
| 1

1 |

In this issue
Machine Learning Requires Multiple Steps
by M. Tim Jones

Creating Programs That Learn
by Stephan Evanczuk

Machine-Learning Software Simplifies Development
by Stephan Evanczuk

Open-source Movement Affects AI Apps
by Jim Romeo

AI’s Evolution Demand Strong Ethics, Safety
by Kyle Dent

Living with an Imperfectly Ethical AI
by Michelle Nedashkovskaya

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and
company names mentioned herein may be trademarks of their respective owners. Reference designs, conceptual
illustrations, and other graphics included herein are for informational purposes only.

Copyright © 2021 Mouser Electronics, Inc. — A TTI and Berkshire Hathaway company

3

9

21

25

33

37

Agency, Autonomy, and Protection in AI
by Sally Eaves15

| 2

Contributing Authors
Stephan Evanczuk
M. Tim Jones
Sally Eaves
Michelle Nedashkovskaya
Jim Romeo
Kyle Dent

Technical Contributors
Paul Golata
Joseph Downing
Christina Unarut

Design & Production
Robert Harper

Special Thanks
Kevin Hess
Sr. VP, Marketing

Russell Rasor
VP, Supplier Marketing

Jack Johnston, Director
Marketing Communication

Raymond Yin, Director
Technical Content

3 |

Creating Programs
That Learn
By Stephan Evanczuk for Mouser Electronics

Artificial intelligence lies at the heart
of dramatic advances in automotive,
healthcare, industrial systems, and
an expanding number of application
areas. As interest continues to rise,
the nature of AI has elicited some
confusion and even fear about
the growing role of AI in everyday
life. The type of AI that enables an
increasing number of smart products
builds on straightforward but
nontrivial engineering methods to
deliver capabilities far removed from
the civilization-ending AI of science
fiction.

Definitions of AI range from its most
advanced—and still conceptual—
form, where machines are human-
like in behavior, to a more familiar
form where machines are trained
to perform specific tasks. In its
most advanced form, true artificial
intelligences would operate without
the explicit direction and control of
humans to arrive independently at
some conclusion or take some action
just as a human might. At the more
familiar engineering-oriented end of
the AI spectrum, machine-learning
(ML) methods typically provide the
computational foundation for current
AI applications. These methods
generate responses to input data
with impressive speed and accuracy
without using code explicitly written

to provide those responses. While
software developers write code
to process data in conventional
systems, ML developers use data
to teach ML algorithms such as
artificial neural network models to
generate desired responses to data.

How is a basic
neural network
model built?
Among the most familiar types of
machine learning, neural network
models pass data from their input
layer through hidden layers to an
output layer (Figure 1). As described,
the hidden layers are trained to
perform a series of transformations
that extract the features needed
to distinguish between different
classes of input data. These

transformations culminate in
values loaded into the output layer,
where each output unit provides a
value representing the probability
that the input data belongs in a
particular class. With this approach,
developers can classify data such
as images or sensor measurements
using an appropriate neural network
architecture.

Neural network architectures take
many forms, ranging from the simple
type of feedforward neural network
shown in Figure 1 to deep neural
networks (DNNs) built with several
hidden layers and individual layers
containing hundreds of thousands
of neurons. Nevertheless, different
architectures typically build on an
artificial neuron unit with multiple
inputs and a single output (Figure 2).

Figure 1: Neural networks comprise layers of artificial neurons trained to distinguish
between different input data classes. (Source: adapted from Wikipedia)

inputs
outputs

input layer hidden layers output layer

| 4

5 |

| 6

In a feedforward neural network, a
particular neuron nij in hidden layer
j sums its i inputs, xi, adjusted by an
input-specific weight wij, and adds
a layer-specific bias factor bj (not
shown in the figure) as follows:

Sj = Σwijxi+bj

Finally, the summed value Sj is
converted to a single value output by
an activation function. Depending on
requirements, these functions can
take many forms, such as a simple
step function, arc tangent, or non-
linear mapping such as a rectified
linear unit (ReLU), which outputs 0
for Sj<=0 or Sj for Sj>0.

Although they are all designed to
extract the distinguishing features
of data, different architectures
might use significantly different
transformations. For example,
convolutional neural networks
(CNNs) used in image-recognition
applications use kernel convolutions.
In this, functions, called kernels,

perform convolutions on the input
image to transform it into feature
maps. Subsequent layers perform
more convolutions or other functions,
further extracting and transforming
features until the CNN model
generates a similar classification
probability output as in simpler
neural networks.

However, for developers, the
underlying math for popular
neural network architectures is
largely transparent because of the
availability of ML development tools
(discussed elsewhere in this issue).
Using those tools, developers can
fairly easily implement a neural
network model and begin training
it using a set of data called the
training set. This training data set
includes a representative set of
data observations and the correct
classification for each observation—
and represents one of the more
challenging aspects of neural
network model development.

How is a neural
network model
trained and
deployed?
In the past, developers creating
training sets had little option but to
work through the many thousands of
observations required in a typical set,
manually labeling each observation
with its correct name. For example,
to create a training set for a road
sign recognition application, they
need to view images of road signs
and label each image with the
correct sign name. Public domain
sets of prelabeled data let many
machine-learning researchers avoid
this task and focus on algorithm
development. For production ML
applications, however, the labeling
task can present a significant
challenge. Advanced ML developers
often use pre-trained models in a
process called transfer learning to
help ease this problem.

Figure 2: An artificial neuron produces an output based on an activation function that operates
on the sum of the neuron’s weighted inputs. (Source: Wikipedia)

7 |

Although emerging tools and
services help facilitate data
preparation, the training set
characteristics nevertheless play a
critical role in the effectiveness of
the neural network model and overall
application. The decisions made
in choosing which observations
to include and exclude have
fundamental implications, including
flexibility, specificity, and fairness
that require careful consideration. As
a result, the level of effort required
to create an optimal training set can
rival the effort required to implement
the machine-learning program itself.
After the training set is created
and the neural network model is
implemented, the model’s training
process iteratively runs the training
data. At each iteration, the training
process calculates a loss function
that measures the difference
between the desired result provided
by the data labels and the calculated
result generated by the model. Using
a method called back propagation,
that error information is used by
the training process to adjust the
weights and other model parameters
for the next iteration. This process
continues until the loss function
falls within some threshold or fails
to improve after some specified
number of iterations.

When training completes, the model
is converted to an inference model
by performing several optimizations,
including removing unneeded
structures such as the back
propagation mechanism, eliminating
neurons that contribute little to the
classification process, and even
merging layers. Programs implement
the inference model by loading a
compact representation saved in
various standard formats by ML tools
and frameworks.

