

C series I General Applications

Contents

- Purpose / Objectives
- TDK MLCC Lineup
- Background
- Cap Range
- Features
- Applications
- Design Tools/Resources
- Part Number Description
- Summary

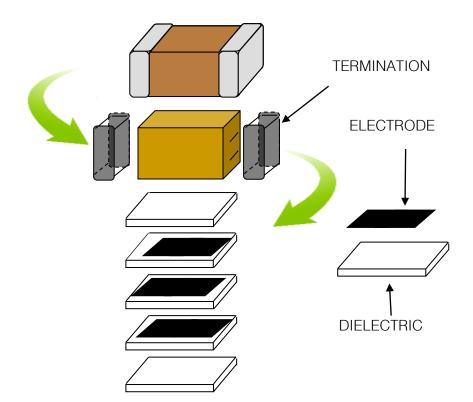
C series I General Applications

Purpose

■ To provide a general overview of TDK's "C Series" Multilayer Ceramic Capacitors for use in General Applications

Objectives

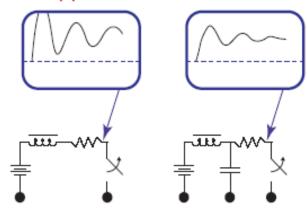
- Define TDK's C Series capacitors for General Applications
- Discuss the primary functions of TDK's C Series Capacitors
- Highlight the features and applications of TDK's C Series Capacitors for General Applications



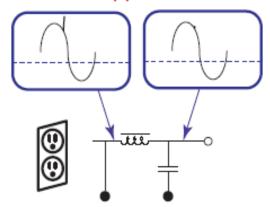
	SER	IES	FEATURES	OFFERING
		General Applications	 Wide range of case size and superior dimension precision Available in EIA class 1 and 2 dielectrics up to 50V 	• 01005 ~ 2220 / C0G, SL, X5R, X6S, X7R, X7S, Y5V • 4V ~ 50V / up to 100 μF
		Mid Voltage	 Unique design allows for higher voltage in smaller case size Available in 100V, 250V, 450V, and 630V 	• 0402 ~ 2220 / C0G, X6S, X7R, X7S, X7T • 100V ~ 630V / up to 15 µF
		High Voltage	Advance design provides improved withstanding voltageAvailable rating up to 3000V	• 1808 ~ 1812 / COG, X7R, X7S • 1000V ~ 3000V / up to 10 nF
С		High Temperature	 Stable temperature characteristics up to 150°C Highly precise temperature performance (±7.5%) up to 125° C 	• 0402 ~ 1210 / X8R • 16V ~ 100V / up to 10 μF
		High Q	Design with higher Q factor than standard capacitors Excellent attenuation and high self resonance frequency (SRF)	• 0201 / C0G • 25V / up to 20 pF
· ·		Flip Type	Flipped geometry provides lower inductance than standard capacitor Special design allows for adequate high frequency current to IC	• 0204 ~ 0612 / X5R, X6S, X7R, X7S • 4V ~ 50V / up to 10 µF
		Open Mode	Unique design allows for increase resistance to mechanical bending Improved performance in vibration and electrical stresses	• 0805 ~ 2220 / X7R, X8R • 16V ~ 630V / up to 22 µF
	-	Soft Termination	Improved bending resistance and temperature cycle performance Termination technology available for most case sizes including arrays	• 0805 ~ 3025 / X7R, X7S, X7T • 16V ~ 630V / up to 100 µF
	-	Conductive Epoxy	AgPdCu termination for conductive glue mounting Improved mechanical/thermal strength when used with conductive glue	• 0402 ~ 1210 / COG, X7R, X8R • 25V ~ 100V / up to 10 µF
CER	电阻	Controlled ESR	Unique design allows for specified "controlled" ESR Same no-hassle mounting method as standard 2-terminal components ESR is controlled without affecting the ESL	• 0603 ~ 0805 / X5R • 4V ~ 10V / up to 10 μF
CEU		Serial Design	2 series-connected capacitors in one body Improved bending resistance and temperature cycle performance Ultra high reliability design for automotive battery line applications	• 0603 ~ 0805 / X7R • 50V / up to 100 nF
CGA		Automotive Applications	Qualified to CDF AEC Q-200 automotive testing standard Manufactured using matured process for guaranteed performance Available in C0G, X7R and X8R temperature characteristics	• 0402 ~ 2220 / C0G, X5R, X7R, X7S, X7T, X8R • 6.3V ~ 630V / up to 47 μF
CGJ		High Reliability Applications	Extensive testing to ensure higher reliability and longer life Reliability tests based on MIL-STD requirements Guaranteed TC Bias and Hot IR performance	• 0402 ~ 1206 / C0G, X7R • 6.3V ~ 50V / up to 10 μF
СКС		2-in-1 Array 4-in-1 Array	Allows for reduction of PCB space and mounting time Unique electrode design reduces crosstalk Also available in soft termination for higher reliability performance	• CKCN27 ~ CKCA43 / C0G, X5R, X7R • 6.3V ~ 50V / up to 2.2 μF
CKD		Feed Through	Optimized for noise bypass with signal and power source circuits Can be used for meeting EMC requirements Ideal for use at higher frequencies due to low parasitic inductance	• 0402 ~ 1206 / up to 125°C temperature range • 6.3V ~ 50V / up to 22 μF
CKG		Mega Cap	Advance design for twice the capacitance on single footprint Improved vibration and thermal/mechanical stress performance Lower ESR and ESL than ALU and TA capacitor	• CKGxxK ~ CKGxxN / X5R, X7R, X7S, X7T • 16V ~ 630V / up to 100 μF
CLL	THE THE THE	Ultra Low Inductance	Unique internal structure allows cancelation of magnetic fields to reduce equivalent series inductance Eight sided terminal electrode design in one capacitor	• 0603 ~ 0805 / X7R, X7S • 4V ~ 10V / up to 4.7 μF

