

WF102: Choosing a Wireless Solution

John Schwartz
Technology Strategist

Agenda

- Design questions
- Chip vs. Module
- Module integration
- Protocol options
- Questions

- How much range do you need?
- What maximum required bandwidth?
- Where will the solution be deployed and under what conditions?
- Will the design be battery powered?
- How often does data need to be transmitted?
- What parameters are flexible and open to design tradeoffs?

- How much range do you need?
 - Frequency considerations
 - Environmental considerations
 - Output power in Europe ~10dBm (10mW)
 - − For 0 dBm − 30m indoor, 100m outdoor
 - For 10dBm w/ LNA 60m indoor, 1km outdoor
- What maximum required bandwidth?
 - 250 kbps over the air, but 125 kbps <u>max</u>
 - 38.8 kbps more typical for PtP and PtMP networks
 - Slower for mesh technologies

Importance of Frequency Selection

- Where will the solution be deployed and under what conditions?
- Geographic deployment
 - Worldwide vs. Regional
 - Cost considerations
- RF performance
 - Range
 - RF penetration
 - Antenna considerations

Regulatory Bodies

- FCC (United States)
- IC (Canada)
- ETSI (Europe, some APAC)
- C-Tick (Australia)
- Telec (Japan)
- Anatel (Brazil)

- How often is data transmitted?
 - Affects sleep mode and battery life
 - Determining factor in whether or not mesh can be used

• Battery life calculation example

Current in TX (mA)	40	Alkaline AA	
Current in RX (mA)	45	Batterylife (hours)	30551.63
Sleep current (mA)	0.035	days	1272.984
Time interval (min)	60	years	3.487629
time in TX (ms)	3000		
Time in RX (ms)	2000	Lithium	
		Batterylife (hours)	32159.61
% Duty Cycle in TX	0.08%	days	1339.984
% Duty Cycle in RX	0.06%	years	3.671188
% Duty Cycle in sleep	99.86%		
Avg current draw	0.093285	Alkaline D	
		Batterylife (hours)	128638.4
		days	5359.934
Battery Capacities		years	14.68475
AA Alkaline mAh	2850		
AA NIMH	2500		
Lithium	3000		
D Cell Alkaline (typ)	12000		

- What parameters are flexible and open to design tradeoffs?
 - Battery Life vs. Data Rate
 - Battery Life vs. Data Frequency
 - To Mesh or Not to Mesh
 - Placement vs. Range
 - Frequency vs. Homogenous SKUs

- General Considerations
 - Power supply (voltage, current)
 - Battery types
 - Antenna placement/enclosures
 - Data format (transparent/API)
 - Data backhaul or local network?
 - Network topology

RF Development

Components

- Time (development time opportunity costs)
- Hardware and expertise
 - Development hardware (spectrum analyzer, etc.)
 - RF engineers, antenna design
- Test fixture design
- Certifications

RF Development Timeline & Expense Overview for a ZigBee solution

- 1. Timeline Risks (22 32 weeks, assuming no major redesigns and all certs pass on first round)
 - a. Hardware development (12 19 weeks total)
 - b. Software development (22 32 weeks total)
 - c. Test fixture development (12 20 weeks)
- 2. Development Expense (\$349,500 \$572,500, assuming no major redesigns, all certs pass on first round and excludes opportunity cost)
 - a. Tools \$99,500 \$225,500total
 - i. Compiler & tools \$2,500
 - ii. Spectrum analyzer \$45,000 \$90,000 (could be leased)
 - iii. Network analyzer \$45,000 \$90,000 (could be leased)
 - iv. Testing software \$3,000 \$5,000
 - v. SE/Certicom tools 7 licenses \$30,000 Annually
 - vi. SE test harness \$4,000 \$8,000
 - b. Engineering time -\$126,000 \$191,00 total
 - i. Hardware \$60,000 (12 wks @ \$5K/wk) \$95,000 (19 wks@ 5K/wk)
 - ii. Software \$66,000 (22 wks @ \$3K/wk) \$96,000 (32 wks@ 3K/wk)
 - c. Certification \$20,000
 - i. Worldwide certifications \$20,000 every two-to-three years (recertify as major components rev)
 - d. Test Fixture \$104,000 \$136,000
 - i. Hardware \$60,000 (12 wks @ \$5K/wk) \$100,000 (20 wks@ \$5K/wk)
 - ii. Software \$24,000 (8 wks @ \$3K/wk) \$36,000 (12 wks @\$3K/wk)

Assumptions:

- 1. Timeline assumes developers have equal RF experience as Digi RF engineers.
- 2. Timeline assumes developers have considerable ZigBee Smart Energy expertise.
- 3. Timeline assumes development is done in parallel by multiple assets (e.g. there are independent teams for Test Fixture Hardware, and Test Fixture Software).
- 4. Tool needs assume all fundamental RF Design & Test tools must be acquired/developed.
- 5. Engineering Time expenses assume cost for single engineer + overhead for given period.
- 6. No significant design challenges—a poorly designed board could add another 3 months in design time to pass FCC certification; getting calibration right between a thermostat product, a different load controller, and a smart meter could add another month. In our own experience,

Chip vs. Module - TTM

Development Cost and Time

Chip vs Module...cost

Cost of Development and Material

Chips and Modules

- Chip Advantages
 - Size
 - Customization
 - It's mine!
 - Cost (large volumes)
- Disadvantages
 - Certification
 - Chip & design re-spins

- Module Advantages
 - Ease of integration (time-to-market)
 - Certifications
 - One design may support multiple topologies
 - Managed hardware changes
 - Cost (other volumes)

- Typical hardware features and issues
 - 3.3V UART interface
 - Requires only
 - VCC, GND, DIN, DOUT
 - Component placement
 - Packaging
 - Antenna selection

- Antennas
 - Chip Antennas
 - Best mechanically
 - Lowest range
 - Wire Antenna
 - ¼ wave 1.8 dBi gain
 - Used w/ Plastic/fiberglass enclosures
 - RPSMA
 - Connects to external dipole
 - U.FL

Antennas

Antennas

Wireless Choices

LigBee

Bluetooth

UNB

Wi-Ri

Cellular

6LOWPAN

Wireless Standards Comparison

ZigBee

- Low cost
- Low power
- Security-enabled
- Reliable
- Initial target markets were AMR, building automation, and industrial automation (M2M Comms)
- Digi is a member of the ZigBee Alliance

Wi-Fi (802.11)

- 2.4 GHz
- Most popular
 - -802.11b = 11 Mbps
 - -802.11g = 54 Mbps
 - backwards compatible with 802.11b
- Range a few hundred feet (~100 m)
- Can be infrastructure standard

Cellular

- 3G / 2.5G
- Data rates in the few hundred kbps range and below
- Costs, carrier fees
 - ~\$.10-.50 per MB
 - ~\$50-60 per month unlimited

Conclusion

- Ways to judge wireless options
 - Frequency
 - Range
 - Throughput
 - Costs
 - Interference
 - Power requirements
 - Features