the 
distortion of reality with deep fakes 
are also concerns. 

Assigning rights and 
responsibilities

So finally, protection must also 
be viewed from the perspective 

of the technology itself. First is 
the issue of identity. It might not 
be human, but a robot can have a 
unique presence, unlike inanimate 
objects. Taking this to a higher 
level recognizes that a robot can 
gain citizenship, as illustrated 
when Sophia was awarded full 
citizenship of Saudi Arabia back 
in 2017. During the same year, the 
European Union (EU) Parliament’s 
Legal Affairs Committee 
published a controversial paper 
that suggested creating specific 
legal rights and responsibilities, 
rather than human rights, and 
encapsulating them under 

“electronic personalities.” 

Conclusion
Artificial intelligence is with us 
and here to stay, and like many 
aspects of life, it presents as a 
duality–with both the potential 
for helping the greater good and 
reaching new depths of nefarious 
uses. The challenge for those who 
design, develop, and implement 
AI systems is to reduce the risk of 
harm, achieve the delicate balance 
between human control and 
autonomy, and find an effective 
balance between governance 
structures, standardization, and 
innovation. Perhaps the onus 
actually lies best with us all to help 
steer the trajectory of AI toward 
the economic and ethical values we 
believe. In this way, we can move 
beyond a human versus technology 
narrative toward one of human-
technology partnership that builds 
on our collective complementary 
strengths. 
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Living With an Imperfectly Ethical AI
By Michelle Nedashkovskaya for Mouser Electronics

Ongoing developments in artificial 
intelligence (AI) hold immense 
promise for achieving social good. 
AI’s potential to help us overcome 
some of the world’s greatest 
challenges is already being 
explored across various sectors. 
From agriculture to astronomy, the 
breadth of AI applications seems 
limited only by our imagination. 

Like any tool, however, AI could 
end up creating or perpetuating 
some problems while solving 
others, even when designed with 
the best intentions. The ethical 
risks associated with AI will 
broaden alongside the contexts 
in which it is applied. A perfect 
ethical framework for navigating 
this new landscape could prove 
elusive, but its importance matches 
the enormity of the challenge. New 
technological contexts will dictate 
the need for new norms. 

To address these risks, 
technologists must:

1. Understand that bias exists in 
data and tools

2. Increase awareness of this bias 
and improve efforts to mitigate it

3. Institutionalize ethical thinking 
in engineering processes

 

Understanding 
bias in data & tools
AI ethics have become a hot 
topic recently, in part because 
algorithmic decision-making 
and decision support systems 
are being integrated into public 
administration domains, including 
public health, law enforcement, 
and criminal justice. Such 
applications raise the ethical 
stakes of employing AI technology, 
amplifying the potential real-world 
ramifications of AI tools that might 
yield biased or unfair results. 

Biased AI tools could have 
profound and long-lasting impacts 
on individuals’ lives, affecting their 
criminal records, creditworthiness, 
and employment prospects. Bias 
can creep into an algorithm in 
many ways. Data bias can arise 
from flawed data collection or 
reflect a broader systematic bias 
at play. For example, if individuals 
from minority populations are 
arrested at higher rates than their 
white counterparts for the same 
crime, algorithms trained on the 
resulting data can perpetuate 
those inequities. Such risks related 
to prejudicial categorization have 
already played out in the real 
world. Pretrial risk assessment 

algorithms used in criminal 
justice proceedings, for example, 
have repeatedly been found 
to discriminate against racial 
minorities. 

Bias can also arise in the way 
computer scientists frame 
problems and select the attributes 
an algorithm considers. For 
example, algorithms for job 
recruitment efforts rely on many 
assumptions: Which attributes 
should be associated with a 
worthwhile candidate? Could those 
attributes carry gendered or racial 
connotations? This sort of bias led 
Amazon to scrap an AI recruitment 
tool in 2018 after realizing that 
the model discriminated heavily 
against women: The model learned 
to associate strong candidates with 
maleness because the company 
employed more men than women.

