Features
- Fully encapsulated
- Low profile
- High dielectric strength
- Ten models available
- Ex stock
- Competitively priced
- RoHS compliant*

Applications
- Line matching
- Fax modem

LM-NP/-LP 1000 Series - Line Matching Transformers

Note
The LM-NP/-LP-1000 Series Line Matching Transformers meet the return loss specifications of BS 6305.

It is important, however, to use the circuit recommended by BS 6305 for return loss measurements.

The LM-NP-1000 Series are EN 41003 approved.

How To Order
LM-xP-100x0xx L

Model
Termination
L = Tin only (RoHS Compliant)

Pin Assignment and Winding Configurations (Bottom View)

* Due to the unique design and the most advanced manufacturing techniques the 2 coils are fully identical, meaning there is no real primary nor secondary winding. Depending on the application, the transformers can be used either way.

Specifications are subject to change without notice.
Customers should verify actual device performance in their specific applications
LM-NP/-LP 1000 Series - Line Matching Transformers

Part Numbers And Specifications

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance (min./at 1.0 kHz)</td>
<td>Ω</td>
<td>600</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>(150, 150)</td>
</tr>
<tr>
<td>Inductance (min./at 0.2 kHz)</td>
<td>H</td>
<td>2.8</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>(0.7, 0.7)</td>
</tr>
<tr>
<td>DC-Resistance (typical/±10 %)</td>
<td>Ω</td>
<td>66</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td>(33,33)</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(45+45)</td>
</tr>
<tr>
<td>Turn Ratio (±2 %)</td>
<td>—</td>
<td>1:1</td>
</tr>
<tr>
<td>Winding Configurations</td>
<td>—</td>
<td>—</td>
<td>one winding</td>
<td>both windings</td>
<td>—</td>
<td>one winding</td>
<td>both windings</td>
<td>—</td>
<td>one winding</td>
<td>both windings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>center tapped</td>
<td>split</td>
</tr>
<tr>
<td>Insertion Loss (at 2.0 kHz)</td>
<td>dB</td>
<td>≤ 1.5</td>
</tr>
<tr>
<td>Return Loss Transformer (0.2 - 4.0 kHz) in Networks</td>
<td>dB</td>
<td>≤ 10.0</td>
</tr>
<tr>
<td>Shunt Loss (typical)</td>
<td>kΩ</td>
<td>9.0</td>
</tr>
<tr>
<td>Frequency Response (typ./0.2 - 3.5 kHz)</td>
<td>dB</td>
<td>- 0.3</td>
</tr>
<tr>
<td>Wide Band Response (0.2 - 10.0 kHz)</td>
<td>dB</td>
<td>- 2.5</td>
</tr>
<tr>
<td>Power Level</td>
<td>dBm</td>
<td>- 45.0 to + 3.0</td>
<td>- 43.0 to + 3.0</td>
</tr>
<tr>
<td>Longitudinal Balance (0.3 - 4.0 kHz)</td>
<td>dB</td>
<td>- 80.0</td>
</tr>
<tr>
<td>Distortion (0 dB/at 1.0 kHz)</td>
<td>%</td>
<td>≤ 0.1</td>
</tr>
<tr>
<td>Leakage Induction (typical)</td>
<td>mH</td>
<td>14.0</td>
</tr>
<tr>
<td>Dielectric Strength (P/S)</td>
<td>kVDC</td>
<td>6.5</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>°C</td>
<td>-10 to +60</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>-20 to +70</td>
</tr>
</tbody>
</table>

Specifications Met:
- BS 6204: Construction and flammability (UL 94V0)
- BS 6301: Isolation
- BS 6305: Return loss (1982/paragraph 4.3.2.2/b)
Bourns: