
Core8051s v2.4 Handbook

http://www.actel.com/survey/rating/?f=Core8051s_HB.pdf

Actel Corporation, Mountain View, CA 94043
© 2010 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200084-2

Release: September 2010

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability
or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no
responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person
without prior written consent of Actel Corporation.

Trademarks
Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are trademarks or
registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective
owners.

Core8051s v2.4 Handbook

Revision 2 3

Table of Contents

Introduction . 5
Utilization and Performance . 6

1 Core8051s Overview . 15

2 Supported Interfaces . 17
Ports . 17
Interface Descriptions . 20

3 Tool Flows . 21
SmartDesign . 21
Example System . 24
Simulation . 24
Synthesis in Libero IDE . 27
Place-and-Route in Libero IDE . 27

4 Core8051s Features. 29
Software Memory Map . 29
Interrupts . 34
OCI Block . 34

5 Instruction Set . 35
Functional Ordered Instructions . 36
Hexadecimal Ordered Instructions . 41
Instruction Definitions . 45
C Compiler Support . 46
C Header Files . 48

6 Instruction Timing . 51
Program Memory Bus Cycle . 51
External Data Memory Bus Cycle . 53
APB Bus Cycles . 57

7 List of Changes . 59
List of Changes . 59

A Product Support . 61
Customer Service . 61
Actel Customer Technical Support Center . 61
Actel Technical Support . 61
Website . 61
Contacting the Customer Technical Support Center . 61

Index . 63

Revision 2 5

Introduction

This document describes the architecture of a small, general-purpose processor, called the Core8051s.
This processor is compatible with the instruction set of the 8051 microcontroller, and preserves the three
distinct software memory spaces so that it may be targeted by existing 8051 C compilers. To make it
smaller and more flexible than the 8051, the following microcontroller-specific features of the original
8051 are not present:

• SFR-mapped peripherals
• Power management circuitry
• Serial channel
• I/O ports
• Timers

The following set of 8051 microcontroller features are available in Core8051s, but are either optional or
reduced in scope:

• Multiply and divide instructions (MUL, DIV, and DA) – present by default, but may optionally be
implemented as NOPs

• Second data pointer (data pointer 1) – not enabled by default
• Of the 64 kbytes allocated to external data memory, 4 kbytes are allocated to an APB-based

peripheral bus and 60 kbytes is allocated to an external data memory interface
• Interrupt control logic for 2 interrupts

Supported Actel FPGA Families for the Core8051s are as follows:
• IGLOO®/e/PLUS
• ProASIC3®/E/L
• Fusion
• ProASICPLUS®

• Axcelerator®

• RTAX-S

Introduction

6 Revision 2

Utilization and Performance
Table 1 through Table 7 on page 13 give resource usage and performance data for various configurations
of Core8051s for each type of FPGA technology. These tables do not cover every possible configuration,
but instead list a range of configurations which should give a good indication of the expected resource
usage and performance of the core. Abbreviated versions of configuration options are used in the tables
to aid readability. The meanings of the entries in the debug, program memory access control, data
memory access control, and internal RAM columns are described in the following paragraphs.

Debug Column
• None: Debug logic is not included.
• I/Os: Debug logic is included and general purpose I/Os are used for the debug connection.
• UJTAG: Debug logic is included and the dedicated JTAG pins of the device and the UJTAG macro

are used for the debug connection.

Program Memory Access Control
• ACK: Acknowledge signal (MEMPSACKI) is used to control access to program memory.
• X: X (where X can range from 0 to 7) wait states are inserted in each access to program memory,

instead of using acknowledge control.

Data Memory Access Control
• ACK: Acknowledge signal (MEMACKI) is used to control accesses to data memory.
• X: X (where X can range from 0 to 7) wait states are inserted in each access to data memory,

instead of using acknowledge control.

Internal RAM
• Instantiated: Internal 256x8 RAM is implemented using an instantiated RAM block.
• Inferred: Internal 256x8 RAM is implemented by inferring RAM during synthesis.

Core8051s v2.4 Handbook

Revision 2 7

Registers
Registers (FPGA tiles) are inferred for the 256x8 RAM during synthesis.

Table 1 • Core8051s Utilization and Performance for IGLOO 1.2 V Devices (STD speed grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 3,435 1 14.8

I/Os No 0 No Yes ack ack 32 Instantiated 3,833 1 14.9

ujtag No 0 No Yes ack ack 32 Instantiated 3,792 1 14.4

ujtag No 1 No Yes ack ack 32 Instantiated 4,080 1 14.7

ujtag No 4 No Yes ack ack 32 Instantiated 5,029 1 14.4

ujtag Yes 0 No Yes ack ack 32 Instantiated 3,974 3 15.4

ujtag Yes 1 No Yes ack ack 32 Instantiated 4,455 3 14.5

ujtag Yes 4 No Yes ack ack 32 Instantiated 5,538 3 14.6

None – – Yes Yes ack ack 32 Instantiated 3,686 1 14.9

None – – No Yes 2 2 32 Instantiated 3,376 1 14.8

None – – No Yes 5 5 32 Instantiated 3,308 1 15.3

None – – No Yes ack ack 16 Instantiated 3,311 1 15.1

None – – No Yes ack ack 8 Instantiated 3,318 1 15.2

None – – No Yes ack ack 32 Inferred 3,457 1 14.7

None – – No Yes ack ack 32 Registers 7,853 0 13.9

ujtag Yes 4 Yes Yes ack ack 32 Registers 10,098 2 12.1

None – – No No ack ack 8 Instantiated 2,849 1 14.7

Introduction

8 Revision 2

Table 2 • Core8051s Utilization and Performance for IGLOO 1.5 V Devices (STD speed grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 3,110 1 23.9

I/Os No 0 No Yes ack ack 32 Instantiated 3,548 1 22.7

ujtag No 0 No Yes ack ack 32 Instantiated 3,483 1 24.3

ujtag No 1 No Yes ack ack 32 Instantiated 3,772 1 23.6

ujtag No 4 No Yes ack ack 32 Instantiated 4,847 1 23.3

ujtag Yes 0 No Yes ack ack 32 Instantiated 3,742 3 22.9

ujtag Yes 1 No Yes ack ack 32 Instantiated 4,083 3 23.9

ujtag Yes 4 No Yes ack ack 32 Instantiated 5,125 3 23.8

None – – Yes Yes ack ack 32 Instantiated 3,318 1 24.2

None – – No Yes 2 2 32 Instantiated 3,386 1 24.2

None – – No Yes 5 5 32 Instantiated 3,357 1 22.9

None – – No Yes ack ack 16 Instantiated 2,995 1 24.5

None – – No Yes ack ack 8 Instantiated 2,915 1 23.9

None – – No Yes ack ack 32 Inferred 3,136 1 24.8

None – – No Yes ack ack 32 Registers 7,633 0 23.3

UJTAG Yes 4 Yes Yes ack ack 32 Registers 9,917 2 19.9

None – – No No ack ack 8 Instantiated 2,568 1 23.8

Core8051s v2.4 Handbook

Revision 2 9

Table 3 • Core8051s Utilization and Performance for Fusion, ProASIC3, and ProASIC3E Devices (–2 speed
grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 3,324 1 37.1

I/Os No 0 No Yes ack ack 32 Instantiated 3,776 1 36.5

ujtag No 0 No Yes ack ack 32 Instantiated 3,758 1 35.9

ujtag No 1 No Yes ack ack 32 Instantiated 4,024 1 37.5

ujtag No 4 No Yes ack ack 32 Instantiated 4,941 1 35.4

ujtag Yes 0 No Yes ack ack 32 Instantiated 4,053 3 37.1

ujtag Yes 1 No Yes ack ack 32 Instantiated 4,262 3 36.7

ujtag Yes 4 No Yes ack ack 32 Instantiated 5,330 3 36.4

None – – Yes Yes ack ack 32 Instantiated 3,546 1 39.9

None – – No Yes 2 2 32 Instantiated 3,356 1 35.9

None – – No Yes 5 5 32 Instantiated 3,335 1 37.9

None – – No Yes ack ack 16 Instantiated 3,190 1 38.7

None – – No Yes ack ack 8 Instantiated 3,081 1 36.9

None – – No Yes ack ack 32 Inferred 3,384 1 37.5

None – – No Yes ack ack 32 Registers 7,739 0 35.9

ujtag Yes 4 Yes Yes ack ack 32 Registers 9,937 2 28.9

None – – No No ack ack 8 Instantiated 2,748 1 37.3

Introduction

10 Revision 2

Table 4 • Core8051s Utilization and Performance for ProASIC3L (–1 speed grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 2,936 1 25.7

I/Os No 0 No Yes ack ack 32 Instantiated 3,360 1 25.4

ujtag No 0 No Yes ack ack 32 Instantiated 3,261 1 25.1

ujtag No 1 No Yes ack ack 32 Instantiated 3,624 1 23.9

ujtag No 4 No Yes ack ack 32 Instantiated 4,637 1 24.5

ujtag Yes 0 No Yes ack ack 32 Instantiated 3,541 3 25.5

ujtag Yes 1 No Yes ack ack 32 Instantiated 3,844 3 24.4

ujtag Yes 4 No Yes ack ack 32 Instantiated 4,926 3 24.7

None – – Yes Yes ack ack 32 Instantiated 3,116 1 24.2

None – – No Yes 2 2 32 Instantiated 2,931 1 24.5

None – – No Yes 5 5 32 Instantiated 2,928 1 26.5

None – – No Yes ack ack 16 Instantiated 2,778 1 26.4

None – – No Yes ack ack 8 Instantiated 2,718 1 25.5

None – – No Yes ack ack 32 Instantiated 2,943 1 23.6

None – – No Yes ack ack 32 Instantiated 7,391 0 25.4

ujtag Yes 4 Yes Yes ack ack 32 Instantiated 9,755 2 23.1

None – – No Yes ack ack 8 Instantiated 2,444 1 24.9

Core8051s v2.4 Handbook

Revision 2 11

Table 5 • Core8051s Utilization and Performance for ProASICPLUS Devices (STD speed grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 4,000 1 26.2

I/Os No 0 No Yes ack ack 32 Instantiated 4,318 1 26.4

UJTAG No 0 No Yes ack ack 32 Instantiated 4,271 1 25.8

UJTAG No 1 No Yes ack ack 32 Instantiated 4,709 1 25.7

UJTAG No 4 No Yes ack ack 32 Instantiated 6,004 1 24.4

UJTAG Yes 0 No Yes ack ack 32 Instantiated 4,580 4 26.8

UJTAG Yes 1 No Yes ack ack 32 Instantiated 5,065 4 23.5

UJTAG Yes 4 No Yes ack ack 32 Instantiated 6,368 4 23.5

None - – Yes Yes ack ack 32 Instantiated 4,344 1 26.8

None - – No Yes 2 2 32 Instantiated 4,185 1 27.8

None - – No Yes 5 5 32 Instantiated 4,135 1 29.8

None - – No Yes ack ack 16 Instantiated 3,821 1 28.1

None - – No Yes ack ack 8 Instantiated 3,773 1 28.9

None - – No Yes ack ack 32 Inferred 4,056 1 26.2

None - – No Yes ack ack 32 Registers 10,888 0 25.2

UJTAG Yes 4 Yes Yes ack ack 32 Registers 13,652 3 19.9

None – – No No ack ack 8 Instantiated 3,146 1 28.8

Introduction

12 Revision 2

Table 6 • Core8051s Utilization and Performance for Axcelerator Devices (–2 speed grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 2,111 1 50.9

I/Os No 0 No Yes ack ack 32 Instantiated 2,343 1 44.9

I/Os No 1 No Yes ack ack 32 Instantiated 2,608 1 42.4

I/Os No 4 No Yes ack ack 32 Instantiated 3,197 1 44.1

I/Os Yes 0 No Yes ack ack 32 Instantiated 2,554 3 47.4

I/Os Yes 1 No Yes ack ack 32 Instantiated 2,797 3 44.1

I/Os Yes 4 No Yes ack ack 32 Instantiated 3,413 3 42.5

None – – Yes Yes ack ack 32 Instantiated 2,196 1 53.4

None – – No Yes 2 2 32 Instantiated 2,091 1 55.8

None – – No Yes 5 5 32 Instantiated 2,104 1 54.2

None – – No Yes ack ack 16 Instantiated 2,066 1 53.3

None – – No Yes ack ack 8 Instantiated 1,977 1 56.3

None – – No Yes ack ack 32 Inferred 2,104 1 50.1

None – – No Yes ack ack 32 Registers 5,245 0 42.9

I/Os Yes 4 Yes Yes ack ack 32 Registers 6,714 2 33.1

None – – No No ack ack 8 Instantiated 1,757 1 53.4

Core8051s v2.4 Handbook

Revision 2 13

Table 7 • Core8051s Utilization and Performance for RTAX-S Devices (–1 speed grade)