Increasing 
awareness of bias 
and improving 
solutions
The implications of such cases 
of bias have prompted the 
development of a robust literature 
on Al’s ethical considerations. 
Many philosophers, including 

Balancing AI’s potential for good against 
its ethical pitfalls
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well-known experts, such as 
Oxford University philosophers 
Nick Bostrom and Luciano Floridi, 
have begun to devote themselves 
to developing frameworks around 
these issues. Such academic 
efforts have focused on “fairness, 
accountability, and transparency” 
in machine learning. Awareness 
of and engagement with this vast 
and growing literature is key to 
forging appropriate risk mitigation 
strategies.

Understanding and building 
awareness about AI ethics 
issues requires interdisciplinary 
cooperation. Several initiatives 
have already been developed with 
this goal in mind, from think tank 
programming like that of the Future 
of Life Institute to industry efforts 
such as Google’s publication of 
Responsible AI Practices. The third 
annual Association for Computing 
Machinery Conference on Fairness, 
Accountability, and Transparency 
(ACM FAccT, formerly ACM FAT*) 
took place in January 2020 and 
brought together stakeholders 
from numerous fields to explore the 
ethics of computing systems. Such 
efforts are signs of progress, but it 
is incumbent on each individual to 
contribute to this interdisciplinary 
dialogue and learn from the work. 

Equally important to initiatives 
dedicated to studying these 
issues is the widespread adoption 
of new ethical frameworks 
throughout the technology industry. 
Like the practice of building 
human-centered AI, we should 
consider developing new means 
of institutionalizing ethical and 
socially responsible thinking into 
the engineering process’ every 
step. Ethics need not be perceived 

as an esoteric science reserved for 
ordained philosophers but rather 
a practice or skill that anyone can 
exercise and sharpen in every step 
of their work.

Institutionalizing 
ethical thinking 
in engineering 
processes
New modes of thinking about 
institutionalizing responsible AI 
can borrow heavily from disciplines 
outside engineering and computer 
science. For example, much 
of the thinking in international 
security focuses on worst-case 
scenarios. Just as military forces 
create contingency plans to 
prepare for unforeseen challenges, 
technologists can employ worst-
case scenario thinking regarding 
AI ethics: What are all the ways a 
given product could go awry? How 
can we mitigate those risks? One 
thought experiment could mirror 
deliberations about weapon design 
and deployment: What could go 
wrong if bad actors acquire this 
new capability?

Other ways to institutionalize 
ethical thinking within 
technological development can 
hit closer to home. For example, 
the concept of iterative progress 
is perhaps best understood in the 
technology industry. Agile software 
development entails concurrent 
development and testing. It 
emphasizes incremental delivery, 
continual team collaboration, 
and learning. Innovations can be 
implemented iteratively to resolve 
technical kinks. Agile deployment 
and institutionalized feedback can 

help keep ethical considerations in 
perspective. 

Conclusion
We must all continue to ask 
big-picture questions about 
technology limitations. For every 
product or approach that involves 
AI—especially in a public sector 
context—one might ask whether 
AI is best suited to perform that 
function. Human judgment is 
demonstrably imperfect and 
often falls victim to a confluence 
of cognitive biases, but we must 
remain vigilant to not replace one 
set of flaws with another.

“AI could end 
up creating or 
perpetuating 
some problems 
while solving 
others, even when 
designed with the 
best intentions.”
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Machine-Learning Software 
Simplifies Development
By Stephan Evanczuk for Mouser Electronics

Machine learning (ML) has 
gained the most recognition 
among the different artificial 
intelligence (AI) types, thanks 
to a growing list of successful 
applications. As noted elsewhere 
in this issue, ML development 
flips the conventional model of 
software development. Rather 
than explicitly writing algorithms 
to process data, ML developers 
use data to train algorithms on how 
to process data. For production 
ML applications, developers might 
spend little time on the algorithms 
themselves and focus more on 
data engineering and writing code 
with proven algorithms. In contrast, 
ML researchers might spend most 
of their time writing code for new 
algorithms or optimizing existing 
ones, using standard data sets to 
compare improvements over earlier 
algorithms. In the following, key 
development resources needed 
to program ML applications are 
examined. 