Neural networks
not always the
best solution
Although neural networks might
be the more recognizable type
of machine learning, they are by
no means the only or even best
choice for some applications.
Neural networks fall into ML called
supervised learning because they
rely on labeled data sets to train
the algorithm. In sensor-based
applications such as the Internet of
Things (IoT) or industrial systems,
other supervised learning algorithms
like support vector machines
(SVMs) or decision trees provide
an alternative that is simpler, more
compact, and equally effective.

SVM methods classify data by
finding where input data points
lie within an n-dimensional space
defined by the training data.
Decision-tree methods use training
data to construct a model that
efficiently decomposes input data
into a series of optimized decisions.
As with the output layer of a neural
network, the decision tree’s final leaf
nodes provide the probability that
the data falls into a particular class.
This approach is particularly efficient
for classifying sensor data such as
simultaneous accelerometer and
gyroscope measurements to detect
a complex movement. Support for
decision trees is integrated into
some inertial measurement units
from STMicroelectronics.

These supervised learning methods
are perhaps the most recognizable
ML form. Still, other types of ML,
including unsupervised learning,
reinforcement learning, and many

others, are already being applied to
practical engineering problems. As
the name suggests, unsupervised
learning finds relationships within
unlabeled data, using clustering
techniques to identify similar
characteristics. These techniques
are particularly useful during training
set development and feature
engineering, where developers
optimize the selection of data
characteristics or features to be
used for training and inference.
Reinforcement learning finds
applications in robotics systems
programming, using utility measures
to optimize training, not unlike loss
functions in neural network training.

Conclusion
Machine-learning methods such
as neural networks form the
foundation of a growing array of
smart products able to recognize
and classify specific images or
sensor measurements based
on sophisticated mathematical
concepts. For developers,
implementing neural network models
and other ML-based solutions in
their applications follows a well-
supported development process that
is straightforward but by no means
simple.

| 8

mouser.com/xilinx-kria-kv260-kit

Kria™ KV260 Vision AI
Starter Kit

9 |

Machine Learning
Requires Multiple Steps
By M. Tim Jones for Mouser Electronics

Introduction
Deploying machine learning (ML)
is a multi-step process. It involves
selecting a model, training it for
a specific task, validating it with
test data, and then deploying and
monitoring the model in production.
Here, we’ll discuss these steps and
break them down to introduce you
to ML.

ML refers to systems that, without
explicit instruction, are capable
of learning and improving. These
systems learn from data to perform
a particular task or function. In
some cases, learning, or more
specific training, occurs in a
supervised manner where incorrect
outputs result in adjusting the
model to nudge it toward the
correct output. In other cases,
unsupervised learning occurs
where the system organizes the
data to reveal previously unknown
patterns. Most ML models follow
these two paradigms (supervised
vs. unsupervised learning).

Let’s now dig into what is meant
by a model and then explore how
data becomes the fuel for machine
learning.

Machine-Learning
Model

A model is an abstraction of a
solution for machine learning. The
model defines the architecture
which, once trained, becomes an
implementation. Therefore, we
don’t deploy models. We deploy
implementations of models trained
from data (more on this in the next
section). So models plus data plus
training equal instances of ML
solutions (Figure 1).

ML solutions represent a system.
They accept inputs, perform the
computation of different types
within the network and then
provide an output. The input and
output represent numerical data
which means that, in some cases,

translation is required. For example,
feeding text data into a deep-
learning network requires encoding
words into a numerical form that
is commonly a high-dimensional
vector given various words that
could be used. Similarly, outputs
might require translation from a
numerical form back into a textual
form.

ML models come in many types,
including neural network models,
Bayesian models, regression
models, clustering models, and
more. The model that you choose
is based upon the problem at hand.

In the context of neural networks,
models range from shallow multi-
layer networks to deep neural
networks that include many layers
of specialized neurons (processing
units). Deep neural networks also
have a range of models available
based upon your target application.
For example:

• If your application is focused
on identifying objects within
images, then the Convolutional
Neural Network (CNN) is
an ideal model. CNNs have
been applied to skin-cancer
detection and outperform the
average dermatologist.

Figure 1: From Machine Learning Model
to Solution. (Source: Author)

Machine
Learning
Module

Data

Machine
Learning
Module

Training

| 10

11 |

ADuCM4050 Ultra Low
Power Microcontroller

mouser.com/adi-aducm4050-ulp-mcu

| 12

• If your application involves
predicting or generating
complex sequences (such as
human language sentences),
then Recurrent Neural
Networks (RNN) or Long-Short-
Term-Memory networks (LSTM)
are ideal models. LSTMs have
also been applied to machine
translation of human languages.

• If your application involves
describing the contents of an
image in human language, then
a combination of a CNN and
an LSTM can be used (where
the image is fed into the CNN
and the output of the CNN
represents the input to the
LSTM, which emits the word
sequences).

• If your application involves
generating realistic images
(such as landscapes or faces),
then a Generative Adversarial
Network (GAN) represents the
current state-of-the-art model.

These models represent some
of the more popular deep neural
network architectures in use
today. Deep neural networks are
popular because they can accept
unstructured data such as images,
video, or audio information. The
layers within the network construct
a hierarchy of features that allow
them to classify very complex
information. Deep neural networks
have demonstrated state-of-the-art
performance over a wide number
of problem domains. But like other
ML models, their accuracy is
dependent upon data. Let’s explore
this aspect next.

Data and training

Data is the fuel that drives machine
learning, not just in operation but
also constructing an ML solution
through model training. In the
context of training data for deep
neural networks, it’s important to
explore the necessary data in the
context of quantity and quality.

Deep neural networks require large
amounts of data for training. One
rule of thumb for image-based
classification is 1,000 images
per class. But the answer is
dependent upon the complexity of
the model and tolerance for error.
Some examples from production
ML solutions yield a spectrum of
dataset sizes. A facial detection
and recognition system required
450,000 images, and a question-
and-answer chatbot was trained
with 200,000 questions paired
with 2 million answers. Smaller
datasets can also suffice based
upon the problem being solved. A
sentiment analysis solution that
determines the polarity of opinion
from written text required only tens
of thousands of samples.

Data quality is just as important
as the quantity. Given the large
datasets required for training,
even small amounts of erroneous
training data can lead to a poor
solution. Depending upon the type

of data necessary, your data might
go through a cleansing process.
This ensures that the dataset is
consistent, lacks duplicate data,
is accurate, and complete (lacks
invalid or incomplete data). Tools
exist to support this process.
Validating data for bias is also
important to ensure that data does
not lead to a biased ML solution.

ML training operates on numerical
data, so a pre-processing step
can be required depending upon
your solution. For example, if your
data is human language, it must
first be translated into a numerical
form to process. Images can be
pre-processed for consistency. For
example, images fed into a deep
neural network would be resized
and smoothed to remove noise
(among other operations).