Configuration
Utilization and
Performance

D
eb

ug

In
cl

ud
e

Tr
ac

e
R

A
M

H
ar

dw
ar

e
Tr

ig
ge

rs

In
cl

ud
e

Se
co

nd
D

at
a

Po
in

te
r

In
cl

ud
e

M
U

L,
 D

IV
,

an
d

D
A

 In
st

ru
ct

io
ns

Pr
og

ra
m

 M
em

or
y

A
cc

es
s

C
on

tr
ol

D
at

a
M

em
or

y
A

cc
es

s
C

on
tr

ol

A
PB

 D
at

a
W

id
th

In
te

rn
al

 R
A

M

Ti
le

s

R
A

M
 B

lo
ck

s

M
H

z

None – – No Yes ack ack 32 Instantiated 2,123 1 39.9

I/Os No 0 No Yes ack ack 32 Instantiated 2,357 1 33.1

I/Os No 1 No Yes ack ack 32 Instantiated 2,607 1 30.1

I/Os No 4 No Yes ack ack 32 Instantiated 3,137 1 28.6

I/Os Yes 0 No Yes ack ack 32 Instantiated 2,547 3 29.9

I/Os Yes 1 No Yes ack ack 32 Instantiated 2,836 3 33.6

I/Os Yes 4 No Yes ack ack 32 Instantiated 3,351 3 26.5

None – – Yes Yes ack ack 32 Instantiated 2,192 1 39.7

None – – No Yes 2 2 32 Instantiated 2,057 1 37.8

None – – No Yes 5 5 32 Instantiated 2,118 1 38.4

None – – No Yes ack ack 16 Instantiated 2,042 1 39.6

None – – No Yes ack ack 8 Instantiated 1,987 1 39.4

None – – No Yes ack ack 32 Inferred 2,146 1 38.7

None – – No Yes ack ack 32 Registers 5,224 0 29.2

I/Os Yes 4 Yes Yes ack ack 32 Registers 6,694 2 22.8

None – – No No ack ack 8 Instantiated 1,778 1 39.8

Revision 2 15

1 – Core8051s Overview

The Core8051s is a high-performance, eight-bit microcontroller IP Core. It is a fully functional eight-bit
embedded controller that executes all ASM51 instructions and has the same instruction set as the
80C31. Core8051s provides software and hardware interrupts.
The Core8051s architecture eliminates redundant bus states and implements parallel execution of fetch
and execution phases. Since a cycle is aligned with memory fetch when possible, most of the one-byte
instructions are performed in a single cycle. Core8051s uses one clock per cycle. This leads to an
average performance improvement rate of 8.0 (in terms of MIPS) with respect to the Intel device working
with the same clock frequency.
The original Intel 8051 had a 12-clock architecture. A machine cycle needed 12 clocks, and most
instructions were either one or two machine cycles. Therefore, the 8051 used either 12 or 24 clocks for
each instruction, except for the MUL and DIV instructions. Furthermore, each cycle in the 8051 used two
memory fetches. In many cases, the second fetch was a “dummy” fetch and extra clocks were wasted.
Table 1-1 shows the speed advantage of Core8051s over the standard Intel 8051. A speed advantage of
12 in the first column means that Core8051s performs the same instruction 12 times faster than the
standard Intel 8051. The second column in Table 1-1 lists the number of types of instructions that have
the given speed advantage. The third column lists the total number of instructions that have the given
speed advantage. The third column can be thought of as a subcategory of the second column. For
example, there are two types of instructions that have a three-time speed advantage over the classic
8051, for which there are nine explicit instructions.

Table 1-1 • Core8051s Speed Advantage Summary

Speed Advantage Number of Instruction Types
Number of Instructions

(Opcodes)

24 1 1

12 27 83

9.6 2 2

8 16 38

6 44 89

4.8 1 2

4 18 31

3 2 9

Average: 8.0 Sum: 111 Sum: 255

Revision 2 17

2 – Supported Interfaces

Ports
The port signals of Core8051s are illustrated in Figure 2-1.

Figure 2-1 • Core8051s I/O Signals

CLK
NSYSRESET
WDOGRES

TCK
TMS
TDI
TRSTN
MEMBANK
BREAKIN

INT0
INT1

MEMDATAI
MEMPSACKI
MEMACKI

PREADY
PRDATA
PSLVERR

PRESETN
WDOGRESN

MOVX

TDO
BREAKOUT

TRIGOUT
AUXOUT

DBGMEMPSWR

MEMADDR
MEMDATAO

MEMPSRD
MEMWR
MEMRD

PADDR
PSEL

PENABLE
PWRITE

PWDATA

Core8051s

Supported Interfaces

18 Revision 2

The signals listed in Table 2-1 are present at the Core8051s boundary.

Table 2-1 • Core8051s Ports

Signal Name Type
Polarity/Bus

Size Description

System Signals

CLK Input Rise Clock input for internal logic. This signal must also be used to clock any
APB peripherals, if present.

NSYSRESET Input Low Hardware reset input. A logic zero on this signal for two clock cycles
while the oscillator is running resets the device.

PRESETN Output Low Synchronized reset output. This signal should be used to reset any
APB peripherals, if present.

WDOGRES Input High Watchdog timeout indication

WDOGRESN Output Low Reset signal for watchdog

MOVX Output High MOVX instruction executing

On-Chip Debug Interface (Optional)

TCK Input Rise JTAG test clock. If OCI is not used, connect to logic 1.

TMS Input High JTAG test mode select. If OCI is not used, connect to logic 0.

TDI Input High JTAG test data in. If OCI is not used, connect to logic 0.

TDO Output High JTAG test data out

TRSTN Input Low JTAG test reset. If OCI is not used, connect to logic 1.

MEMBANK Input 4 Optional code memory bank selection. If not used, connect to logic 0.

BREAKIN Input High Break bus input. When sampled high, a breakpoint is generated. If not
used, connect to logic 0.