Both production and research 
efforts can take advantage of 
a wide array of development 
resources, ranging from low-
level algebraic libraries used to 
implement new kinds of model 
algorithms to high-level automated 
ML environments that accept a 

set of data and return a trained 
model. In general, developers 
of production applications can 
complete their work with little 
need to involve themselves with 
low-level math libraries. Yet, 
when facing challenges such as 
developing ML models for Internet 
of Things (IoT) devices, production 
developers can still find themselves 
using some of the same sorts of 
tools and techniques employed by 
researchers. 

Whether focused on research or 
production, ML projects require 
implementing an existing or novel 
ML algorithm using conventional 
coding methods. ML developers 
work with various conventional 
programming languages, including 
Python, C/C++, Java, Javascript, 
R, Go, and other more specialized 
languages. Among these, Python 
has emerged as the dominant 
language for ML development 
partly because developers can 
quickly become productive with 
this language; but largely because 
of the wide availability of add-
on libraries or modules. Python 
provides different developers’ 
methods to add external C/C++ 
functions or even create Python 
modules in C if no suitable module 
is available. In general, however, ML 

development with Python builds on 
a common set of tested, optimized 
modules. 

Building on 
modules
Developers can quickly get 
started with ML development 
by importing a set of Python 
modules that provide fundamental 
capabilities required equally for 
developing production ML models 
or for creating new ML algorithms. 
Among these, some of the more 
commonly used modules include:

• NumPy, which provides array 
manipulation and algebraic 
functions commonly required in 
ML development;

• Scipy, which provides various 
scientific computing functions;

• Pandas, which supports high-
level data structures and 
supports access to different file 
formats and databases;

• Matplotlib, which provides 
functions to visualize data and 
results.

In principle, a developer could use 
only these libraries, implementing 
an ML algorithm’s underlying 
math operations using NumPy 



| 26



27 |

mouser.com/infineon-aurix-tc3xx-mcus

AURIX™ TC3xx Microcontrollers



| 28

algebraic functions and visualizing 
results with Matplotlib. In practice, 
however, both researchers and 
production developers combine 
these libraries with several others. 
ML scientists exploring new 
algorithms might use the SymPy 
symbolic computing module 
to evaluate their equations or 
implement compute-intensive 
core functions in C using low-level 
routines from a basic linear algebra 
subprograms (BLAS) library such 
as OpenBLAS. 

Production developers might 
find themselves turning to C/
C++ libraries for performance 
reasons. However, in the early 
stages of development, they 
are more likely to use Python 
modules that support higher-
level abstractions with intuitive 
functions specifically designed 

for implementing ML applications. 
Although this is perhaps the largest 
group of software resources for 
ML programming, some of the 
more commonly used ML packages 
include: 

Scikit-learn, which natively 
supports perhaps the widest range 
of ML algorithms for supervised 
learning and unsupervised learning 
(Figure 1) with an accessible 
approach considered particularly 
effective for those new to ML 
development;

• Keras, which supports the 
efficient implementation 
of deep neural network 
(DNN) models,  including 
convolutional neural 
networks (CNNs) through a 
comprehensive set of functions 
required to implement the 

various layers of a model;
• TensorFlow, which provides 

functions for model 
implementation as well as 
broader, end-to-end support for 
ML applications. 

• PyTorch, which also provides 
both model implementation 
and end-to-end development 
capabilities. 

