Energy-efficient solutions for offline LED lighting and general illumination
Offline LED lighting/general illumination

ST’s position
- #1 in lighting segment*
- #2 in power management**

ST’s expertise
- System solutions
- Technology integration and innovation
- Excellent technical support

*STMicroelectronics, Datapoint and Darnell – 2008
**iSupply - 2010
Contents

- Energy-efficient solutions for offline LED lighting
 - Offline LED driver solutions
 - Features/benefits
 - System evaluation boards and tools
 - General illumination applications
 - Residential lighting
 - Commercial lighting
 - Architectural and decorative lighting
 - Street lighting and public illumination
 - Emergency lighting
 - Machine vision
Driving LEDs using AC-DC solutions

Isolated and non-isolated topologies with high efficiencies and power factor

3 to 10 W
- Single package approach, primary-side or secondary-side CC regulation
- Incandescent replacement
- Decorative bulbs

10 to 50 W
- Single-stage AC-DC, single or multiple LED strings
- Triac dimmable or post regulation w/dimming
- Incandescent and fluorescent replacement
- Architectural and decorative lighting

50 W and above
- Single-stage or double-stage AC-DC plus analog or digital CC controllers
- Streetlights
- Parking garages
- Warehouse high bays
Non-isolated applications: up to 10W

Offline single-stage buck solution

Offline single-stage buck-boost solution

<table>
<thead>
<tr>
<th>Device</th>
<th>Part number/family</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolithic converter</td>
<td>VIPer family (Integrated controller + MOSFET)</td>
<td>▪ 800 V avalanche rugged MOSFET (VIPerPlus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Jittering for low EMI (VIPerPlus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Advanced OVP and OCP</td>
</tr>
<tr>
<td>Ultrafast diodes</td>
<td>STTHxx</td>
<td>▪ Wide selection of electrical parameters and packages</td>
</tr>
</tbody>
</table>

Applications

- Bulb replacement
- Lamp retrofit

AC-DC solutions for LED driving

- Buck
- Buck-boost
- Flyback
Non-isolated eval boards: 3-10W

VIPer family: High-voltage converters in non-isolated topologies

Key features
- Single package approach:
 - integrated
 - robust
 - sophisticated

Main benefits
- Miniaturized form factors
- Easy design
- High power factor > 0.7
- Compliant to energy saving regulations
- No high-voltage electrolytic cap usage
- High reliability (extended MTBF)

Evaluation board Application note Description
STEVAL-ILL026V1 AN2961 3 W non-isolated offline LED driver solution based on VIPER22AS
STEVAL-ILL017V1 AN2811 3.5 W non-isolated flyback constant-current source based on VIPER17
Non-isolated applications: up to 20W

Device	**Part number/family**	**Benefits**
PWM controller	L6562A	• High power factor
Buck and buck-boost MOSFETs	SuperMESH 3*	• High safety margin and ruggedness
MDmesh II* (super junction)	• High immunity to dV/dt, low conduction and switching losses	
Ultrafast diodes	STTHxx	• Up to 800 V with the best RDS(on) in the market
	• Best-in-class in dynamic dV/dt	
	• Low input capacitance and gate charge, low gate input resistance	

Applications

- Neon and bulb replacement
- Lamp retrofit

AC-DC solutions for LED Driving

- Inverse buck
- Buck-boost

* See MOSFET selection guide in presentation, online, and in energy-efficient solutions for LED lighting brochure
L6562A PWM controller eval boards

Key features
- Buck-boost topology
- Transition mode operation
- High power factor > 0.8
- Open-load protection
- Short-circuit protection

Main benefits
- Simple
- Lower switching losses
- Compliant to energy saving regulations, suitable for residential lighting
- Robust

Evaluation board	Application note	Description
STEVAL-ILL027V2 | AN3111 | 18 W single-stage offline LED driver
STEVAL-ILL034V1 | AN3256 | Low-cost LED driver for an A19 lamp
Isolated applications: Up to 10W

Applications for LED driving

- Bulb replacement
- Lamp retrofit

Flyback solution

Device	Part number/family	Benefits
Primary IC | HVLED805 (controller + MOSFET) | CC/CV primary regulation, QR zero voltage switching operation, 800 V avalanche rugged MOSFET

VIPer Plus (controller + MOSFET) | 800 V avalanche rugged MOSFET, high power factor, Jittering for low EMI, Advanced OVP and OCP

Schottky diodes | STPSxx | Wide product range in Vf/Ir trade off, avalanche ruggedness

CV/CC control | SEA0x | Very low current consumption, wide input voltage range
HVLED805 with primary-side regulation

![Typical Application](image)

Key features

| Single package approach
| integrated
| robust
| sophisticated |
| CC/CV primary regulation |
| No optocoupler |
| Zero voltage switching operation and high voltage start-up |

Main benefits

| Miniaturized form factors
| Easy design |
| Reduced costs and system complexity
| Very small form factor to fit in LED retrofit applications |
| High reliability (extended MTBF) |
| High efficiency up to 85% |
HVLED805 eval board solutions

EVALHVLED805
- 4.2 W solution for 350 mA LED type

STEVAL-ILL037V1
- Efficiency > 80%
- 3 W solution for 300 mA LED type

Evaluation board	**Application note**	**Description**
EVALHVLED805 | Data brief | 4.2 W offline LED driver with primary-side regulation
STEVAL-ILL037V1 | AN3360 | 3.2 W LED power supply based on HVLED805

No e-cap solution | Solution with e-cap
VIPerPlus family overview

- **Quasi-resonant**
 - VIPer35*
 - VIPer25
 - VIPer15
- **Non isolated**
 - Buck/buck-boost/flyback
 - VIPer26
 - VIPer16
 - VIPer06*
- **Fixed frequency with jittering**
 - VIPer37
 - VIPer27
 - VIPer17
 - VIPer28
- **Isolated**
 - Flyback
 - Peak power management

- Power (W) w/85-440 VAC
- Supported topologies
- Full production
- *Production 2011
VIPerPlus HPF LED driver eval board

High-voltage converters in high power factor flyback

<table>
<thead>
<tr>
<th>Key features</th>
<th>Main benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Single package approach</td>
<td>▪ Miniaturized form factors</td>
</tr>
<tr>
<td>▪ integrated</td>
<td>▪ Easy design</td>
</tr>
<tr>
<td>▪ robust</td>
<td></td>
</tr>
<tr>
<td>▪ sophisticated</td>
<td></td>
</tr>
<tr>
<td>▪ High-frequency operation</td>
<td></td>
</tr>
<tr>
<td>▪ High power factor > 0.9</td>
<td>▪ Compliant to energy saving regulations, suitable for commercial lighting</td>
</tr>
<tr>
<td>▪ No electrolytic output capacitor if current ripple is accepted</td>
<td>▪ High reliability (extended MTBF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation board</th>
<th>Application note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLVIP27-7WLED *</td>
<td>AN3212</td>
<td>3.5 W to 7 W high power factor offline LED driver based on VIPer devices</td>
</tr>
</tbody>
</table>

* Please contact local sales support to order this board
Isolated applications: from 10 to 75W

Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>AC-DC solutions for LED driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Tube lamp and bulb replacement</td>
<td>Flyback</td>
</tr>
<tr>
<td>▪ Architectural and decorative lighting</td>
<td>Flyback</td>
</tr>
<tr>
<td>▪ Street lighting</td>
<td>Flyback</td>
</tr>
</tbody>
</table>

Device Specifications

<table>
<thead>
<tr>
<th>Device</th>
<th>Part number/family</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary IC</td>
<td>L6562A / AT (PFC controller)</td>
<td>▪ High power factor flyback</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Triac dimmable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Extended temperature range (AT version)</td>
</tr>
<tr>
<td>Flyback MOSFET</td>
<td>SuperMesh 3*</td>
<td>▪ High safety margin and ruggedness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ High immunity to dV/dt, low conduction and switching losses</td>
</tr>
<tr>
<td></td>
<td>MDmesh II* (super junction)</td>
<td>▪ Up to 800 V with best $R_{DS(on)}$ in the market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Best-in-class in dynamic dV/dt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Low input capacitance and gate charge, low gate input resistance</td>
</tr>
<tr>
<td>Schottky diodes</td>
<td>STPSxx</td>
<td>▪ Wide product range in Vf/Ir trade-off, avalanche ruggedness</td>
</tr>
<tr>
<td>CV/CC control</td>
<td>SEA0x</td>
<td>▪ Very low current consumption, wide input voltage range</td>
</tr>
</tbody>
</table>