BREAKOUT Output High Break bus output. This is driven high when Core8051s stops emulation.
This can be connected to an open-drain break bus that connects to
multiple processors, so that when any CPU stops, all others on the bus
are stopped within a few clock cycles.

TRIGOUT Output High Trigger output. This signal can be optionally connected to external test
equipment to cross-trigger with internal Core8051s activity.

AUXOUT Output High Auxiliary output. This signal is an optional general purpose output that
can be controlled via the OCI debugger software.

DBGMEMPSWR Output High Debug program store write.

External Interrupts

INT0 Input High External Interrupt 0 (low priority)

INT1 Input High External Interrupt 1 (high priority)

External Memory Bus Interface

MEMPSACKI Input High Program memory read acknowledge

MEMACKI Input High Data memory acknowledge

MEMDATAI Input 8 Memory data input

MEMDATAO Output 8 Memory data output

MEMADDR Output 16 Memory address

Core8051s v2.4 Handbook

Revision 2 19

MEMPSRD Output High Program store read enable

MEMWR Output High Data memory write enable

MEMRD Output High Data memory read enable

APB3 Interface

PADDR Output 12 This is the APB address bus.

PSEL Output 1 This signal indicates that the slave device is selected and a data
transfer is required.

PENABLE Output High This strobe signal is used to time all accesses on the peripheral bus.
The enable signal is used to indicate the second cycle of an APB
transfer. The rising edge of PENABLE occurs in the middle of the APB
transfer.

PWRITE Output High When high, this signal indicates an APB write access. When low, it
indicates an APB read access.

PRDATA Input 8, 16, or 32 The read data bus is driven by the selected slave during read cycles
(when PWRITE is low). The width of this bus matches the width of the
widest peripheral in the system.

PWDATA Output 8, 16, or 32 The write data bus is driven by the Core8051s during write cycles
(when PWRITE is high). The width of this bus matches the width of the
widest peripheral in the system.

PREADY Input 1 This signal is the ready signal for the APB interface. This signal
conforms to APB version 3.0. Using this signal, APB slave peripherals
can stall reads or writes, if not ready to complete the transaction.

PSLVERR Input 1 This signal is specified in v3.0 of the APB specification. It is currently
unused in Core8051s.

Table 2-1 • Core8051s Ports (continued)

Signal Name Type
Polarity/Bus

Size Description

Supported Interfaces

20 Revision 2

Interface Descriptions

Parameters/Generics
The Verilog parameters or VHDL generics shown in Table 2-2 are present in the Core8051s RTL code.
These may be modified by the user to configure Core8051s as required. When working with
SmartDesign, these parameters/generics are set to appropriate values using the Core8051s
configuration window.

Table 2-2 • Table x. Core8051s Parameters/Generics

Parameter/Generic
Default
Value Description

DEBUG 0 0 = On-chip instrumentation (OCI) debug logic not included.
1 = OCI debug logic included; general purpose FPGA I/Os
used for debug connection
2 = OCI debug logic included, dedicated JTAG pins of device
(along with UJTAG macro) used for debug connection

INCL_TRACE 0 0 = Trace RAM not included
1 = Trace RAM included

TRIG_NUM 0 Number of hardware triggers. Possible settings are 0, 1, 2, or
4.

INCL_DPTR1 0 0 = Second data pointer not included.
1 = Second data pointer included.

INCL_MUL_DIV 1 0 = MUL, DIV, and DA instructions not included.
1 = MUL, DIV, and DA instructions included.

VARIABLE_WAIT 1 0 = Program store memory related acknowledge input
(MEMPSACKI) not used for controlling accesses to program
memory. A fixed number of wait states (defined by WAIT_VAL
parameter) is used for each access to program memory.

WAIT_VAL 0 This setting is only used when VARIABLE_WAIT = 0 and
defines the (fixed) number of wait states inserted in each
access to program memory. Possible values are 0 to 7.

VARIABLE_STRETCH 1 0 = Data memory related acknowledge input (MEMACKI) not
used for controlling accesses to program memory. A fixed
number of wait states (defined by WAIT_VAL parameter) is
used for each access to program memory.
1 = Data memory related acknowledge input (MEMACKI) is
used for controlling accesses to program memory.

STRETCH_VAL 1 This setting is only used when VARIABLE_STRETCH = 0 and
defines the (fixed) number of wait states inserted in each
access to data memory. Possible values are 0 to 7.

APB_DWIDTH 32 Data width in number of bits for APB bus. Possible settings
are 8, 16, or 32.

INTRAM_IMPLEMENTATION 0 This parameter is used to control how the internal (256x8)
RAM is implemented. Possible settings are:
0 = Instantiate RAM block
1 = Infer RAM block during synthesis
2 = Infer registers for RAM during synthesis

Revision 2 21

3 – Tool Flows

SmartDesign
Core8051s is available for download to the SmartDesign IP Catalog via the Libero® Integrated Design
Environment (IDE) web repository. For information on using SmartDesign to instantiate, configure,
connect, and generate cores, refer to the Libero IDE online help.
The advanced peripheral bus (APB) version 3 interface of Core8051s will typically be connected to the
mirrored master interface of CoreAPB3, with various APB or APB3 slaves connected to the slave
interfaces of CoreAPB3. The external memory interface (ExternalMemIf) of Core8051s must be
connected to program and data memories, which can be implemented either on-chip or off-chip. If debug
functionality is enabled, the JTAG signals (TCK, TMS, TDI, TDO, and TRSTN) of the debug interface
(DebugIf) must be routed to the top level of your design. Either the dedicated JTAG pins of the device or
general purpose I/O pins can be used for the JTAG debug connection. The UJTAG macro is employed
when the dedicated JTAG pins are used for the debug connection.
Figure 3-1 shows the Core8051s configuration window, along with cross-references to the corresponding
top-level parameters. The parameters/generics of the core are fully described in the
"Parameters/Generics" section on page 20.

Figure 3-1 • Core8051s Configuration Window

DEBUG

INTRAM_IMPLEMENTATION

INCL_TRACE

TRIG_NUM

INCL_DPTR1

INCL_MUL_DIV_DA

VARIABLE_WAIT

WAIT_VAL

VARIABLE_STRETCH

STRETCH_VAL

APB_DWIDTH

Tool Flows

22 Revision 2

The configuration options for Core8051s are described in the following paragraphs. The Core8051s
configuration window is used to adjust the values of the underlying parameters/generics in the RTL code
for the core. Each configuration option presented in the configuration window corresponds directly to an
actual parameter/generic in the RTL code for Core8051s.