Each of these libraries abstracts 
complex operations to a series of 
intuitive function calls. To build a 
DNN model, developers typically 
build up the model layer by layer 
using built-in functions that 
implement the layer’s function. 
After the model is configured, other 
function calls invoke training with 
hyperparameters needed in the 
training process itself. 

Figure 1: Scikit-learn simplifies the development of machine-learning programs 
using a broad array of algorithms for supervised and unsupervised learning. 
(Source: scikit-learn.org)



29 |

Some Python libraries, including 
TensorFlow and PyTorch, are 
supported by comprehensive 
ecosystems, so the core library 
is part of a more substantial 
framework for ML development. 
Although many such frameworks 
have emerged, TensorFlow and 
PyTorch have gained dominance 
among production developers 
and researchers. Researchers 
have generally preferred PyTorch 
because of its interactivity and 
flexibility. Industry developers have 
generally preferred TensorFlow 
for its performance efficiency. 
Still, each framework continues 
to evolve, addressing any 
shortcomings with capabilities that 
drive them closer to parity. 

An even higher-level ML 
development resource class 
continues to emerge from 
commercial cloud-service providers 
such as Amazon Web Services 
(AWS), Google, IBM, and Microsoft 
and specialty cloud-platform 

providers. Intended to provide 
turnkey ML solutions, services such 
as AWS SageMaker, Google Fluid 
Annotation, IBM Cloud Annotations, 
and Microsoft Automated ML 
generate models from datasets for 
users with neither the time nor the 
expertise to create ML models on 
their own. Typically, users can pass 
the results to other tools in each 
provider’s environment to create 
optimized inference models for 
deployment. 

Optimization and 
deployment
Performance concerns are 
endemic to ML development 
projects. Although ML researchers 
continue to explore methods to 
speed lengthy training cycles, 
both researchers and production 
developers typically take 
advantage of the performance 
boost provided by graphics 
processing units (GPUs) and 

GPU-compatible libraries. For 
example, the GPU-enabled CuPy 
package can speed many core ML 
operations well over 100x than the 
compatible but non-GPU-enabled 
NumPy package. 

For an overall gain in performance, 
developers can use the Numba 
compiler, which converts Python to 
machine code with optimizations, 
including GPU support. 
TensorFlow’s XLA (Accelerated 
Linear Algebra) compiler can 
improve model speed and size with 
no source-code changes. 

Alternatively, developers can 
use different versions of Python 
itself. Cython compiles Python-
compatible Cython code, resulting 
in faster execution than possible 
with a standard Python’s 
interpreter. The Intel® distribution 
for Python takes full advantage 
of performance enhancements 
available in the Intel® architectures. 
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For deployment on resource-
constrained IoT devices, developers 
can take advantage of resource-
optimized model architectures and 
processor-optimized libraries. For 
example, Google’s MobileNet CNN 
architecture and its more recent 
EfficientNet CNN architecture 
achieve high accuracy with 
smaller, faster models. To speed 
execution of the model itself, 
developers can use libraries such 
as the Intel® oneAPI Deep Neural 
Network Library (oneDNN)  or Arm® 
NN (neural network) Software 
Developer Kit (SDK) for Cortex®-
A-based processors or its Cortex 
Microcontroller Software Interface 
Standard Neural Network (CMSIS-
NN) library for Cortex®-M4-based 
processors. 

Development 
environments 
We’ve described only a bare-bones 
set of Python modules among the 
thousands in the Python Package 

Index repository just for ML. Of 
course, a typical development 
project will build on many module 
packages, each with their 
dependencies. Developers typically 
use virtual workspaces to isolate 
a project’s development packages 
from different versions of common 
packages used in other projects or 
even their operating environment. 
The Anaconda platform provides an 
even simpler approach, combining 
package management with the 
simple deployment of virtual 
workspaces. 