One of the biggest problems in
ML is acquiring a dataset to train
your ML solution. This could be the
largest endeavor depending upon
your problem because it might not
exist and require a separate effort
to capture.

Finally, the dataset should be
segmented between training data
and test data. The training portion
is used to train the model, and
once trained, the test data is used
to validate the accuracy of the
solution (Figure 2).

Figure 2: Dataset Splitting for Training and Validation. (Source: Author)

Dataset Training
Machine
Learning
Solution

Data
cleansing and
segregation

Validation

13 |

| 14

Tools exist to accomplish this
process, and most frameworks
include split functions to segregate
training and test data. Let’s now
explore some of the frameworks
that simplify the construction of
machine-learning solutions.

Framework
It’s no longer necessary to build
your machine-learning model from
the ground up. Instead, you can
rely on a framework that includes
these models and other tools to
prepare data and validate your
solution. This same framework also
provides the environment through
which you’ll deploy your solution for
production. Choosing a framework
is typically done based upon
familiarity, but if you’re starting
out, you can choose one that fits
your application and the model you
intend to use.

TensorFlow is the best of the deep-
learning frameworks. It supports all
popular models (CNN, RNN, LSTM,
etc.) and allows you to develop in
Python or C++. You can deploy
TensorFlow solutions on high-end
servers down to mobile devices. If
you’re just starting, TensorFlow is
the place to start, if nothing else
than for its tutorials and breadth of
documentation.

CAFFE started as an academic
project, but after being released
into open source, has grown into a
popular deep-learning framework.
CAFFE is written in C++ but

also supports Python for model
development. Like TensorFlow, it
supports a wide range of deep-
learning models.

Facebook began work on a
derivative of CAFFE called Caffe2
that included new models. But
rather than bifurcate the CAFFE
project, it was instead merged into
another framework called PyTorch.
PyTorch is based upon the wealth
of information available, including
hands-on tutorials to build different
types of solutions.

The R language and environment
is a popular tool for ML and data
science. It’s interactive, which
allows you to prototype and build
a solution incrementally while
seeing the results in stages. Along
with Keras (an open-source neural
network library), you can build
CNNs and RNNs with minimal
development.

Model auditing
Once your model is trained
and meeting your accuracy
requirement, you deploy it in
production. But once there, you’ll
need to audit your solution to
ensure it meets your requirements.
This is particularly important based
upon the decisions made by your
model and how they can impact
people.

Some machine-learning models are
transparent and can be understood
(such as decision trees). But

other models such as deep neural
networks are considered black-
box, and decisions are made
by millions of calculations that
the model itself cannot explain.
Therefore, while periodic auditing
was once acceptable, continuous
auditing quickly became the norm
in these black-box situations
because mistakes are inevitable.
Once a mistake is discovered, this
information can be used as data to
tweak the model.

The other consideration is the
lifetime of the solution. Models
decay and input data can evolve,
resulting in changes in the model’s
performance. Therefore, accepting
that a solution will be brittle over
time, ML solutions must change
along with the world around them
.

Conclusion
To deploy a machine-learning
solution, we start with a problem
and then consider possible models
that solve it. Acquiring data is
next, and once properly cleansed
and segmented, the model can
be trained and validated using an
ML framework. Not all frameworks
are the same and based upon your
model and experience, one of many
can be selected and applied. This
framework is then used to deploy
the ML solution, and with proper
auditing, the solution operates in
the real world with live data.

15 |

Agency, Autonomy, and Protection
in Artificial Intelligence

By Sally Eaves for Mouser Electronics

Artificial intelligence (AI) is a key
component advancing intelligent
smart environments, spanning
home, work, health, education,
supply chain, factory, city, and
society. Although fairness and bias
are currently human-designed
aspects of AI, other aspects such
as agency and autonomy present
the potential for a duality between
greater goods and harmful acts.
For those who design, develop, and
implement AI systems, challenges
include reducing the risk of harm,
balancing human control and
machine autonomy, and solving
problems through governance,
standardization, and innovation.
Here, we’ll explore concepts of
agency and autonomy, discuss
the ever-present role of bias, and
describe challenges in protecting
humans from potential harm.

Agency

Definitions of agency vary
significantly, but most focus
on making something happen,
including making something
happen for something or someone
else. A related concept is whether
the agent can choose what to do,
instead of being told what to do.
Consider a decision that appears

irrational to others. Out of all the
different options available, the
perceived irrational decision is
made for reasons known only
to the person making it. What
characterizes the human agent is
intelligence and our ability to select
from a range of options.

The ability to choose what to do
invites questions about enabling
AI systems to make such decisions
for themselves. What happens if
AI makes a seemingly irrational
decision to us as humans? Is it a
malfunction, or is it reasoning that
is not accessible to us? Drawing
on science fiction, perhaps the
classic case is HAL9000, the
sentient computer in 2001: A
Space Odyssey. So the question
becomes: What autonomy should
AI-empowered agents/devices
possess?

Autonomy
Autonomy invokes independence
in decision-making and goal-
setting, and it implies self-
sustainment, with autonomy
motivating agency. The nature
of the independence differs
from automated technologies:
Automated technology is self-

acting, as opposed to autonomous
or self-regulating technology that
can adapt to situations.

However, automation and
independence are not black-and-
white distinctions. They’re a matter
of degrees. Take, for example, the
concept of AI-, Internet of Things-,
and sensor-enabled driverless cars.
Today, reaching the much-hyped
fully autonomous vehicle is still
some way off. Although we have
seen innovation toward this vision
and acceleration of other benefits—
such as making human driving
smarter and safer—significant
moments have caused pause for
reflection. One such moment was
a March 2019 pedestrian fatality
involving a self-driving car.

Such consequences raise the
question: How much autonomy
can be achieved, or is indeed
desirable? The answer depends
on degrees of autonomy and
supervision:

Degrees of Autonomy

The U.S. National Highway Traffic
Safety Administration (NHTSA) has
defined six levels of autonomy in
driverless cars, ranging from Level
0 to Level 5:

| 16

17 |

Xeon® Scalable Processors
(3rd Gen)

mouser.com/intel-xeon-scalable-processors-3rd-gen

| 18

• Level 0: Humans do all the
driving.

• Level 1: Some assistance is
provided to the person driving,
in steering, accelerating, or
braking.

• Level 2: More advanced
assistance that controls
steering, accelerating, and
braking but requires constant
human monitoring.

• Level 3: In specific
circumstances, the vehicle can
carry out all parts of the driving
but with the person ready to
intervene when required by the
system.

• Level 4: In specified
circumstances, the vehicle can
do all required to drive without
a person paying attention.

