

Introducing SiC Schottky Diode In Compact QFN Package

New "QFN" Package - C3D1P7060Q

Key Electrical Parameters

- ➤ Forward Rated Current: 1.7A @ T_C = 150 °C
- ➤ Reverse Blocking Voltage: 600V
- > Forward Voltage: 1.7V @ 100°C
- ➤ Total Charge Q_c: 5.6 nC

Package

- ➤ Smallest SiC package in the market
- > 3.3 x 3.3 x 1mm QFN Surface Mount

Benefits

- > Higher efficiency
- > Lower thermals for diode, surrounding components
- > Smaller footprint

Why Cree Schottky Diodes?

Cree C3D1P7060Q in Light Bulb applications

- Cree's new C3D1P7060Q well suited for new Non-Isolated lighting applications
- Industry's smallest SiC package well suited for space constrained application such as Lighting
- Improved Switching behavior reduces thermals and stress on MOSFET

Isolated Vs Non-Isolated LED Lighting

Isolated Single Stage Flyback

Schottky diode BR1 Vin(t) PWM Controller Q1

Non-Isolated Low-Side Buck

- Transformer for isolation
- Single Stage Flyback
- Typical Eff. 80%
- Diode blocking DC voltage requirements <200V

- Inductor with no isolation
- Low Side Buck
- Typical Eff. 85%
- Diode blocking DC voltage requirements increase to 500V – 600V

Why use a SiC Schottky Diode?

Simplified Circuit operation

MOSFET Q is turned on, current ramps up through inductor and LED string

MOSFET Q is turned off and the freewheeling diode D conducts the current the current through the inductor and LED string

Any reverse recover current from diode will flow into the MOSFET.

7W Cree Reference Design - Schematic

Driver Spec

> Input: 240Vac

Output: 25Vdc, 270mA (7W) – 40W Incandescent Replacement

Switching Freq: 125kHz

Driver IC: TI/National LM3445

7W Cree Reference Design - Test Data

Efficiency Comparison - ~4% efficiency improvement

7W Cree Reference Design – Test data

MOSFET Temperature Comparison

7W Cree Reference Design

Diode Temperature Comparison

Conclusion

 C3D1P7060Q Schottky diode increases system efficiency and enables higher Lm/W.

- System benefits
 - 1. Space savings/higher density
 - Small 3.3 x 3.3 mm footprint
 - 2. Efficiency Improves 2-5%
 - 3. Improved Thermals
 - 4. Improved System Reliability.
 - Thermal reduction can prolong life of caps
 - Less stress on MOSFET

