

Wireless Power Charging Wireless Power Transfer

RF&Wireless

Speaker:

Ing. Andrea De Gruttola FAE Wurth Elektronik Italy s.r.l.

23rd april 2013

Content

- What is Wireless Power Charging?
- Wireless Power Consortium & QI Standard
- WE Offering
- Market Companions

Consumer Motivators for Wireless Power Charging

Not running out of power (prerequisit: certain infrastructure maturity)

Speed of charging (fast power charging e.g. 80% in 30 min)

- Convenience
 - no wire
 - different devices on same power supply (like with µUSB chargers)
 - no need to carry a charger or spare battery
- Reliability (µUSB contact problems)

more than you expect

How does Wireless Power Charging work?

- Power transfers via inductive coupling at short distances (mm range)
- Transmitter (Tx) and Receiver (Rx) Coils are inductively coupled coils:

AC current in Tx coil generates a magnetic field, which induces a voltage in Rx coil. Rx voltage may be used to power a mobile device or charge a battery

- Magnetic field concentrated in small volume between Tx / Rx
- Improve coupling effect between coils by:
 - ✓ matching coil size
 - ✓ flat surface between coil to keep distance small
 - $\checkmark~$ shielding and aligning of coils

Surface

Tx Coil

Shielding

QI Standard System Overview

- Base Station
 - Contains one or more transmitters
 - Transmitter provides power to receivers
- Mobile Device
 - Contains a receiver that provides power to a load or charges a battery
 - Receiver provides control information to transmitter
- The Qi standard is an interface specification
 - sets the minimum number of rules needed to guarantee compatibility of all Qi transmitters and Qi receivers
 - maximizes the design freedom for developers of transmitters and receivers

Application – Mobile Devices

- More convenience when using portable electronic devices
- No need to carry multiple external power adaptors

Application - Furniture

Power supply integrated in desks, tables, appliances

Wireless power charging stations in: Desks in hotels, offices and homes Conference tables Restaurant & coffee shop Movie theaters etc.

Key success factor – Standardization Qi- Standard

Andrea De Gruttola | Public | RF&Wireless | april 2013

© All rights reserved by Würth Elektronik, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

Application - Automotive

Use time in car for convenient charging

Industry Accepted Standardization: Qi Standard

 \checkmark Standardization increases consumer confidence and demand

✓Qi "气" (Chee: "Vital Energy" in Asian Philosophy - An Intangible Flow of Power)

 ✓ Industry standard developed by Wireless Power Consortium (WPC)

 ✓ Rapid industry-wide adoption (100+ Members)

 ✓ Wurth Electronics is an official member of the WPC <u>http://www.wirelesspowerconsortium.com/member-list/</u>

Data transmission and signal processing

Closed loop – impedance modulation

- Digital Signal Processing ist used for
 - Demodulation of data packet from power receiver
 - Calculation of active power for foreign object detection (FOD)
 - Closed-loop control of power transmission
 - Monitoring of overload and overtemperature

- Advantages:
 - Full digital solution for robust designs
 - Low parts count
 - Enables customization (e.g. I²C, CAN,...)
- Challenge to realize the features above with a MCU that meets cost and power consumption objectives

Different types of Tx coils

Single and multiple coils	Moving coils	Coil arrays
Coil with magnet		
Coil without magnet		
Dual coils		

Andrea De Gruttola | **Public** | RF&Wireless | april 2013

The power of Qi

Wireless Power Coils WE-WPCC - Receiver 760 308 201

- Used as receiver coil in mobile devices with wireless charging function
- Fully compliant to WPC Qi standard
- ➢ Efficiency up to 75%
- Designed to fit to WE Transmitter Coil 760308101
- Outstanding performance due to usage of litz wire:
 - ✓ lowest R_{DC}
 - ✓ highest Q values

Part Number	Inductance	Q	Rated Current	Sat Current	RDC
760308201	10µH	50	4.5A	8A	0.160hm

Suggested by Texas Instruments for the use with the following Reciever ICs <u>bq51013AEVM-764</u>; <u>bq51013AEVM-765</u>; <u>bq51013EVM-725</u>

Andrea De Gruttola | Public | RF&Wireless | april 2013

Wireless Power Coils WE-WPCC - Transmitter 760 308 101

- Used as transmitter coil in power supplies for wireless charging
- Fully compliant to WPC Qi standard
- ➢ Efficiency up to 75%
- Designed to fit to WE Receiver Coil 760308201
- Supreme shielding characteristics for low leakage inductance
- > Outstanding performance due to usage of litz wire:
 - ✓ lowest R_{DC}
 - ✓ highest Q values

Part Number	Inductance	Q	Rated Current	Sat Current	RDC
760308101	24µH	90	5.5A	10A	0.070hm

Andrea De Gruttola | Public | RF&Wireless | april 2013

Why do we use litz wire ?