* * See MOSFET selection guide in presentation, online, and in energy-efficient solutions for LED lighting brochure
L6562A

15W Triac dimmable eval board

Key features	Main benefits
High power factor flyback topology supported > 0.9 | Compliant to energy saving regulations
Control and power section separated | Suitable for high power
Design flexibility | Design flexibility
Triac dimmable | Commonly available dimming option for home fixtures
High output voltage | No limitation to the number of LEDs within a string
Based on low-cost controller and MOSFETs | Cost-effective solution

Evaluation board	Application note	Description
STEVAL-ILL016V2 | AN2711 | 15 W offline Triac dimmable LED driver from 96 to 32 V_{AC}
Key features | Main benefits
--- | ---
- High efficiency (> 90%), high power factor (> 0.9), flyback topology supported | - Compliant to energy saving regulations
- Control and power section separated | - Suitable for high power
- CC regulator in inverse buck working in fixed off time | - Design flexibility
- Constant ripple current, when input/output voltages change | - No limit to number of LEDs on string
- High output voltage |

<table>
<thead>
<tr>
<th>Evaluation board</th>
<th>Application note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVAL-ILL019V1</td>
<td>UM0926</td>
<td>35 W offline RGGB LED driver with individual channel brightness regulation</td>
</tr>
<tr>
<td>EVL6562A-35WFLB *</td>
<td>AN2838</td>
<td>35 W wide-range HPF flyback converter with L6562A</td>
</tr>
<tr>
<td>EVL6562A-LED</td>
<td>AN2928 AN2983</td>
<td>Modified buck converter for LED applications</td>
</tr>
</tbody>
</table>

* Please contact local sales support to order this board
Non-isolated: 80W and higher eval board

PFC boost + inverse buck

<table>
<thead>
<tr>
<th>Applications</th>
<th>AC-DC stage</th>
<th>DC-DC stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street lighting</td>
<td>PFC boost</td>
<td>Inverse buck</td>
</tr>
</tbody>
</table>

Key features

- LED current setting to 350 mA, 700 mA and 1 A
- High efficiency (~90%), high power factor, very low THD
- High output voltage
- No limitation to the number of LEDs within a string
- EN55015 and EN61000-3-2 compliant
- Satisfies the relevant lighting regulations

Evaluation board

<table>
<thead>
<tr>
<th>Evaluation board</th>
<th>Application note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVAL-ILL013V1</td>
<td>AN2928 UM0670</td>
<td>80 W offline LED driver with dimming based on L6562A</td>
</tr>
</tbody>
</table>
Isolated: >70W resonant LED eval boards

PFC (L6562AT) + resonant converter (L6599AT) + inverse buck (L6562AT) with MOSFETs*

Key features
- PFC + resonant controller, with extended temperature range
- No el-cap usage
- Zero voltage switching and symmetrical topology
- Post-regulation with dimming solution
- EN55015 and EN61000-3-2 compliant

Main benefits
- Suitable for outdoor applications
- High rel (extended MTBF)
- Very high efficiency > 92%
- Dimmable solutions
- Satisfies the relevant lighting regulations

Evaluation board

<table>
<thead>
<tr>
<th>Evaluation board</th>
<th>Application note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVL130W-SL-EU</td>
<td>AN3105</td>
<td>48 V, 130 W LED street lighting SMPS based on L6562AT and L6599AT for European input mains range</td>
</tr>
<tr>
<td>EVL130W-STRLIG</td>
<td>AN3106</td>
<td>48 V, 130 W LED street lighting SMPS based on L6562AT and L6599AT for wide input mains range</td>
</tr>
<tr>
<td>EVL6562A-LED</td>
<td>AN2983 AN2928 for ref</td>
<td>Modified buck converter for LED applications</td>
</tr>
</tbody>
</table>