For both experienced ML 
developers and those just 
venturing into ML development, 
the combination of Anaconda and 
a popular AI development tool, 
JupyterLab, largely eliminates 
the setup and configuration 
tasks typically required to use 
any development environment. 
JupyterLab, such as its earlier 
version, Jupyter Notebook, lets 
users build notebooks that 

combine descriptive text with 
runnable code and results 
in a single package. Jupyter 
notebooks have emerged as a 
common medium of exchange of 
ideas, specific algorithms, and 
applications between developers, 
researchers, and even participants 
in ML competitions and courses on 
Kaggle and other sites. 

Conclusion
Machine-learning development 
encompasses a wide set of 
activities focused on both 
preparing data and writing code 
to implement models with existing 
or new algorithms. To implement 
models, developers need only a 
few basic tools to get started, but 
generating optimized inference 
models might require them to 
reach deeper into the rich set 
of tools available for creating 
effective ML-based applications. 
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Open-Source Movement 
Affects AI Apps
By Jim Romeo for Mouser Electronics

Artificial intelligence (AI) is being 
used by many to accomplish great 
things beyond human intelligence. 
Open-source platforms, data, 
frameworks, and models are 
increasingly used in conjunction 
with AI development to improve 
and enhance AI projects.

The premise of open source is that 
everything is free and available 
to all. Source code, designs, and 
related intellectual property is 
shared and can be redistributed 
at large. It represents an open 
exchange where users participate 
and collaborate in a communal 
effort. Programmers use source 
code to program a software 
application. With source code, 
programmers and developers 
use it to perform and reach 
desired objectives. How does the 
open-source movement affect AI 
applications? Let’s explore.  

Interoperability 
and communal 
sharing for 
progress
In artificial intelligence applications 
development and the emergence 
of machine learning (ML), the 
open-source movement is more 

important than ever, Major 
software purveyors and software 
developers across various 
industries contribute their own 
source code and use others’ codes. 

Open-source code meets a 
common open-source standard. 
As an enterprise develops open-
source code with open-source 
standards and without proprietary 
data formats, the resultant 
software is compatible with other 
software and applications. This 
enables interoperability.

A communal effort ensures 
interoperability. Interoperability is 
key because it means compatibility 
and an ability to integrate an 
application with other applications, 
allowing enterprise networks 
to grow and prosper from the 
software. 

Open-source code and software 
are often loaded to a common 
platform, available to all, such as 
GitHub. Although it’s a Microsoft 
site, GitHub is meant to be a 
working parking lot for open-
source code and self-described as 

“a development platform inspired 
by the way you work. From open 
source to business, you can host 
and review code, manage projects, 
and build software alongside 50 
million developers.”

Another popular platform to share 
code is via the Apache Software 
Foundation (ASF).  It provides a 
framework for source code where 
those committed to the open-
source credo of sharing intellectual 
property can do so without 
worrying about infringement or 
liability.
  
The foundation touts “The Apache 
Way,” as one in which “more than 
730 individual Members and 
7,000 Committers successfully 
collaborate to develop freely 
available enterprise-grade 
software, benefiting millions of 
users worldwide.”

In AI, a data framework uses data 
to create predicted outputs. Such 
prediction is used to learn data 
and continuously train the model. 
This takes place via a feedback 
loop. Data is learned. Prediction is 
enabled. Data and predictions are 
continually fed back and improve 
the prediction’s accuracy. 

Ride-sharing company Lyft is 
an example of how open-source 
data tools are used in everyday 
applications. The company 
recently open-sourced a 
debugging tool for AI data it had 
been using for years, internal to its 
operations. The tool called Flyte 
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has been used by Lyft in-house for 
the past three years and corrects 
and debugs data related to Lyft’s 
pricing, locations, estimate time of 
arrivals, mapping, and self-driving 
developer teams. It is open source 
and can be downloaded and used 
by anyone.

Open-source 
frameworks for AI
Artificial intelligence has many 
open-source frameworks, available 
to all, used by many, resulting in 
creating applications that might be 
proprietary. But they are based on 
an open-source framework. 