Debug Configuration
• There are three debug-related configuration options. Set the Debug option to choose to enable or

disable on-chip instrumentation (OCI) debug functionality and to control how any debug
connection is implemented. When this functionality is enabled, you can connect a debugger to the
processor via a JTAG connection. You can disable the debug functionality if you do not intend to
use a debugger and want to minimize the number of tiles consumed by the processor. There are
two possibilities for implementing the JTAG connection. From the Debug drop-down menu,
choose one of these options:

• Disabled to exclude debug functionality
• Enabled using UJTAG to include debug functionality and to use the dedicated JTAG pins of the

device (via the UJTAG macro) for the debug connection. This setting is mostly used when only
one debug connection is required. With this setting you can make use of the FlashPro3 or low-
cost programming stick (LCPS) connection for the debug connection.

• Enabled using I/Os to include debug functionality and to use general purpose I/O pins for the
debug connection. Select this option if the UJTAG macro is either not present on your device or is
already in use and not available for the Core8051s debug connection.

• When Debug is set to Enabled using UJTAG or Enabled using I/Os, two additional debug
options are available for added control over the debug functionality to be included:

• Select Include trace RAM to include a 256-byte deep trace RAM within Core8051s. No trace
RAM is present if this option is not selected. Including the trace RAM increases the tile count for
the processor and consumes RAM blocks on the device.

• Set Number of hardware triggers/breakpoints to 0, 1, 2, or 4 to set the maximum number of
hardware triggers/breakpoints available when debugging a Core8051s system. Increasing the
number of hardware triggers/breakpoints increases the tile count of the processor.

Optional Registers and Instructions
Select Include second data pointer to include a second data pointer. When this option is selected, two
additional special function registers (SFRs) are included to implement the second (16-bit) data pointer.
Select Include MUL, DIV, and DA instructions to include the multiply, divide, and decimal adjust
instructions. If the software to be run on the processor does not make use of the MUL, DIV, and DA
instructions, this option check box can be cleared to reduce the tile count of the core. The behavior of the
processor is undefined when attempting to execute a MUL, DIV or DA instruction while the processor is
not configured to include support for these instructions.

Program Memory Access
There are two possible methods for controlling accesses by the processor to program memory:

• Select MEMPSACKI-controlled Program Memory when the MEMPSACKI (program store
memory acknowledge input) signal is used to control accesses to program memory. When this
option is selected, the program memory or memory subsystem must assert MEMPSACKI when a
write to program memory has completed and when valid read data is available.

• Clear the check box for MEMPSACKI-controlled Program Memory and set a fixed number of
wait cycles for each access to program memory by adjusting the Program Memory Wait Cycles
option.

Note: Program Memory Wait Cycles is only enabled when MEMPSACKI-controlled Program Memory
is not selected.

Core8051s v2.4 Handbook

Revision 2 23

External Data Memory Access
There are two possible methods for controlling accesses by the processor to external data memory.

• Select MEMACKI-controlled External Data Memory when the MEMACKI (data memory
acknowledge input) signal is used to control accesses to data memory. When this option is
selected, the data memory or memory subsystem must assert MEMACKI when a write to data
memory has completed and when valid read data is available.

• Clear the check box for MEMACKI-controlled External Data Memory and set a fixed number of
wait cycles for each access to data memory by adjusting the External Data Memory Stretch
Cycles option.

Note: Note that the External Data Memory Stretch Cycles is only enabled when MEMACKI-controlled
External Data Memory is not selected.

The external data memory is external to the processor but can be implemented using either on-chip or
off-chip memory resources.

Other Options
Set APB data width to 8 bit, 16 bit, or 32 bit to select the appropriate data width for the APB interface of
the processor. When the APB data width is 16 bits or 32 bits, extra SFRs are used to store the upper
bytes of APB data when the (8-bit) processor core carries out an access to APB space. See the "External
Data Memory Space" section on page 30 for more information on the APB interface.
The Internal RAM (256x8) Implementation option is used to control how the internal 256x8 RAM is
implemented. Three choices are available:

• Instantiate RAM block: A RAM macro block is directly instantiated in the RTL code.
• Infer RAM block during synthesis: A synthesis directive (in the form of a structured comment)

is used in the RTL code to cause the synthesis tool to infer RAM during synthesis. A RAM macro
block will be used in this case, which means that this choice gives a very similar outcome to
Instantiate RAM block.

• Infer registers for RAM during synthesis: A synthesis directive (in the form of a structured
comment) is used in the RTL code to cause the synthesis tool to use registers (FPGA tiles) to
implement the 256x8 internal RAM. This considerably increases the tile count for the core but has
the benefit of enhancing the fault-tolerant capabilities of Core8051s.

Tool Flows

24 Revision 2

Example System
A typical system that includes Core8051s is shown in Figure 3-2. Connections can be made
automatically in SmartDesign using the Auto Connect menu option.

Simulation
Core8051s comes with a verification testbench and also supports bus functional model (BFM)-based
simulation of a system in which it is instantiated. The BFM only simulates transactions on the APB
interface of Core8051s and does implement a complete model of the processor. It is not possible to
simulate code running on the processor with a
BFM-based simulation.
Core8051s simulation can be invoked from the Libero IDE Project Manager. After the design has been
generated, click the Simulation button in the Libero IDE to run a simulation.
The Core8051s component must be set as the design root (right-click Core8051s and select Set As
Root), before running a Core8051s simulation. However, if intending to run a BFM-based simulation, you
must first compile the component which instantiates Core8051s. To do this, set the design root one level
of hierarchy above the Core8051s component and click the Simulation button to invoke ModelSim® and
compilation of the relevant components. When the (automatically generated) ModelSim script finishes,
exit ModelSim. Now set the design root to the Core8051s component and click the Simulation button
again. This enables you to run a BFM-based simulation of your Core8051s system. The Core8051s
verification testbench can be run directly, without the need to first compile the component that
instantiates Core8051s.
The following message will appear in the ModelSim transcript window when running (pre-synthesis)
Core8051s simulation:
The following (pre-synthesis) simulation options are available for
your Core8051s-based system:
 bfm - APB Bus Functional Model (BFM-driven) simulation of your system
 oci - Run Core8051s On Chip Instrumentation (OCI) tests
 opcode - Run Core8051s opcode test suite, consisting of 256 opcode tests
 <num> - Enter a number in the range 1 to 256 to run a specific opcode test
Enter "bfm", "oci", "opcode" or a number between 1 and 256 and hit return key to select
simulation type