* See MOSFET selection guide earlier in presentation, online, and in energy-efficient solutions for LED lighting brochure
Isolated LED supply: >75W eval board

L6564: current mode PFC controller

<table>
<thead>
<tr>
<th>Key features</th>
<th>Main benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast bidirectional input voltage feedforward</td>
<td>Fast reaction to</td>
</tr>
<tr>
<td>Protection</td>
<td>- load change</td>
</tr>
<tr>
<td>- for inductor saturation</td>
<td>- input voltage change</td>
</tr>
<tr>
<td>- adjustable overvoltage</td>
<td></td>
</tr>
<tr>
<td>- against feedback loop disconnection</td>
<td>Very robust design</td>
</tr>
<tr>
<td>Low start-up current</td>
<td>High efficiency</td>
</tr>
</tbody>
</table>

Device	**Part number/family**	**Benefits**
PFC controller | L6562AT, L6563S, L6564 | ▪ Flexibility: 8 pins (L6562A) to 10 pins (L6564) up to 14 pins (L6563S) with different levels of protection
 | | ▪ T version for extended temperature range (-40 to 150 °C) |

Ideal for
- PFC preregulator
- SMPS for LED luminaries

Evaluation board	Application note	Description
EVL6564-100W | AN3022 | 100 W transition mode PFC preregulator with L6564 |
L6585DE: SMPS eval board for LEDs

Front-end one-chip SMPS solution

Description and purpose
- Highly-efficient and compact power supply for high-brightness LED applications such as street lighting

Key features
- Input voltage 90 to 264 V\textsubscript{AC}
- Output current: 2.7 A
- Output voltage: 48 V
- No el cap (extended MTBF)
- Efficiency: 91% (115 VAC), 93% (230 VAC)
- System power: 130 W
- OCP, SC protection

Key products
- L6585DE, STF9NM60N, STF21NM60N, STPS10150C, STTH3L06

Typical applications
- Street lighting SMPS, adapters (with 19 V, 4.7 A output)

PFC stage + series-resonant half-bridge topology

STEVAL-ILL038V1
Digital current controller eval board

Multi-string LED driving based on STM8S microcontroller

- **Key features**
 - Inverse buck topology in CCM
 - Ground referred circuit, no need for gate drivers
 - Logic level MOSFET driven directly by microcontroller
 - Low-voltage sensing circuit
 - High efficiency up to 98%
 - Works w/o output capacitor
 - Accurate average-current control
 - Long lifetime for LED
 - Able to compensate for Vf variation due to thermal issue
 - Global dimming from 2% to 100% at 225 Hz (PWM dimming)
 - No flicker
 - Independent analog dimming
 - Suitable for RGBW luminaries

<table>
<thead>
<tr>
<th>Evaluation board</th>
<th>Application note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVAL-ILL031V1</td>
<td>AN3151</td>
<td>Digital constant-current controller for multi-string LED applications based on STM8S208x</td>
</tr>
</tbody>
</table>
Solar-LED streetlight controller w/STM32

25 W LED lamp driver and 80 W battery charger

Description and purpose
- Cost-optimized and fully-protected solution to control solar energy storage and to manage LED streetlights

Key features
- Maximum power point tracker (MPPT) for more efficient energy use
- Automatic day/night detection
- Automatic battery/mains switchover
- Constant-current control for LED lamps
- Battery charge control with temperature monitoring
- Easy system monitoring via debug
- Full protection function for battery, LED lamp and solar panel

Key products
- STP40NF10, STP75NF75, STPS20H100, STPS1L60, STPS2045

Typical applications
- LED street lighting, solar LED applications

### Evaluation board	Application note	Description
STEVAL-ILL022V1	UM0512	STEVAL-ILL022V1 solar-LED streetlight controller with 25 W LED lamp driver and 80 W battery charger based on the STM32F101Rx
Smart street lighting

