

Calculating an LED's Junction Temperature

By: Dr. Rolf Weber Senior Application Engineer, OSRAM Opto Semiconductors Inc. Infrared Products July 01, 2015

The LED junction temperature T_j is an important parameter for LED performance and life time. The junction temperature is calculated out of the thermal resistance of the LED $R_{th\ LED}$, the thermal power $P_{thermal}$ produced by the LED and the local temperature of the PCB T_{PCB} .

(1)
$$T_i = R_{th LED} * P_{thermal} + T_{PCB} = R_{th LED} * (P_{electrical} - P_{optical}) + T_{PCB}$$

P_{thermal} is the difference between the electrical power applied to the LED and the generated optical power. P_{electrical} and P_{optical} both change with temperature:

- (2) $P_{optical} = P_{optical}$ (25°C) (1 + T_{C1} ($T_j 25$ °C)) T_{C1} : Temperature coefficient of the LED flux (a negative value like -0.005 / K) T_j : LED junction temperature
- (3) $P_{electrical} = V_{fLED} I_{LED}$ V_{fLED} : LED forward voltage I_{LED} : LED current

The LED forward voltage V_f changes with the LED junction temperature:

(4)
$$V_{fLED} = V_{fLED} (25^{\circ}C) + T_{CV} (T_{j} - 25^{\circ}C)$$

 T_{CV} : Thermal coefficient of the forward voltage (a negative value like -0.001 V / K).

Inserting Eq. 4 in Eq. 3 defines P electrical. Inserting Eq. 3 and 2 in Eq. 1 leads to the following expression:

(5)
$$T_i = R_{th LED} (V_{f LED} (25^{\circ}C) + T_{CV} (T_i - 25^{\circ}C)) I_{LED} - P_{optical} (25^{\circ}C) (1 + T_{CI} (T_i - 25^{\circ}C))) + T_{PCB}$$

An LED data sheet provides the parameter values $R_{th\,LED}$, $V_{f\,LED}$ (25°C), $T_{C\,V}$, $P_{optical}$ (25°C) and $T_{C\,I}$. As Eq. 5 is linear in T_j , T_j can be expressed as:

(6)
$$T_j = R_{th LED} ((V_{f LED} (25^{\circ}C) - T_{CV} 25^{\circ}C) I_{LED} - P_{optical} (25^{\circ}C) (1 - T_{CI} 25^{\circ}C)) + T_{PCB}$$

$$\frac{1 + R_{th LED} (P_{optical} (25^{\circ}C) T_{CI} - T_{CV} I_{LED})}{(25^{\circ}C) T_{CI} - T_{CV} I_{LED})}$$

The PCB temperature T_{PCB} might increase due to the heat from the LED. In this case you can replace R_{th} LED with R_{th} LED + R_{th} PCB and T_{PCB} with $T_{ambient}$.

Electronic components around the LED might add to the heat power and Eq. 6 can get more complicated. However, T_j can be calculated with Eq. 5 instead using iterations. In order to do so, we write the right side of Eq. 5 as $f(T_j)$. To begin the iteration we assume a T_{j0} start value (like 25°C) and insert it in the function $f(T_j)$.

(7)
$$T_{j1} = f(T_{j0})$$

We can then calculate $T_{j2} = f(0.5 (T_{j1} + T_{j0}))$ or in general $T_{jn+1} = f(0.5 (T_{jn} + T_{jn-1}))$. When T_{jn+1} matches 0.5 $(T_{jn} + T_{jn-1})$ with suitable accuracy we can stop iterating. Typically, 15 iterations are sufficient, but it's worthwhile to check. Using a spread sheet, each line might calculate T_{jn+1} taking the T_{jn} and T_{jn-1} values from the line above.