Figure 3-2 • Example System Including Core8051s

Core8051s v2.4 Handbook

Revision 2 25

Follow the instructions in the ModelSim transcript window to choose the type of simulation to run. BFM-
based simulation is not supported after synthesis has been run and bfm does not appear as a simulation
option in the post-synthesis ModelSim message, which is shown below:
The following (post-synthesis) simulation options are available for
your Core8051s-based system:
 oci - Run Core8051s On Chip Instrumentation (OCI) tests
 opcode - Run Core8051s opcode test suite, consisting of 256 opcode tests
 <num> - Enter a number in the range 1 to 256 to run a specific opcode test
(Note: BFM-driven simulation not available post-synthesis)
Enter "oci", "opcode" or a number between 1 and 256 and hit return key to select
simulation type

BFM-Based Simulation
When running a BFM-based simulation of a Core8051s system, a BFM command script is used to
control the simulation. This command script is dynamically generated by SmartDesign, based on the
components connected to the APB interface of Core8051s. The command script file is named
subsystem.bfm and is located in the simulation folder. You can modify the command script, refer to
"BFM-Script Language" for details on the syntax used in the file.
During simulation, the BFM generates a series of transfers on the APB bus. These write to and read from
registers within peripherals attached to the APB bus, of which Core8051s is master. This verifies that the
APB interface is fully operational. The BFM tests do not perform any verification on the Core8051s itself.
The advantage of BFM-driven simulation is that you can exercise the system using a simple scripting
language, before writing any C code or 8051 assembler code.

BFM-Script Language
The following script commands are defined for use by the BFM:

memmap
This command is used to associate a label, representing a system resource, with a memory map
location. The other BFM script commands may perform accesses to locations within this resource by
referencing this label and a register offset relative to this base address.

Syntax
memmap resource_name base_address;

• resource_name: This is a string containing the user-friendly instance name of the resource being
accessed. For BFM scripts generated automatically by SmartDesign, this name corresponds to
the instance name of the associated core in the generated subsystem Verilog or VHDL.

• base_address: This is the base address of the resource, in hexadecimal format.

write
This command causes the BFM to perform a write to a specified offset, within the memory map range of
a specified system resource.

Syntax
write width resource_name byte_offset data;

• width: This takes on the enumerated values of W, H, or B, for word, halfword, or byte.
• resource_name: This is a string containing the user-friendly instance name of the resource being

accessed.
• byte_offset: This is the offset from the base of the resource, in bytes. It is specified as a

hexadecimal value.
• data: This is the data to be written. It is specified as a hexadecimal value.

Example
write W videoCodec 20 11223344;

Tool Flows

26 Revision 2

read
This command causes the BFM to perform a read of a specified offset, within the memory map range of
a specified system resource.

Syntax
read width resource_name byte_offset;

• width: This takes on the enumerated values of W, H, or B, for word, halfword, or byte.
• resource_name: This is a string containing the user-friendly instance name of the resource being

accessed.
• byte_offset: This is the offset from the base of the resource, in bytes. It is specified as a

hexadecimal value.

Example
read W videoCodec 20;

readcheck
This command causes the BFM to perform a read of a specified offset, within the memory map range of
a specified system resource, and to compare the read value with the expected value provided.

Syntax
readcheck width resource_name byte_offset data;

• width: This takes on the enumerated values of W, H, or B, for word, halfword, or byte.
• resource_name: This is a string containing the user-friendly instance name of the resource being

accessed.
• byte_offset: This is the offset from the base of the resource, in bytes. It is specified as a

hexadecimal value.
• data: This is the expected read data. It is specified as a hexadecimal value.

Example
readcheck W videoCodec 20 11223344;

poll
This command continuously reads a specified location until a requested value is obtained. This
command allows one or more bits of the read data to be masked out. This allows, for example, poll
waiting for a ready bit to be set, while ignoring the values of the other bits in the location being read.
Syntax
poll width resource_name byte_offset data bitmask;

• width: This takes on the enumerated values of W, H, or B, for word, halfword, or byte.
• resource_name: This is a string containing the user-friendly instance name of the resource being

accessed.
• byte_offset: This is the offset from the base of the resource, in bytes. It is specified as a

hexadecimal value.
• bitmask: The bitmask is ANDed with the read data and the result is then compared to the bitmask

itself. If equal, then all the bits of interest are at their required value and the poll command is
complete. If not equal, then the polling continues.

wait
This command causes the BFM script to stall for a specified number of clock periods.

Syntax
wait num_clock_ticks;

• num_clock_ticks: This is the number of clock periods during which the BFM stalls (does not
initiate any bus transactions).

waitint0
This command causes the BFM to wait until an interrupt event (Low to High transition) is seen on the
INT0 pin before proceeding with the execution of the remainder of the script.

Core8051s v2.4 Handbook

Revision 2 27

Syntax
waitint0;

waitint1
This command causes the BFM to wait until an interrupt event (Low to High transition) is seen on the
INT1 pin before proceeding with the execution of the remainder of the script.

Syntax
waitint1;

Synthesis in Libero IDE
To run synthesis on the core with the parameter settings selected in SmartDesign, set the design root
appropriately, and click the Synthesis button in the Project Manager. The Synthesis window appears,
displaying the Synplicity® project. To perform synthesis, click the Run button.

Place-and-Route in Libero IDE
After setting the design root appropriately and running synthesis, click the Layout button in the Project
Manager to invoke Designer. Core8051s requires no special place-and-route settings.

Revision 2 29

4 – Core8051s Features

Software Memory Map
The Core8051s microcontroller utilizes the Harvard architecture, with separate code and data spaces.
Memory organization in Core8051s is similar to that of the industry standard 8051. There are three
memory areas, as shown in Figure 4-1:

• Program memory (internal RAM, external RAM, or external ROM)
• External data memory (external RAM)
• Internal data memory (internal RAM)

The software memory map for the Core8051s is shown in Figure 4-1.