• Level 5: Fully autonomous self-
driving vehicle with the human
as a passenger.

Despite outlining degrees of
autonomy, ethics and legal
questions remain. For example,
how should a car decide between
crashing and killing five school
children at a bus stop or killing
its two elderly passengers? Who
is ultimately responsible when
autonomous systems fail? Can and
should self-learning robots be held
responsible for their actions and
be held liable if people are hurt or
property damaged?

Degrees of Supervision

Part of the answer might lie
in further defining degrees of
autonomy according to degrees
of supervision. Like autonomy,
supervision can also be described
on a spectrum, such as definitions
identified by a company called re2
robotics:

• Tele-Operation: Intuitive human
control of a robot.

• Supervised Autonomy:
Autonomous operation under
human supervision.

• Fully Autonomous: Complete
robotic autonomy with no
supervision required.

Putting these degrees into context,
supervised autonomy would
be allowing robots to perform
duties that would be hazardous
to humans but still giving robot
operators full control over specific
tasks.

Bias and its friends

Agency and autonomy matter,
especially with artificial intelligence
embedded across all aspects
of life, increasingly involved in
highly impactful decisions and
accelerating with the wider rollout
of 5G. One of the challenges within
this smart connected and hybrid
domain is the bias, conscious or
otherwise, that can affect AI design,
development, and application.

Agency and autonomy can have
highly sensitive and serious long-
term impacts in terms of unfair
or discriminatory outcomes.
One example is an algorithm to
determine the likelihood of a
criminal re-offending that has
revealed a pattern of bias in its
assessment. This is more than
the undermining of trust; it is
exposing people to discriminatory
and undesirable consequences.
Protection is vital.

Protections and
their challenges
The very possibility of harm from
artificial intelligence raises the
question of how people can be
protected. It provokes questions
about who or what controls our
individual and collective lives as
a society, how much freedom and
privacy we have, and what checks,
balances, and accountability are in
place to stop any of us from being
harmed. Significant, complex, and
interlinked questions suggest some
level of protection is required.

One of the earliest attempts to
propose rules for AI systems
is Asimov’s Law of Robot’s
published in the short science
story “Runaround” in 1942. This
introduces three laws:

1. Prevent harm to humans.

2. Require robots to be obedient
to humans unless doing so
clashes with the first law.

3. Require robots to protect
themselves unless doing so
clashes with the other two laws.

Are these adequate? Beyond
any debate on the adequacy
or necessity of these laws, this
again draws attention to the
distinction between automated and
autonomous technologies.

Constraining autonomy

AI-enhanced robots with any
degree of autonomy are part of a
more general issue relating to how
much autonomy should be given
to AI and whether constraints
should be imposed. For example,

19 |

is it desirable to have a weapon
system that will act upon goals
without human intervention but
open to human intervention if
necessary? Can we trust this?
History is full of examples where
technology has had negative
consequences, intended or
otherwise. Social media is, in
principle, a good idea because it
allows people to connect and share.
However, its dark side has exposed
many vulnerabilities, including
cyberbullying, misinformation, and
identity theft, among others.

As AI becomes more deeply
embedded across our increasingly
smart, intelligent, and connected
world, the need for constraint
becomes more complicated. Take,
for example, facial recognition
technologies that cross city
centers and enter into residential
areas. Although these might
help make our streets safer,
they also carry the potential to
monitor people’s movements and
activities. Transparency concerning
data usage is key to trust and
acceptance, alongside protection
around privacy and security,
especially given the increased
surface area for cybersecurity
threats. Even smart toys can be
hacked, so, really, how private can
we be?

Governing AI

Although most people recognize
that AI can bring transformative
benefits to business and society,
the potential dark side must be
recognized, too, because that’s
how we can best mitigate and
address it. In a recent article,
Sundar Pichai, CEO of Alphabet
and Google, has called for
regulating AI and acknowledges
challenges in regulating it.

Regulation at a national level
could lead to some nations having
strong, enforceable governance
mechanisms but leave others
with weak regulations that attract
malicious activity.

Further, legislation tends to lag
behind technology developments,
especially ones as rapidly
developing as AI. This suggests
the need for underlying principles
and values to guide what is
accepted or permitted. So while
Google has its principles for the

“ethical development and use of
AI in our research and products,”
for example, reasons are few for
others to adopt them.

To counter this, Pichai argues that
the time is now for international
alignment. This calls for a global
effort, as exemplified in May 2019,
when 42 countries signed up to
adopt OECD Principles on Artificial
Intelligence. These comprise

“five values-based principles
for the responsible deployment
of trustworthy AI and five
recommendations for public policy
and international co-operation.”

However, some argue that it will
be near impossible to regulate AI.
What if someone or some (political)
organization decides to ignore
these principles? For example,
political agendas can argue for AI
developments on the grounds of
national security, particularly in
the military sector. The malicious
spread of misinformation and the
distortion of reality with deep fakes
are also concerns.

Assigning rights and
responsibilities

So finally, protection must also
be viewed from the perspective

of the technology itself. First is
the issue of identity. It might not
be human, but a robot can have a
unique presence, unlike inanimate
objects. Taking this to a higher
level recognizes that a robot can
gain citizenship, as illustrated
when Sophia was awarded full
citizenship of Saudi Arabia back
in 2017. During the same year, the
European Union (EU) Parliament’s
Legal Affairs Committee
published a controversial paper
that suggested creating specific
legal rights and responsibilities,
rather than human rights, and
encapsulating them under

“electronic personalities.”

Conclusion
Artificial intelligence is with us
and here to stay, and like many
aspects of life, it presents as a
duality–with both the potential
for helping the greater good and
reaching new depths of nefarious
uses. The challenge for those who
design, develop, and implement
AI systems is to reduce the risk of
harm, achieve the delicate balance
between human control and
autonomy, and find an effective
balance between governance
structures, standardization, and
innovation. Perhaps the onus
actually lies best with us all to help
steer the trajectory of AI toward
the economic and ethical values we
believe. In this way, we can move
beyond a human versus technology
narrative toward one of human-
technology partnership that builds
on our collective complementary
strengths.

| 20

21 |

Living With an Imperfectly Ethical AI
By Michelle Nedashkovskaya for Mouser Electronics

Ongoing developments in artificial
intelligence (AI) hold immense
promise for achieving social good.
AI’s potential to help us overcome
some of the world’s greatest
challenges is already being
explored across various sectors.
From agriculture to astronomy, the
breadth of AI applications seems
limited only by our imagination.

Like any tool, however, AI could
end up creating or perpetuating
some problems while solving
others, even when designed with
the best intentions. The ethical
risks associated with AI will
broaden alongside the contexts
in which it is applied. A perfect
ethical framework for navigating
this new landscape could prove
elusive, but its importance matches
the enormity of the challenge. New
technological contexts will dictate
the need for new norms.