For example, Google’s TensorFlow 
is a popular and useful open-
source framework. This framework 
is a comprehensive ecosystem of 
tools and libraries that enables 
developers to apply ML to and 
serve their markets better. For 
example, Airbnb, eBay, Dropbox, 
and others use TensorFlow. 

TensorFlow, unbeknownst to many, 
allows rental listings to follow an 
order suitable to a user as that 
user and their preferences are 
indicated per their profile and 

search. It might aid eBay to better 
present auction listings. Or it 
might establish a file hierarchy 
that follows a certain pattern for a 
Dropbox user. 

Amazon SageMaker Neo is another 
open-source ML platform. Its 
project code helps AI developers 
build models that learn data and 
train an ML model via the cloud. 
It is compatible with sensors and 
other computing and connected 
devices used with Internet of 
Things (IoT) applications. It can 
be used by AI developers to make 
accurate predictions. 

For example, SyntheticGestalt 
(an applied ML company) 
uses SageMaker Neo to train 
drug discovery models in the 
pharmaceutical and life-science 
industries. It processes and learns 
experiment data, evaluates it, and 
produces model results.

The Open Neural Network 
Exchange (ONNX) is an open-
source AI ecosystem created 
specifically for AI to represent ML 
models. The system’s operands 
are common and serve as basic 
building blocks for ML and deep-
learning models. This aids AI 

developers in utilizing formats 
to allow models to work with 
different frameworks and tools for 
AI applications. Like other open-
source platforms and formats, 
ONNX enables interoperability 
between other applications and 
solutions. By developing within a 
preferred framework, it curtails 
problems from incompatibility 
further downstream of the 
application. 

Our open-source 
future
As artificial intelligence continues 
to gain traction to accomplish great 
things, the open-source mindset 
will continue to help accelerate it. It 
uses the power of a give-and-take 
community who use open-source 
data property, data, algorithms, 
platforms frameworks, and formats 
to perform amazing feats. 

Open-source platforms will help 
technology use math, science, and 
other technology to improve our 
world in new and different ways via 
AI. In this way, we will move beyond 
what we ever thought possible. 
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AI’s Evolution Demands 
Strong Ethics, Safety
By Kyle Dent for Mouser Electronics

Some inventions are more 
important than others. Certain 
innovations have an outsized effect 
on society, while others, even 
when they are pervasive, are mere 
conveniences in our lives. Consider 
the different impacts of microwave 
ovens and light bulbs. Although 
most people these days have a 
microwave oven, our lives would 
not be drastically different if some 
bizarre solar activity somehow 
zapped all microwaves tomorrow. 
Most of us would still probably 
have a cooktop, an oven, a toaster, 
and maybe even a grill, fire pit, 
crockpot, pressure cooker, or air 
fryer standing by and ready to use.

However, suddenly extinguishing 
all light bulbs would be a different 
story because convenient lighting 
has offered a huge boost to 
humanity’s standard of living and 
economic well-being. Electric 
bulbs that illuminate vast areas at 
the flick of a switch replaced the 
messy lanterns and candles of eras 
past. They have made illuminated 
environments the standard rather 
than the exception for nearly 150 
years. Newer advances, such 
as connected lighting systems 
and light fidelity (Li-Fi), further 
integrate light with other building 
and communication systems.

How important will artificial 
intelligence (AI) be? Will its impact 
be more akin to a microwave or to 
the light bulb? Probably both. Like 
many other inventions, AI is part of 
a larger spectrum of development 
that is solving problems. Potentially, 
AI could one day be so integrated 
that it becomes a modern 
necessity. It also brings strong 
needs for ethics and safety to 
ensure that the technology serves 
the greater good and values 
human life.