- Higher Q-factor, which results in a higher efficiency
- Less frequency dependent eddy currents, equal to less AC resistance

Accounting for losses

Less DC resistance

Winding loss modeled using equivalent series resistances (ESR)

Equivalent series resistances (ESR) to consider power losses due to

- DC resistance of a single coil
- Losses caused by eddy currents flowing in a single coil (frequency dependent)

Based on this definition the ESR is independent of the magnetic coupling

Basic power transmitter designs – Typ A transmitters (1)

Туре	Positio	'n	description	
A1, A5	guided (magnet)	single coil	coil dimensions: 43 x 2,1mm variable frequency (105205kHz) A1: half-bridge, input voltage 19V A5: full-bridge, input voltage 5V	
A10, A11	guided (no magnet)	single coil	coil dimensions: 43 x 2,1mm variable frequency (105205kHz) A10: half-bridge, input voltage 19V A11: full-bridge, input voltage 5V	\bigcirc
A2, A3	free	moving coil	coil dimensions: A2: 40 x 2mm, A3: 33 x 1,8mm full-bridge inverter, input voltage 312V A2: fixed frequency (140kHz) A3_ variable frequency (105140kHz)	y↑ →x
A4	free	two coils	coil dimensions: 70 x 59 x 1,15mm full-bridge inverter, input voltage 511V variable frequency (110180kHz)	\bigcirc
A6	free	three coils	coil dimensions: 53,2 x 45,2 x 1,5mm half-bridge inverter, input voltage 12V variable frequency (115205kHz)	

Andrea De Gruttola | **Public** | RF&Wireless | april 2013

Basic power transmitter designs – Typ A transmitters (2)

Туре	Positio	n	description	
A7	free	single coil	coil dimensions: 39 x 1,9mm full-brigde inverter, variable input voltage 312V frequency fixed betreen 105140kHz (140kHz recommended)	\bigcirc
A8	free	single coil	coil dimensions: 39 x 1,9mm full-brigde inverter, variable input voltage 511V variable frequency 110180kHz	\bigcirc
A9	guided	single coil	coil dimensions: 43 x 2,1mm full-brigde inverter, variable input voltage 215V frequency fixed betreen 105115kHz (110kHz recommended)	

Basic power transmitter designs – Typ B transmitters

Туре	Position		description	
B1	free	multi-coil array	coil dimensions: 28 x 0,6mm, 3-layer wire wound, half-bridge inverter, input voltage 020V frequency fixed between 105113kHz	
B2	free	multi-coil array	based on 8-lyer PCB type primary coil array coil dimensions: 31 x 0,6mm half-bridge inverter, input voltage 020V frequency fixed between 105113kHz	
B3	free	multi-coil array	hybrid PCB/wire wound coil structure (4-layer PCB + wire wound coil) full-bridge inverter, input voltage 12V frequency fixed between 105113kHz variable phase angle of full-bridge inverter (0180°)	
B4	free	multi-coil array	Square shaped planar coils, 8-layer PCB or 3- layer wire wound (outer diameter 45mm) or hybrid PCB/wire wound full-bridge inverter, input voltage 12V, frequency fixed between 105113kHz variable phase angle of full-bridge inverter (0180°)	

A1-Standard: WE 760308101 with TI BQ500210

http://www.ti.com.cn/cn/lit/ug/sluu910a/sluu910a.pdf http://www.ti.com/lit/ug/sluu911/sluu911.pdf http://www.ti.com/lit/ug/slvu447a/slvu447a.pdf

Andrea De Gruttola | Public | RF&Wireless | april 2013

Evaluation Kit

IDTP9030 Evaluation Kit Contents Evaluation board IDTP9030-EVAL JM60 Programming Dongle USB type A to micro-USB type B cable IDTP9030-EVAL Evaluation Board Manual Universal AC to 19V DC Power Adapter WPC "Qi" Compatible RX Energizer Sleeve CD containing: IDTP9030 control software tool RX WPC **QiLosd** IDT USB Device Driver Reference layout Gerber Files Reference layout Cadence Allegro board files Electronic copy of IDTP9030-EVAL manual IDTP9030-EVAL User atvia l

INGD USB Cable Universe AC to DC Adapter

Andrea De Gruttola | Public | RF&Wireless | april 2013

Integrated Device Technology*

Playing Around – The Blog

http://www.element14.com/community/groups/wireless-power-solution

Andrea De Gruttola | Public | RF&Wireless | april 2013

Frequently Asked Questions (1)

What is the operational frequency for QI transmission? the transmitter operates in a range of 100 – 205 kHz

Can you transmit with an A6 (3 coils) transmitter more energy than with a A5 or A11?

No, the reason for 3 coils is only to increase the area for optimal coupling

Frequently Asked Questions (2)

What is the distance range between transmitter and receiver coils?

"the closer – the better". Recommendation is to stay between 8 -12 mm larger distance leads to inferior energy transfer

WPC is talking about an increase of the distance in a specification update

Why should the Q value of the coils be high?

The better the Q value is, the larger the distance can be between the transmitter and receiver coils

$$M = \sqrt{(k \cdot QTx \cdot QRx)}$$

Figure 2 Power efficiency for an inductive power transfer system consisting of loop inductors in dependence on their axial distance z with size ratio as parameter. Calculated for a quality factor of Q = 100

Thank you for your attention!

Andrea De Gruttola | Public | RF&Wireless | april 2013