To address these risks,
technologists must:

1. Understand that bias exists in
data and tools

2. Increase awareness of this bias
and improve efforts to mitigate it

3. Institutionalize ethical thinking
in engineering processes

Understanding
bias in data & tools
AI ethics have become a hot
topic recently, in part because
algorithmic decision-making
and decision support systems
are being integrated into public
administration domains, including
public health, law enforcement,
and criminal justice. Such
applications raise the ethical
stakes of employing AI technology,
amplifying the potential real-world
ramifications of AI tools that might
yield biased or unfair results.

Biased AI tools could have
profound and long-lasting impacts
on individuals’ lives, affecting their
criminal records, creditworthiness,
and employment prospects. Bias
can creep into an algorithm in
many ways. Data bias can arise
from flawed data collection or
reflect a broader systematic bias
at play. For example, if individuals
from minority populations are
arrested at higher rates than their
white counterparts for the same
crime, algorithms trained on the
resulting data can perpetuate
those inequities. Such risks related
to prejudicial categorization have
already played out in the real
world. Pretrial risk assessment

algorithms used in criminal
justice proceedings, for example,
have repeatedly been found
to discriminate against racial
minorities.

Bias can also arise in the way
computer scientists frame
problems and select the attributes
an algorithm considers. For
example, algorithms for job
recruitment efforts rely on many
assumptions: Which attributes
should be associated with a
worthwhile candidate? Could those
attributes carry gendered or racial
connotations? This sort of bias led
Amazon to scrap an AI recruitment
tool in 2018 after realizing that
the model discriminated heavily
against women: The model learned
to associate strong candidates with
maleness because the company
employed more men than women.

Increasing
awareness of bias
and improving
solutions
The implications of such cases
of bias have prompted the
development of a robust literature
on Al’s ethical considerations.
Many philosophers, including

Balancing AI’s potential for good against
its ethical pitfalls

| 22

23 |

well-known experts, such as
Oxford University philosophers
Nick Bostrom and Luciano Floridi,
have begun to devote themselves
to developing frameworks around
these issues. Such academic
efforts have focused on “fairness,
accountability, and transparency”
in machine learning. Awareness
of and engagement with this vast
and growing literature is key to
forging appropriate risk mitigation
strategies.

Understanding and building
awareness about AI ethics
issues requires interdisciplinary
cooperation. Several initiatives
have already been developed with
this goal in mind, from think tank
programming like that of the Future
of Life Institute to industry efforts
such as Google’s publication of
Responsible AI Practices. The third
annual Association for Computing
Machinery Conference on Fairness,
Accountability, and Transparency
(ACM FAccT, formerly ACM FAT*)
took place in January 2020 and
brought together stakeholders
from numerous fields to explore the
ethics of computing systems. Such
efforts are signs of progress, but it
is incumbent on each individual to
contribute to this interdisciplinary
dialogue and learn from the work.

Equally important to initiatives
dedicated to studying these
issues is the widespread adoption
of new ethical frameworks
throughout the technology industry.
Like the practice of building
human-centered AI, we should
consider developing new means
of institutionalizing ethical and
socially responsible thinking into
the engineering process’ every
step. Ethics need not be perceived

as an esoteric science reserved for
ordained philosophers but rather
a practice or skill that anyone can
exercise and sharpen in every step
of their work.

Institutionalizing
ethical thinking
in engineering
processes
New modes of thinking about
institutionalizing responsible AI
can borrow heavily from disciplines
outside engineering and computer
science. For example, much
of the thinking in international
security focuses on worst-case
scenarios. Just as military forces
create contingency plans to
prepare for unforeseen challenges,
technologists can employ worst-
case scenario thinking regarding
AI ethics: What are all the ways a
given product could go awry? How
can we mitigate those risks? One
thought experiment could mirror
deliberations about weapon design
and deployment: What could go
wrong if bad actors acquire this
new capability?

Other ways to institutionalize
ethical thinking within
technological development can
hit closer to home. For example,
the concept of iterative progress
is perhaps best understood in the
technology industry. Agile software
development entails concurrent
development and testing. It
emphasizes incremental delivery,
continual team collaboration,
and learning. Innovations can be
implemented iteratively to resolve
technical kinks. Agile deployment
and institutionalized feedback can

help keep ethical considerations in
perspective.

Conclusion
We must all continue to ask
big-picture questions about
technology limitations. For every
product or approach that involves
AI—especially in a public sector
context—one might ask whether
AI is best suited to perform that
function. Human judgment is
demonstrably imperfect and
often falls victim to a confluence
of cognitive biases, but we must
remain vigilant to not replace one
set of flaws with another.

“AI could end
up creating or
perpetuating
some problems
while solving
others, even when
designed with the
best intentions.”

| 24

mouser.com/amphenol-intercon-edge-card

12+Gbps 0.8mm High-Speed
Edge Card Connectors

25 |

Machine-Learning Software
Simplifies Development
By Stephan Evanczuk for Mouser Electronics

Machine learning (ML) has
gained the most recognition
among the different artificial
intelligence (AI) types, thanks
to a growing list of successful
applications. As noted elsewhere
in this issue, ML development
flips the conventional model of
software development. Rather
than explicitly writing algorithms
to process data, ML developers
use data to train algorithms on how
to process data. For production
ML applications, developers might
spend little time on the algorithms
themselves and focus more on
data engineering and writing code
with proven algorithms. In contrast,
ML researchers might spend most
of their time writing code for new
algorithms or optimizing existing
ones, using standard data sets to
compare improvements over earlier
algorithms. In the following, key
development resources needed
to program ML applications are
examined.

Both production and research
efforts can take advantage of
a wide array of development
resources, ranging from low-
level algebraic libraries used to
implement new kinds of model
algorithms to high-level automated
ML environments that accept a

set of data and return a trained
model. In general, developers
of production applications can
complete their work with little
need to involve themselves with
low-level math libraries. Yet,
when facing challenges such as
developing ML models for Internet
of Things (IoT) devices, production
developers can still find themselves
using some of the same sorts of
tools and techniques employed by
researchers.

Whether focused on research or
production, ML projects require
implementing an existing or novel
ML algorithm using conventional
coding methods. ML developers
work with various conventional
programming languages, including
Python, C/C++, Java, Javascript,
R, Go, and other more specialized
languages. Among these, Python
has emerged as the dominant
language for ML development
partly because developers can
quickly become productive with
this language; but largely because
of the wide availability of add-
on libraries or modules. Python
provides different developers’
methods to add external C/C++
functions or even create Python
modules in C if no suitable module
is available. In general, however, ML

development with Python builds on
a common set of tested, optimized
modules.