Intelligent LED cities – ST solutions

- Lamp driver and controller
 - Power Supply L6562AT L6599AT
 - LED Driving STM8S

- Lamp communication module: wireless network solution
 - STM32W
 - M24LR64-R

- Lamp communication module: wired network solution
 - STM32F
 - ST7540
 - M24LR64-R

District data concentrator

- GPRS Module
- M24128-Bxx
- STM32F
- ST7540
- STM32W
- M24LR64-R

Lightens street lighting energy load

STMicroelectronics
Power MOSFET overview

<table>
<thead>
<tr>
<th>P/N</th>
<th>BVDss (V)</th>
<th>$R_{DS(on)}$ (max) (Ω)</th>
<th>Package</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST*90N4F3</td>
<td>40</td>
<td>0.0065</td>
<td>DPAK, TO-220, IPAK</td>
<td>STripFET™ III</td>
</tr>
<tr>
<td>ST*200N4F3</td>
<td>40</td>
<td>0.004</td>
<td>DPAK, TO-220</td>
<td>STripFET™ III</td>
</tr>
<tr>
<td>ST*270N4F3</td>
<td>40</td>
<td>0.0025</td>
<td>DPAK, TO-220</td>
<td>STripFET™ III</td>
</tr>
<tr>
<td>STL70N4LLF5</td>
<td>40</td>
<td>0.0065</td>
<td>PowerFLAT 5x6</td>
<td>STripFET™ V</td>
</tr>
<tr>
<td>STL80N4LLF3</td>
<td>40</td>
<td>0.005</td>
<td>PowerFLAT 5x6</td>
<td>STripFET™ V</td>
</tr>
<tr>
<td>STL140N4LLF5</td>
<td>40</td>
<td>0.00275</td>
<td>PowerFLAT 5x6</td>
<td>STripFET™ III</td>
</tr>
<tr>
<td>ST*3NF06L</td>
<td>60</td>
<td>0.1</td>
<td>SOT-223</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>ST*4NF06L</td>
<td>60</td>
<td>0.055</td>
<td>SO-8</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>ST*28N6F3</td>
<td>80</td>
<td>0.034</td>
<td>PowerFLAT 3.3 x 3.3</td>
<td>STripFET™ III</td>
</tr>
<tr>
<td>ST*4NF100</td>
<td>100</td>
<td>0.06</td>
<td>SO-8</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>ST*19NF20</td>
<td>200</td>
<td>0.16</td>
<td>TO-220, TO-220FP, DPAK</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>ST*20NF20</td>
<td>200</td>
<td>0.125</td>
<td>TO-220, TO-220FP, DPAK</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>ST*16NF25</td>
<td>250</td>
<td>0.235</td>
<td>TO-220, TO-220FP, DPAK</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>ST*50NF25</td>
<td>250</td>
<td>0.069</td>
<td>TO-220, DPAK</td>
<td>STripFET™ II</td>
</tr>
<tr>
<td>STQ3N45K3-AP</td>
<td>450</td>
<td>3.8</td>
<td>IPAK, SOT-223, TO92</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*8NM50N</td>
<td>500</td>
<td>0.79</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*10NM50N</td>
<td>500</td>
<td>0.63</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*11NM50N</td>
<td>500</td>
<td>0.47</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*14NM50N</td>
<td>500</td>
<td>0.32</td>
<td>DPAK, DPAK</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*19NM50N</td>
<td>500</td>
<td>0.25</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*23NM50N</td>
<td>500</td>
<td>0.19</td>
<td>DPAK, TO-247, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*28NM50N</td>
<td>500</td>
<td>0.158</td>
<td>DPAK, TO-247, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*5N52K3</td>
<td>525</td>
<td>1.5</td>
<td>DPAK, DPAK, TO-220FP, TO-220, IPAK</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*6N52K3</td>
<td>525</td>
<td>1.2</td>
<td>DPAK, TO-220FP</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*7N52DK3</td>
<td>525</td>
<td>1.15</td>
<td>DPAK, TO-220FP, TO-220</td>
<td>SuperFREDmesh 3™</td>
</tr>
<tr>
<td>ST*7NM60N</td>
<td>600</td>
<td>0.9</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*9NM60N</td>
<td>600</td>