C series I General Applications - Background -

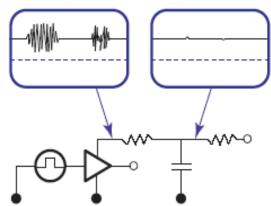
Basic Design Construction of a Multi-Layer Ceramic Capacitor



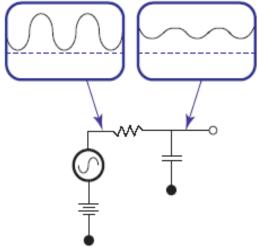
		Material		
No.	Name	Class I	Class II, III	
		вме	BME	
1	Dielectric	CaZrO3	BaTiO ₃	
2	Inner Electrode	Ni	Ni	
3		Cu	Cu	
4	Terminal Electrode	Ni		
5		S	n	


C series I General Applications - Traditional Functions -

Arc Suppression


Reduces voltage fluctuations caused by electro-mechanical switches.

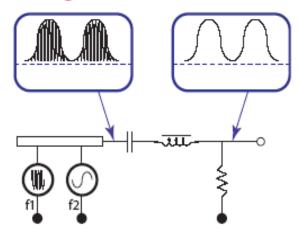
Transient Suppression


Removes large spikes such as lightning to protect the circuit.

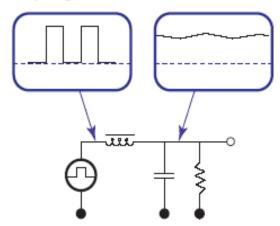
Bypassing/Smoothing

"Absorbs" DC voltage spikes.

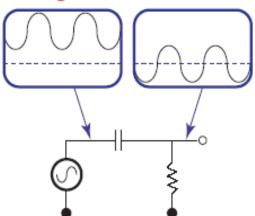
Decoupling



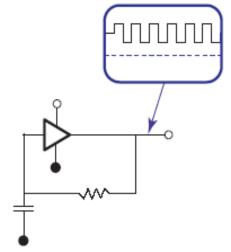
Reduces AC ripple voltage.


C series I General Applications - Traditional Functions -

Filtering


Removes unwanted frequency signals. In this example, f1 is removed.

Shaping


Changes the shape of a signal.

Blocking

Removes DC portion of signal.

Timing

Helps determine the frequency of a signal.

C series I General Applications - Cap Range -

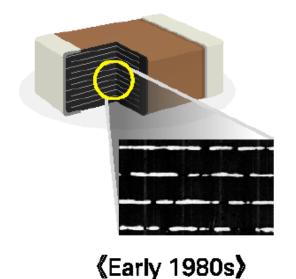
Cap Range:

- ❖ Wide range of case size and superior dimension precision
- Available in EIA class 1 and 2 dielectrics up to 50V
- 01005 ~ 2220 / C0G, X5R, X6S, X7R, X7S, Y5V
- ❖ 4V ~ 50V / up to 100uF

Capacitance

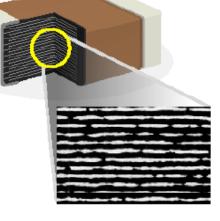
$$C = \mathcal{E}_0 \mathcal{E}_r \frac{S}{d} N$$

C : Capacitance


Eo: Permittivity in a vacuum

 $\mathcal{E}_{\mathbf{r}}$: Relative permittivity of a dielectric

S : Electrode area


Dimensions of the dielectric laver

N : Number of layers

Capacitance has been increased from $0.1 \mu F$ to $100 \mu F$.

Capacitance
1000 times higher!