Building on
modules
Developers can quickly get
started with ML development
by importing a set of Python
modules that provide fundamental
capabilities required equally for
developing production ML models
or for creating new ML algorithms.
Among these, some of the more
commonly used modules include:

• NumPy, which provides array
manipulation and algebraic
functions commonly required in
ML development;

• Scipy, which provides various
scientific computing functions;

• Pandas, which supports high-
level data structures and
supports access to different file
formats and databases;

• Matplotlib, which provides
functions to visualize data and
results.

In principle, a developer could use
only these libraries, implementing
an ML algorithm’s underlying
math operations using NumPy

| 26

27 |

mouser.com/infineon-aurix-tc3xx-mcus

AURIX™ TC3xx Microcontrollers

| 28

algebraic functions and visualizing
results with Matplotlib. In practice,
however, both researchers and
production developers combine
these libraries with several others.
ML scientists exploring new
algorithms might use the SymPy
symbolic computing module
to evaluate their equations or
implement compute-intensive
core functions in C using low-level
routines from a basic linear algebra
subprograms (BLAS) library such
as OpenBLAS.

Production developers might
find themselves turning to C/
C++ libraries for performance
reasons. However, in the early
stages of development, they
are more likely to use Python
modules that support higher-
level abstractions with intuitive
functions specifically designed

for implementing ML applications.
Although this is perhaps the largest
group of software resources for
ML programming, some of the
more commonly used ML packages
include:

Scikit-learn, which natively
supports perhaps the widest range
of ML algorithms for supervised
learning and unsupervised learning
(Figure 1) with an accessible
approach considered particularly
effective for those new to ML
development;

• Keras, which supports the
efficient implementation
of deep neural network
(DNN) models, including
convolutional neural
networks (CNNs) through a
comprehensive set of functions
required to implement the

various layers of a model;
• TensorFlow, which provides

functions for model
implementation as well as
broader, end-to-end support for
ML applications.

• PyTorch, which also provides
both model implementation
and end-to-end development
capabilities.

Each of these libraries abstracts
complex operations to a series of
intuitive function calls. To build a
DNN model, developers typically
build up the model layer by layer
using built-in functions that
implement the layer’s function.
After the model is configured, other
function calls invoke training with
hyperparameters needed in the
training process itself.

Figure 1: Scikit-learn simplifies the development of machine-learning programs
using a broad array of algorithms for supervised and unsupervised learning.
(Source: scikit-learn.org)

29 |

Some Python libraries, including
TensorFlow and PyTorch, are
supported by comprehensive
ecosystems, so the core library
is part of a more substantial
framework for ML development.
Although many such frameworks
have emerged, TensorFlow and
PyTorch have gained dominance
among production developers
and researchers. Researchers
have generally preferred PyTorch
because of its interactivity and
flexibility. Industry developers have
generally preferred TensorFlow
for its performance efficiency.
Still, each framework continues
to evolve, addressing any
shortcomings with capabilities that
drive them closer to parity.

An even higher-level ML
development resource class
continues to emerge from
commercial cloud-service providers
such as Amazon Web Services
(AWS), Google, IBM, and Microsoft
and specialty cloud-platform

providers. Intended to provide
turnkey ML solutions, services such
as AWS SageMaker, Google Fluid
Annotation, IBM Cloud Annotations,
and Microsoft Automated ML
generate models from datasets for
users with neither the time nor the
expertise to create ML models on
their own. Typically, users can pass
the results to other tools in each
provider’s environment to create
optimized inference models for
deployment.

Optimization and
deployment
Performance concerns are
endemic to ML development
projects. Although ML researchers
continue to explore methods to
speed lengthy training cycles,
both researchers and production
developers typically take
advantage of the performance
boost provided by graphics
processing units (GPUs) and

GPU-compatible libraries. For
example, the GPU-enabled CuPy
package can speed many core ML
operations well over 100x than the
compatible but non-GPU-enabled
NumPy package.

For an overall gain in performance,
developers can use the Numba
compiler, which converts Python to
machine code with optimizations,
including GPU support.
TensorFlow’s XLA (Accelerated
Linear Algebra) compiler can
improve model speed and size with
no source-code changes.

Alternatively, developers can
use different versions of Python
itself. Cython compiles Python-
compatible Cython code, resulting
in faster execution than possible
with a standard Python’s
interpreter. The Intel® distribution
for Python takes full advantage
of performance enhancements
available in the Intel® architectures.

| 30

31 |

MAX78000 Ultra-Low-Power
Arm Cortex-M4 Processor

mouser.com/maxim-max78000-processor

| 32

For deployment on resource-
constrained IoT devices, developers
can take advantage of resource-
optimized model architectures and
processor-optimized libraries. For
example, Google’s MobileNet CNN
architecture and its more recent
EfficientNet CNN architecture
achieve high accuracy with
smaller, faster models. To speed
execution of the model itself,
developers can use libraries such
as the Intel® oneAPI Deep Neural
Network Library (oneDNN) or Arm®
NN (neural network) Software
Developer Kit (SDK) for Cortex®-
A-based processors or its Cortex
Microcontroller Software Interface
Standard Neural Network (CMSIS-
NN) library for Cortex®-M4-based
processors.

Development
environments
We’ve described only a bare-bones
set of Python modules among the
thousands in the Python Package

Index repository just for ML. Of
course, a typical development
project will build on many module
packages, each with their
dependencies. Developers typically
use virtual workspaces to isolate
a project’s development packages
from different versions of common
packages used in other projects or
even their operating environment.
The Anaconda platform provides an
even simpler approach, combining
package management with the
simple deployment of virtual
workspaces.

For both experienced ML
developers and those just
venturing into ML development,
the combination of Anaconda and
a popular AI development tool,
JupyterLab, largely eliminates
the setup and configuration
tasks typically required to use
any development environment.
JupyterLab, such as its earlier
version, Jupyter Notebook, lets
users build notebooks that

combine descriptive text with
runnable code and results
in a single package. Jupyter
notebooks have emerged as a
common medium of exchange of
ideas, specific algorithms, and
applications between developers,
researchers, and even participants
in ML competitions and courses on
Kaggle and other sites.

Conclusion
Machine-learning development
encompasses a wide set of
activities focused on both
preparing data and writing code
to implement models with existing
or new algorithms. To implement
models, developers need only a
few basic tools to get started, but
generating optimized inference
models might require them to
reach deeper into the rich set
of tools available for creating
effective ML-based applications.

33 |

Open-Source Movement
Affects AI Apps
By Jim Romeo for Mouser Electronics

Artificial intelligence (AI) is being
used by many to accomplish great
things beyond human intelligence.
Open-source platforms, data,
frameworks, and models are
increasingly used in conjunction
with AI development to improve
and enhance AI projects.