As far as the software programmer is concerned, there are three distinct memory spaces available, as
shown in Figure 4-1.

Program Memory
Core8051s can address up to 64 kbytes of program memory space, from 0000H to FFFFH. The external
memory bus interface (Table 4-1 on page 31) services program memory when the MEMPSRD signal is
active. Program memory is read when the CPU performs fetching instructions or MOVC. After reset, the
CPU starts program execution from location 0000H. The lower part of the program memory includes
interrupt and reset vectors. The interrupt vectors are spaced at eight-byte intervals, starting from 0003H.
Program memory can be implemented as internal RAM, external RAM, external ROM, or a combination
of all three. Writing to external program memory is only supported in debug mode, using the OCI logic
block and external debugger hardware and software.
The program memory can use variable length accesses (MEMPSACKI-controlled), or a fixed number of
wait cycles may be inserted on each read. Refer to "Program Memory Access" on page 22 for more
information about configuring access to program memory.

Figure 4-1 • Core8051s Software Memory Map

256 Locations

256 Locations
256 Locations Peripheral 1

Peripheral 15

Peripheral 0

Word-Addressable Only

NVM External Data RAM64 kbytes

External Data
Memory

60 kbytes

External Program
Memory

Internal Data
Memory

Internal RAM

SFR Subset128 Bytes

128 Bytes

Core8051s Features

30 Revision 2

External Data Memory Space
Core8051s can address up to 64 kbytes of external data memory space, from 0000H to FFFFH. This
memory is external to the core, not necessarily to the FPGA. In the Core8051s, the upper 4 kbytes
(F000H to FFFFH) of external data memory space is mapped to an APB bus. The lower 60 kbytes is
mapped to the external memory bus interface.

External Data Interface
The external memory bus interface (Table 2-1 on page 18) services data memory when the MEMRD
signal is active. Core8051s writes into external data memory when the CPU executes MOVX @Ri,A or
MOVX @DPTR,A instructions. The external data memory is read when the CPU executes MOVX A,@Ri
or MOVX A,@DPTR instructions. There is improved variable length of the MOVX instructions to access
fast or slow external RAM and external peripherals. The external data memory can use variable length
accesses (MEMACKI-controlled), or a fixed number of stretch cycles may be inserted on each read or
write. Refer to "External Data Memory Access" on page 23 for more information about configuring
access to external data memory.

APB Interface
Core8051s based systems use an APB bus for connecting peripherals, where the Core8051s acts as the
bus master. The width of the APB bus on Core8051s can be selected to match the width of the widest
APB peripheral in the system (8, 16, or 32 bits). As the Core8051s is an 8-bit processor and it is not
possible to indicate transaction size on the APB, reads and writes from or to the APB bus in 16-bit or 32-
bit mode are accomplished by means of newly defined SFRs, hereafter referred to as X registers. For
example, to perform a write to a 32-bit APB peripheral, the program running on the Core8051s must first
perform three individual 8-bit writes to X registers (XWB1, XWB2, and XWB3). These registers hold the
value to be written out on PWDATA [31:8]. When the program subsequently does a write to the APB
address in question, the 8 bits of the write data associated with that write cycle are put out on the
PWDATA [7:0] and the three write “X registers” are put onto the APB bus as PWDATA [31:8].
16-bit and 32-bit reads from the APB are handled in a similar manner. To perform a 32-bit read from an
APB location, the program must perform a read of the APB location, from which it immediately obtains
bits [7:0] of the 16 or 32 bits on PRDATA[7:0]. Subsequently, the program must read the three read X
registers (XRB1, XRB2, and XRB3) to get bits [31:8], which were read from the APB peripheral and
latched in these SFRs at the time of the APB transaction.
For the 4 kbytes of memory space allocated to the APB interface, only word access is possible, where
word refers to an 8-bit, 16-bit, or 32-bit entity, for their respective APB bus implementations.
The APB interface of Core8051s will typically be connected to CoreAPB3, which can in turn connect to
up to 16 peripherals such as CoreTimer and CoreGPIO. Often the programmer accessible registers in
these peripherals will be located at 32-bit word boundaries in the address map. This means that
consecutive registers are located at address offsets 0x00, 0x04, 0x08, 0x0C, and so on. Core8051s must
take account of this when accessing such peripherals. For example, to access successive register
locations in a peripheral attached to slave slot 0 on CoreAPB3, Core8051s would issue addresses
0xF000, 0xF004, 0xF008, 0xF00C, and so on.
The net effect is that only every fourth location in the APB space is usable if the peripherals are designed
such that their registers are located at 32-bit word boundaries in the memory map. If all of the 4 kbytes of
APB space connects to peripherals of this type, then there are only 1,024 separately addressable
locations, which equates to 64 locations per peripheral, assuming CoreAPB3 is used.
Note that the APB data width is independent of the addressing scheme. Each location can hold a value
which is 8, 16, or 32 bits wide. The APB data width configurable option of Core8051s should be set to
match the largest data width to be accessed on the APB interface.

Core8051s v2.4 Handbook

Revision 2 31

Internal Data Memory Space
Internal RAM
The internal data memory space services 256 bytes of data RAM and 128 bytes of SFRs. The internal
data memory address is always one byte wide. The memory space is 256 bytes large (00H to FFH).
Direct or indirect addressing accesses the lower 128 bytes of internal RAM. Indirect addressing
accesses the upper 128 bytes of internal RAM.
The lower 128 bytes contain work registers and bit-addressable memory. The lower 32 bytes form four
banks of eight registers (R0–R7). Two bits on the program memory status word (PSW) select which bank
is in use. The next 16 bytes form a block of bit-addressable memory space at bit addressees 00H–7FH.

SFR Registers
The SFRs occupy the upper 128 bytes of internal data memory space. This SFR area is available only by
direct addressing.
Table 4-1 lists the SFR registers present in Core8051s.