AI: Doing good 
today ... and 
beyond
If solar flares managed to 
evaporate all of artificial 
intelligence today, most of us 
would have other options for 
meeting needs, such as having a 
stovetop instead of a microwave 
or revert to processes and 
capabilities of our not-so-distant 
past. Business analytics, medical 
imaging, recommended products, 
and music playlists would be 
limited by human capabilities 
coupled with whatever technology 
is available. Here again, however, 
the absence of AI would be more 
akin to missing microwave ovens 

than missing light bulbs—at least 
for this fleeting moment.

At this juncture, several 
technologies, such as sensors, 
processing, and storage, have 
matured and converged to enable 
AI to solve tangible problems. 
Of the 160 cases the McKinsey 
Global Institute have tracked, only 
about a third have real-life uses, 
and many of those are still in the 
testing phase. That said, AI-
driven solutions are emerging. For 
example, an organization called AI 
for Good Global Summit aims to 
connect “AI innovators with those 
seeking solutions to the world’s 
greatest challenges to identify 
practical applications of AI that 
can accelerate progress towards 
the United Nations’ Sustainable 
Development Goals (UN’s 
SDGs).” Its work cites progress 
in agriculture, drug development, 
and computer vision for satellite 
imagery:

Farmers can now integrate massive 
amounts of data from various 
sources, including sensors in 
the field, weather data, markets, 
and satellite imagery. AI-based 
time series analysis provides 
recommendations for increasing 
crop yields and maximizing 
efficient land use (Figure 1).
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Figure 1: AI-based analysis provides recommendations for increasing crop yields and maximizing efficient land use.
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• Pharmaceutical companies 
also realize benefits from AI 
modeling. Researchers can 
generate and search over huge, 
even exponential numbers 
of possible treatments using 
digital models of molecules and 
their interactions. As human 
genome sequencing also 
progresses, better treatments 
can be customized for 
individual cases. 

• Organizations use satellite 
imagery to detect wildfires (a 
harder problem than you might 
think) and carbon emissions 
and even to locate areas of 
extreme poverty in the world.

AI’s potential to do good is 
quickly transitioning from solving 
tangible, more immediate needs to 
becoming increasingly integrated 
into larger, more abstract solutions. 
The UN SDGs go beyond solving 
local and short-term problems to 
challenging the world to devise 
solutions to poverty, inequality, 
climate change, environmental 
degradation, and peace and justice. 
Could AI have a role in achieving 
these goals? The McKinsey Global 
Institute indicates many of these 
roles might be related to the 
UN’s SDGs in particular. Some 
of the nearer-term applications 
are expected in education and 
health care. However, applying AI 
solutions significantly to difficult 
problems will require action 
across a spectrum of groups, from 
governments and organizations to 
private industry (Figure 2).
 

Ethics in doing 
good
As artificial intelligence advances 
and solutions become more far-

reaching, ethics will become 
increasingly more important for 
ensuring that technologies are 
used for good and emphasize the 
value of human life. Most of the 
published guidelines cite the need 
for ethical AI as a way to extract 
the greatest benefit from it. One 
of the leading groups discussing 
the ethics of AI is AI4People, which 
tries to influence governments 
and organizations. Its goal is 
to shape the social impact of 
new applications of AI and lay 
out the foundational principles, 
policies, and practices for building 
a “Good AI Society” framework. 
The group has made 20 specific 
recommendations for achieving 
that end. One of its major concerns 
is that AI could be underutilized 
if the public does not trust AI 
solutions and rejects them. If 
this happens, the world will not 
derive the great benefit that could 
otherwise come from AI.

The European Commission 
released a white paper in 
February 2020 promoting the 
development and deployment 
of AI to ensure benefits that 
conform to European values. The 
white paper emphasizes the 
ethical implications while it calls 
for scientific breakthroughs that 
improve lives and respect human 
rights. The white paper also warns 
of the downsides if AI takes on a 
larger, more intrusive role in human 
lives. Regulations that already 
exist can cover some aspects of 
AI, but existing rules might have to 
be adapted or clarified concerning 
AI products. Transparency of AI 
models will make enforcement of 
regulations more difficult. Clear 
regulations are needed to protect 
citizens and give businesses legal 
clarity.

The European Commission also 
emphasizes the importance of a 
unified effort to reach the scale 
needed to solve big problems. 
A fragmented approach from 
different member countries 
with different directions and 
unnecessary duplication of effort 
risks creating AI solutions that 
do not scale to the necessary 
level. The commission plans to 
involve multiple stakeholders and 
provide incentives to industry 
to prioritize Europe’s current 
strengths in technology, including 
manufacturing automation and 
quantum computing. It also expects 
to coordinate among academic 
centers of excellence. Finally, the 
white paper mentions using AI to 
achieve the SDGs, viewing the 
technology as especially relevant 
to climate and environmental goals.

The United States has similar 
ambitions. Individual agencies 
within the federal government 
are making plans for AI and 
publishing white papers describing 
their expectations. Recently, the 
Secretary of Energy Advisory 
Board created a working group 
to examine and report on AI and 
the U.S. Department of Energy’s 
(DOE’s) role in supporting the 
development and promotion 
of AI technologies. The board 
recently released its report. The 
DOE emphasizes the urgency of 
developing AI, seeing it as a new 
space race with China, which is 
making large investments in AI.

Prioritizing AI for human benefit 
could help solve some of the most 
pressing societal challenges, such 
as climate change, environmental 
degradation, and even the 
protection of democracies. To 
achieve these ambitions, a strategy 
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Figure 2: Prioritizing artificial 
intelligence for human benefit 
could help solve some of society’s 
most pressing challenges, such 
as climate change, environmental 
degradation, and even the protection 
of democracies. 
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is needed to coordinate the many 
stakeholders. Many governments, 
intergovernmental agencies, 
organizations, and companies are 
publishing similar statements and 
AI recommendation papers. 

Safety in doing 
good
Risks exist in these and future AI 
uses, a potentially powerful tool 
that could also be misused and 
comes with the high likelihood 
of unintended consequences. In 
traditional engineering disciplines 
such as structural engineering 
or aviation, designs include 
safeguards wherever possible. 
New products and systems are 
extensively tested, and solutions 
are subjected to stresses to better 
understand the limits of their 
capabilities. Armed with knowledge, 
industry has had success deploying 
engineered solutions that provide 
benefit with minimal risk.

The engineering culture and 
mindset are so far absent from 
AI, even as we deploy it for real-
life situations, fully expecting its 
significant impact on people’s 
lives. Much of the best practices in 
traditional engineering have been 
codified in regulations. As useful as 
microwave ovens are in our lives, if 
they spewed radiation throughout 
our homes, we would not be able 
to use them. The European Union 
(EU) white paper suggests that 
regulations are likely required, but 
other similar documents from other 
entities are less clear about how to 
mitigate potential harms. The U.S. 
statement on AI specifically calls 
for minimizing regulation.

In the absence of leadership and 
guidance from government (except 
the EU), many other entities have 
stepped in to fill the gap. A whole 
body of ethical guidelines has 
been developed, mostly directed 
at developers and researchers. 
At this point, no real mechanism 

for enforcement exists, but the 
principles and recommendations 
identified can help elucidate the 
key aspects of the conversation 
when lawmakers and regulators get 
involved.

Conclusion
Considerable work remains to 
advance artificial intelligence to 
the point where it can help solve 
some of the world’s greatest 
challenges. As we expand AI’s 
potential, we must be cautious of 
its dark side. The core task of AI is 
to automate what would otherwise 
be human decision-making. Doing 
that requires vast amounts of 
data but garnering that data risks 
intruding into our personal lives to 
understand us better. Balancing 
these risks against AI’s tremendous 
potential is tricky, but it is also 
likely to be the difference between 
the impact of a microwave and a 
light bulb.
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