The premise of open source is that
everything is free and available
to all. Source code, designs, and
related intellectual property is
shared and can be redistributed
at large. It represents an open
exchange where users participate
and collaborate in a communal
effort. Programmers use source
code to program a software
application. With source code,
programmers and developers
use it to perform and reach
desired objectives. How does the
open-source movement affect AI
applications? Let’s explore.

Interoperability
and communal
sharing for
progress
In artificial intelligence applications
development and the emergence
of machine learning (ML), the
open-source movement is more

important than ever, Major
software purveyors and software
developers across various
industries contribute their own
source code and use others’ codes.

Open-source code meets a
common open-source standard.
As an enterprise develops open-
source code with open-source
standards and without proprietary
data formats, the resultant
software is compatible with other
software and applications. This
enables interoperability.

A communal effort ensures
interoperability. Interoperability is
key because it means compatibility
and an ability to integrate an
application with other applications,
allowing enterprise networks
to grow and prosper from the
software.

Open-source code and software
are often loaded to a common
platform, available to all, such as
GitHub. Although it’s a Microsoft
site, GitHub is meant to be a
working parking lot for open-
source code and self-described as

“a development platform inspired
by the way you work. From open
source to business, you can host
and review code, manage projects,
and build software alongside 50
million developers.”

Another popular platform to share
code is via the Apache Software
Foundation (ASF). It provides a
framework for source code where
those committed to the open-
source credo of sharing intellectual
property can do so without
worrying about infringement or
liability.

The foundation touts “The Apache
Way,” as one in which “more than
730 individual Members and
7,000 Committers successfully
collaborate to develop freely
available enterprise-grade
software, benefiting millions of
users worldwide.”

In AI, a data framework uses data
to create predicted outputs. Such
prediction is used to learn data
and continuously train the model.
This takes place via a feedback
loop. Data is learned. Prediction is
enabled. Data and predictions are
continually fed back and improve
the prediction’s accuracy.

Ride-sharing company Lyft is
an example of how open-source
data tools are used in everyday
applications. The company
recently open-sourced a
debugging tool for AI data it had
been using for years, internal to its
operations. The tool called Flyte

| 34

35 |

S32V234 Vision & Sensor
Fusion Processor

mouser.com/nxp-s32v234-processor

| 36

has been used by Lyft in-house for
the past three years and corrects
and debugs data related to Lyft’s
pricing, locations, estimate time of
arrivals, mapping, and self-driving
developer teams. It is open source
and can be downloaded and used
by anyone.

Open-source
frameworks for AI
Artificial intelligence has many
open-source frameworks, available
to all, used by many, resulting in
creating applications that might be
proprietary. But they are based on
an open-source framework.

For example, Google’s TensorFlow
is a popular and useful open-
source framework. This framework
is a comprehensive ecosystem of
tools and libraries that enables
developers to apply ML to and
serve their markets better. For
example, Airbnb, eBay, Dropbox,
and others use TensorFlow.

TensorFlow, unbeknownst to many,
allows rental listings to follow an
order suitable to a user as that
user and their preferences are
indicated per their profile and

search. It might aid eBay to better
present auction listings. Or it
might establish a file hierarchy
that follows a certain pattern for a
Dropbox user.

Amazon SageMaker Neo is another
open-source ML platform. Its
project code helps AI developers
build models that learn data and
train an ML model via the cloud.
It is compatible with sensors and
other computing and connected
devices used with Internet of
Things (IoT) applications. It can
be used by AI developers to make
accurate predictions.

For example, SyntheticGestalt
(an applied ML company)
uses SageMaker Neo to train
drug discovery models in the
pharmaceutical and life-science
industries. It processes and learns
experiment data, evaluates it, and
produces model results.

The Open Neural Network
Exchange (ONNX) is an open-
source AI ecosystem created
specifically for AI to represent ML
models. The system’s operands
are common and serve as basic
building blocks for ML and deep-
learning models. This aids AI

developers in utilizing formats
to allow models to work with
different frameworks and tools for
AI applications. Like other open-
source platforms and formats,
ONNX enables interoperability
between other applications and
solutions. By developing within a
preferred framework, it curtails
problems from incompatibility
further downstream of the
application.

Our open-source
future
As artificial intelligence continues
to gain traction to accomplish great
things, the open-source mindset
will continue to help accelerate it. It
uses the power of a give-and-take
community who use open-source
data property, data, algorithms,
platforms frameworks, and formats
to perform amazing feats.

Open-source platforms will help
technology use math, science, and
other technology to improve our
world in new and different ways via
AI. In this way, we will move beyond
what we ever thought possible.

37 |

AI’s Evolution Demands
Strong Ethics, Safety
By Kyle Dent for Mouser Electronics

Some inventions are more
important than others. Certain
innovations have an outsized effect
on society, while others, even
when they are pervasive, are mere
conveniences in our lives. Consider
the different impacts of microwave
ovens and light bulbs. Although
most people these days have a
microwave oven, our lives would
not be drastically different if some
bizarre solar activity somehow
zapped all microwaves tomorrow.
Most of us would still probably
have a cooktop, an oven, a toaster,
and maybe even a grill, fire pit,
crockpot, pressure cooker, or air
fryer standing by and ready to use.

However, suddenly extinguishing
all light bulbs would be a different
story because convenient lighting
has offered a huge boost to
humanity’s standard of living and
economic well-being. Electric
bulbs that illuminate vast areas at
the flick of a switch replaced the
messy lanterns and candles of eras
past. They have made illuminated
environments the standard rather
than the exception for nearly 150
years. Newer advances, such
as connected lighting systems
and light fidelity (Li-Fi), further
integrate light with other building
and communication systems.

How important will artificial
intelligence (AI) be? Will its impact
be more akin to a microwave or to
the light bulb? Probably both. Like
many other inventions, AI is part of
a larger spectrum of development
that is solving problems. Potentially,
AI could one day be so integrated
that it becomes a modern
necessity. It also brings strong
needs for ethics and safety to
ensure that the technology serves
the greater good and values
human life.

AI: Doing good
today ... and
beyond
If solar flares managed to
evaporate all of artificial
intelligence today, most of us
would have other options for
meeting needs, such as having a
stovetop instead of a microwave
or revert to processes and
capabilities of our not-so-distant
past. Business analytics, medical
imaging, recommended products,
and music playlists would be
limited by human capabilities
coupled with whatever technology
is available. Here again, however,
the absence of AI would be more
akin to missing microwave ovens

than missing light bulbs—at least
for this fleeting moment.