<td>0.7</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*10NM60N</td>
<td>600</td>
<td>0.55</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*13NM60N</td>
<td>600</td>
<td>0.36</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*18NM60N</td>
<td>600</td>
<td>0.285</td>
<td>DPAK, TO-247, TO-220/FDP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*22NM60N</td>
<td>600</td>
<td>0.22</td>
<td>DPAK, TO-247, TO-220/FDP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*24NM60N</td>
<td>600</td>
<td>0.19</td>
<td>DPAK, TO-247, TO-220/FDP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*26MN60N</td>
<td>600</td>
<td>0.165</td>
<td>DPAK, TO-247, TO-220/FDP</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*2N62K3</td>
<td>620</td>
<td>3.5</td>
<td>DPAK, TO-220, TO-220FP</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*3N62K3</td>
<td>620</td>
<td>2.5</td>
<td>DPAK, DPAK, TO-220FP, TO-220, IPAK</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*4N62K3</td>
<td>620</td>
<td>1.95</td>
<td>DPAK, DPAK, TO-220FP, IPAK, TO-220, IPAK</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*5N62K3</td>
<td>620</td>
<td>1.6</td>
<td>DPAK, DPAK, TO-220FP, IPAK, TO-220, IPAK</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*6N62K3</td>
<td>620</td>
<td>1.2</td>
<td>IPAK, DPAK, TO-220FP</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*10N65K3</td>
<td>650</td>
<td>1</td>
<td>TO-220, TO-220FP</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*3NK80Z</td>
<td>800</td>
<td>4.5</td>
<td>TO-220, TO-220FP, DPAK, IPAK</td>
<td>SuperMESH™</td>
</tr>
<tr>
<td>ST*5NK80Z</td>
<td>800</td>
<td>2.4</td>
<td>TO-220, TO-220FP</td>
<td>SuperMESH™</td>
</tr>
<tr>
<td>ST*7NM80</td>
<td>800</td>
<td>1.05</td>
<td>TO-220, TO-220FP, DPAK, IPAK</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>ST*11NM80</td>
<td>800</td>
<td>0.4</td>
<td>DPAK, TO-220, TO-220FP, TO-247</td>
<td>MDmesh™ II</td>
</tr>
<tr>
<td>STS3N95K3</td>
<td>925</td>
<td>6.3</td>
<td>TO-220, TO-220FP, DPAK, IPAK</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*5N95K3</td>
<td>925</td>
<td>3.5</td>
<td>TO-220, TO-220FP</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*7N95K3</td>
<td>925</td>
<td>1.35</td>
<td>TO-220, TO-220FP, DPAK, IPAK</td>
<td>SuperMESH 3™</td>
</tr>
<tr>
<td>ST*13N95K3</td>
<td>925</td>
<td>0.85</td>
<td>DPAK, TO-220, TO-220FP, TO-247</td>
<td>SuperMESH 3™</td>
</tr>
</tbody>
</table>

MDmesh II – ST’s 2nd generation super junction, high-voltage power MOSFET technology

SuperMESH 3 – Covers high-voltage breakdown class for
- improved avalanche ruggedness
- lower on-resistance
- enhanced dynamic performance
- improved diode reverse recovery characteristics

ST Solutions for Off-Line LED Lighting Overview

STEVAL-ILL034V1

STEVAL-ILL027V2

STEVAL-ILL017V1

STEVAL-ILL026V1

STEVAL-ILL016V2

EVLVIP27-7WLED

EVALHVLED805

STEVAL-ILL037V1
Energy-efficient solutions on st.com

Offline LED lighting and general illumination

STMicroelectronics offers a full range of components and evaluation boards for offline LED driver applications. The most common topologies are presented. The major applications covered are residential, commercial, architectural and street lighting.

LED lighting brochure

LED application web pages

eDesign Studio www.st.com/edesignstudio
ST products and solutions

For more information, visit:

www.st.com > home > support > tools & resources
www.st.com/LED > off-line LED drivers

Thank you