(Today)

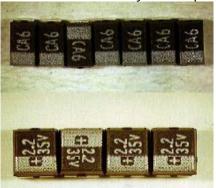
C series I General Applications - Features -

Features:

- TDK's proprietary internal electrode structure
- ❖ Wide capacitance range up to 100µF
- Available voltage rating of 4V to 50V
- Superior mechanical strength and reliability
- Low ESR / ESL characteristic
- Easy mounting due to no polarity

Performance Comparison

	Aluminum Electrolytic Capacitor	Tantalum Electrolytic Capacitor	Polymer Al/Ta Capacitor	MLCC
Cap Density (C/V)	•••	••	•••	<u> </u>
Freq. Characteristics			•••	<u> </u>
ESL, ESR			•••	
DC-Bias Characteristics				
Leakage Current				
Polarity				
Breakdown Voltage				
Endurance (Life)			•••	

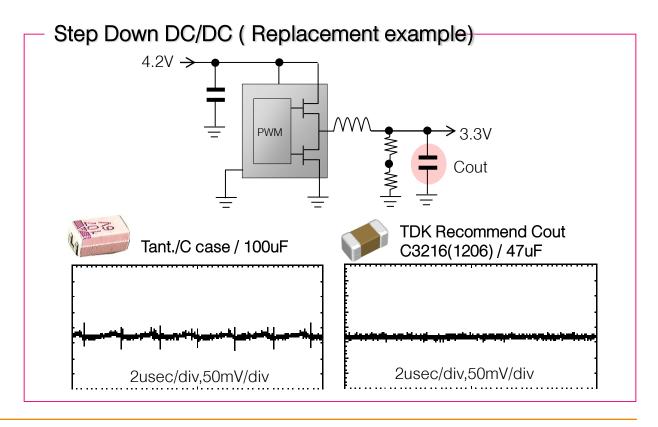

Polymer AI/ Ta Capacitor

Aluminum Electrolytic Capacitor

Tantalum Electrolytic Capacitor

Multilayer Ceramic Capacitor

C series I General Applications - Applications -


Applications:

- General electronic equipment
- Mobile communication equipment
- Power supply circuit
- Office automation equipment
- TV/LED displays
- Servers/PCs/Notebooks/Tablets
- Test and measurement equipment
- Hybrid ICs, etc.
- Decoupling / Smoothing
- Coupling
- Charge pump

Advantages:

- Noise suppression
- Space saving
- Superior reliability

C series I General Applications - Design Tools/Resources -

TVCL - TDK Virtual Component Library

http://www.tdk.com/tvcl.php

CCV – Components Characteristics Viewer

http://www.tdk.co.jp/ccv/index.asp

SEAT – Selection Assistant of TDK Components

http://www.tdk.com/seat.php

MLCC Sample Kits

http://www.mouser.com/Search/Refine.aspx?Ne=254016&N=1323038+4232846+4294963871

C series I General Applications - Part Number Description -

(1) (2) (3) (4) (5) C3225 X7S 1H 106 K

(1) Series/Dimension Code				
Series	Metric	EIA	L (mm) × W (mm)	T (mm) Nominal
	0402	01005	0.40 × 0.20	0.20
	0603	0201	0.60 × 0.30	0.30
	1005	0402	1.00 × 0.50	0.50
0 000000	1608	0603	1.60 × 0.80	0.80
C – General Applications	2012	0805	2.00 × 1.20	1.25
Applications	3216	1206	3.20 x 1.60	1.60
	3225	1210	3.20 x 2.50	2.50
	4532	1812	4.50 x 3.20	3.20
	5750	2220	5.70 x 5.00	2.80

(2) Temperature Characteristics

Temperature Characteristics	Temperature Range	Capacitance Change
COG	-55 ~ 125ºC	0 ± 30 ppm/ºC
SL	-25 ~ 85ºC	350/-1000 ppm/ºC
X5R	-55 ~ 85ºC	± 15%
X6S	-55 ~ 105ºC	± 22%
X7R	-55 ~ 125ºC	± 15%
X7S	-55 ~ 125ºC	± 22%
Y5V	-30 ~ 85°C	+22,-82%

(3) Rated Voltage Code (Vdc)			
Symbol	Rated Voltage (V _{DC})		
0G	4		
OJ	6.3		
1A	10		
1C	16		
1E	25		
1V	35		
1H	50		

(4) Nominal Capacitance (pF)				
Symbol	Cap Value (pF)	Cap Value (nF)	Cap Value (µF)	
101	100 pF	0.1 nF	0.0001 μF	
102	1,000pF	1 nF	0.001 μF	
105	1,000,000 pF	1,000 nF	1 μF	
106	10,000,000 pF	10,000 nF	10 μF	

The capacitance is expressed in three digit codes and in units of pico Farads (pF). The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. R designates a decimal point.

(5) Capacitance Tolerance Code			
Symbol	Capacitance Tolerance		
W	± 0.05pF		
В	± 0.10pF		
E	± 0.20pF		
С	± 0.25pF		
D	± 0.50pF		
F	± 1%		
G	± 2%		
J	± 5%		
K	± 10%		
M	± 20%		
Z	+80/-20%		

C series I General Applications - Summary -

Summary:

❖ TDK's C Series MLCCs for general applications are used to serve the traditional requirements for capacitors in electronic circuits

- TDK's C Series MLCCs for general applications offer solutions for current industry trends to downsize and replace less reliable capacitor technologies
- TDK has design tools to help support optimal MLCC component selection

Why TDK:

- World Class Supplier
- ppb Quality
- Local Factory Support
- Zero restrictive or banned materials