At this juncture, several
technologies, such as sensors,
processing, and storage, have
matured and converged to enable
AI to solve tangible problems.
Of the 160 cases the McKinsey
Global Institute have tracked, only
about a third have real-life uses,
and many of those are still in the
testing phase. That said, AI-
driven solutions are emerging. For
example, an organization called AI
for Good Global Summit aims to
connect “AI innovators with those
seeking solutions to the world’s
greatest challenges to identify
practical applications of AI that
can accelerate progress towards
the United Nations’ Sustainable
Development Goals (UN’s
SDGs).” Its work cites progress
in agriculture, drug development,
and computer vision for satellite
imagery:

Farmers can now integrate massive
amounts of data from various
sources, including sensors in
the field, weather data, markets,
and satellite imagery. AI-based
time series analysis provides
recommendations for increasing
crop yields and maximizing
efficient land use (Figure 1).

| 38

Figure 1: AI-based analysis provides recommendations for increasing crop yields and maximizing efficient land use.

39 |

• Pharmaceutical companies
also realize benefits from AI
modeling. Researchers can
generate and search over huge,
even exponential numbers
of possible treatments using
digital models of molecules and
their interactions. As human
genome sequencing also
progresses, better treatments
can be customized for
individual cases.

• Organizations use satellite
imagery to detect wildfires (a
harder problem than you might
think) and carbon emissions
and even to locate areas of
extreme poverty in the world.

AI’s potential to do good is
quickly transitioning from solving
tangible, more immediate needs to
becoming increasingly integrated
into larger, more abstract solutions.
The UN SDGs go beyond solving
local and short-term problems to
challenging the world to devise
solutions to poverty, inequality,
climate change, environmental
degradation, and peace and justice.
Could AI have a role in achieving
these goals? The McKinsey Global
Institute indicates many of these
roles might be related to the
UN’s SDGs in particular. Some
of the nearer-term applications
are expected in education and
health care. However, applying AI
solutions significantly to difficult
problems will require action
across a spectrum of groups, from
governments and organizations to
private industry (Figure 2).

Ethics in doing
good
As artificial intelligence advances
and solutions become more far-

reaching, ethics will become
increasingly more important for
ensuring that technologies are
used for good and emphasize the
value of human life. Most of the
published guidelines cite the need
for ethical AI as a way to extract
the greatest benefit from it. One
of the leading groups discussing
the ethics of AI is AI4People, which
tries to influence governments
and organizations. Its goal is
to shape the social impact of
new applications of AI and lay
out the foundational principles,
policies, and practices for building
a “Good AI Society” framework.
The group has made 20 specific
recommendations for achieving
that end. One of its major concerns
is that AI could be underutilized
if the public does not trust AI
solutions and rejects them. If
this happens, the world will not
derive the great benefit that could
otherwise come from AI.

The European Commission
released a white paper in
February 2020 promoting the
development and deployment
of AI to ensure benefits that
conform to European values. The
white paper emphasizes the
ethical implications while it calls
for scientific breakthroughs that
improve lives and respect human
rights. The white paper also warns
of the downsides if AI takes on a
larger, more intrusive role in human
lives. Regulations that already
exist can cover some aspects of
AI, but existing rules might have to
be adapted or clarified concerning
AI products. Transparency of AI
models will make enforcement of
regulations more difficult. Clear
regulations are needed to protect
citizens and give businesses legal
clarity.

The European Commission also
emphasizes the importance of a
unified effort to reach the scale
needed to solve big problems.
A fragmented approach from
different member countries
with different directions and
unnecessary duplication of effort
risks creating AI solutions that
do not scale to the necessary
level. The commission plans to
involve multiple stakeholders and
provide incentives to industry
to prioritize Europe’s current
strengths in technology, including
manufacturing automation and
quantum computing. It also expects
to coordinate among academic
centers of excellence. Finally, the
white paper mentions using AI to
achieve the SDGs, viewing the
technology as especially relevant
to climate and environmental goals.

The United States has similar
ambitions. Individual agencies
within the federal government
are making plans for AI and
publishing white papers describing
their expectations. Recently, the
Secretary of Energy Advisory
Board created a working group
to examine and report on AI and
the U.S. Department of Energy’s
(DOE’s) role in supporting the
development and promotion
of AI technologies. The board
recently released its report. The
DOE emphasizes the urgency of
developing AI, seeing it as a new
space race with China, which is
making large investments in AI.

Prioritizing AI for human benefit
could help solve some of the most
pressing societal challenges, such
as climate change, environmental
degradation, and even the
protection of democracies. To
achieve these ambitions, a strategy

| 40

Figure 2: Prioritizing artificial
intelligence for human benefit
could help solve some of society’s
most pressing challenges, such
as climate change, environmental
degradation, and even the protection
of democracies.

41 |

QSFP-DD Connectors, Cages
& Cable Assemblies

mouser.com/te-qsfp-dd-connectors-assemblies

| 42

is needed to coordinate the many
stakeholders. Many governments,
intergovernmental agencies,
organizations, and companies are
publishing similar statements and
AI recommendation papers.

Safety in doing
good
Risks exist in these and future AI
uses, a potentially powerful tool
that could also be misused and
comes with the high likelihood
of unintended consequences. In
traditional engineering disciplines
such as structural engineering
or aviation, designs include
safeguards wherever possible.
New products and systems are
extensively tested, and solutions
are subjected to stresses to better
understand the limits of their
capabilities. Armed with knowledge,
industry has had success deploying
engineered solutions that provide
benefit with minimal risk.

The engineering culture and
mindset are so far absent from
AI, even as we deploy it for real-
life situations, fully expecting its
significant impact on people’s
lives. Much of the best practices in
traditional engineering have been
codified in regulations. As useful as
microwave ovens are in our lives, if
they spewed radiation throughout
our homes, we would not be able
to use them. The European Union
(EU) white paper suggests that
regulations are likely required, but
other similar documents from other
entities are less clear about how to
mitigate potential harms. The U.S.
statement on AI specifically calls
for minimizing regulation.

In the absence of leadership and
guidance from government (except
the EU), many other entities have
stepped in to fill the gap. A whole
body of ethical guidelines has
been developed, mostly directed
at developers and researchers.
At this point, no real mechanism

for enforcement exists, but the
principles and recommendations
identified can help elucidate the
key aspects of the conversation
when lawmakers and regulators get
involved.

Conclusion
Considerable work remains to
advance artificial intelligence to
the point where it can help solve
some of the world’s greatest
challenges. As we expand AI’s
potential, we must be cautious of
its dark side. The core task of AI is
to automate what would otherwise
be human decision-making. Doing
that requires vast amounts of
data but garnering that data risks
intruding into our personal lives to
understand us better. Balancing
these risks against AI’s tremendous
potential is tricky, but it is also
likely to be the difference between
the impact of a microwave and a
light bulb.

43 |