The above table contains the minimal subset of SFR registers (SP, DPL, DPH, PSW, ACC, and B) that
are required to support existing C compilers. There is an optional second data pointer (not available by
default). There are also six non-standard SFR registers shown, referred to hereafter as X registers. The
XWB1 and XRB1 registers are present only if APB_DWIDTH is 16 or greater. XWB2, XWB3, XRB2, and
XRB3 are present only if APB_DWIDTH is 32. They are used to provide write data and latch read data for
the upper 3 bytes of the APB bus, if present, during a MOVX instruction to APB memory space (within
external data memory space). The six X registers are not bit-addressable. Note also that the X registers
are read/write. This is necessary to handle the situation where an ISR needs to access the APB bus, but
has interrupted between the user setting up the X registers and performing the MOVX (on an APB write),
or between the MOVX and reading of the X registers (on an APB read). The recommended behavior for
an ISR is to read the X registers on entry into the ISR and to restore them to their original values on
exiting the ISR.

Table 4-1 • Core8051s SFR Registers

Register Location Description

SP 0x81 Stack pointer

DPL 0x82 Data pointer 0 Low

DPH 0x83 Data pointer 0 High

DPL1 0x84 Data pointer 1 Low (optional)

DPH1 0x85 Data pointer 1 High (optional)

ICON 0x88 Interrupt control register

DPS 0x92 Data pointer select (optional)

XWB1 0x9A External write buffer 1 (optional)

XWB2 0x9B External write buffer 2 (optional)

XWB3 0x9C External write buffer 3 (optional)

XRB1 0x9D External read buffer 1 (optional)

XRB2 0x9E External read buffer 2 (optional)

XRB3 0x9F External read buffer 3 (optional)

IE 0xA8 Interrupt enable register

PSW 0xD0 Program status word (bit-addressable)

ACC 0xE0 Accumulator (bit-addressable)

B 0xF0 B register (bit-addressable)

Core8051s Features

32 Revision 2

Accumulator (acc)
The acc register is the accumulator. Most instructions use the accumulator to hold the operand. The
mnemonics for accumulator-specific instructions refer to the accumulator as A, not ACC.

B Register (b)
The b register is used during multiply and divide instructions. It can also be used as a scratch-pad
register to hold temporary data.

Program Status Word (psw)
The psw register flags and bit functions are listed in Table 4-2 and Table 4-3.

The state of bits rs1 and rs0 from the psw register select the working registers bank as listed in Table 4-4.

Stack Pointer (sp)
The stack pointer is a one-byte register initialized to 07H after reset. This register is incremented before
PUSH and CALL instructions, causing the stack to begin at location 08H.

Data Pointer (dptr)
The data pointer (dptr) is two bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded
as a two- byte register (MOV DPTR,#data16) or as two registers (e.g. MOV DPL,#data8). It is generally
used to access external code or data space (e.g. MOVC A,@A+DPTR or MOV A,@DPTR respectively).

Program Counter (pc)
The program counter is two bytes wide, and is initialized to 0000H after reset. This register is
incremented during fetching operation code or operation data from program memory.

Table 4-2 • psw Register Flags

cy ac f0 rs1 rs ov – p

Table 4-3 • psw Bit Functions

Bit Symbol Function

7 cy Carry flag

6 ac Auxiliary carry flag for BCD operations

5 f0 General purpose flag 0 available for user

4 rs1 Register bank select control bit 1, used to select working register
bank

3 rs0 Register bank select control bit 0, used to select working register
bank

2 ov Overflow flag

1 – User defined flag

0 p Parity flag, affected by hardware to indicate odd / even number
of "one" bits in the accumulator, i.e. even parity

Table 4-4 • rs1/rs0 Bit Selections

rs1/rs0 Bank selected Location

00 Bank 0 (00H – 07H)

01 Bank 1 (08H – 0FH)

10 Bank 2 (10H – 17H)

11 Bank 3 (18H – 1FH)

Core8051s v2.4 Handbook

Revision 2 33

Interrupt Enable Register (ie)
The interrupt enable register is a one-byte register initialized to 00H after reset. The IE bit functions are
listed in Table 4-5. Note that the EAL and EX0 bits must both be set to 1 to enable the INT0 interrupt.
Similarly, EAL and EX1 must both be set to 1 to enable the INT1 interrupt.

Interrupt Control Register (icon)
The interrupt control register is a one-byte register initialized to 00H after reset. The ICON bit functions
are listed in Table 4-6. The ICON register implements a subset of the Timer Control (TCON) register,
which is commonly present in implementations of the 8051 processor.

Table 4-5 • Bit Functions

Bit Symbol Default Value Function

7 EAL 0 0 = Disable all interrupts

6 – 0 Unused

5 – 0 Unused

4 – 0 Unused

3 – 0 Unused

2 EX1 0 0 = Disable external interrupt 1 (INT1)

1 – 0 Unused

0 EX0 0 0 = Disable external interrupt 0 (INT0)

Table 4-6 • Bit Functions

Bit Symbol Default Value Function

7 – 0 Unused

6 – 0 Unused

5 – 0 Unused

4 – 0 Unused

3 IE1 0 Interrupt 1 event flag.
When IT1 = 0, this flag follows the level on the INT1 input.
When IT1 = 1, this flag is set when a rising edge is observed on
interrupt input INT1, and is cleared when the interrupt is processed.

2 IT1 0 Interrupt 1 type control bit. This bit selects whether a rising edge or
a high level on input pin INT1 causes an interrupt.
0 = High level causes interrupt.
1 = Rising edge causes interrupt.

1 IE0 0 Interrupt 0 event flag.
When IT0 = 0, this flag follows the level on the INT0 input.
When IT0 = 1, this flag is set when a rising edge is observed on
interrupt input INT0, and is cleared when the interrupt is processed.

0 IT0 0 Interrupt 0 type control bit. This bit selects whether a rising edge or
a high level on input pin INT0 causes an interrupt.
0 = High level causes interrupt.
1 = Rising edge causes interrupt

Core8051s Features

34 Revision 2

Interrupts
Core8051s has two interrupt inputs, INT0 and INT1. INT0 is low priority (priority level 0), with a vector
address of 03H. INT1 is high priority (priority level 1), with a vector address of 13H.
Note: If using the Keil C51 C compiler, an interrupt function attribute of 0 must be used for INT0 and an

attribute of 2 for INT1.
The interrupt enable (IE) and interrupt control (ICON) special function registers are used to determine
interrupt behavior.
Interrupts can be individually or collectively enabled or disabled using the interrupt enable register.
The interrupt control register contains an event flag and a type control bit for the INT0 and INT1
interrupts. Each type control bit is used to control whether the corresponding interrupt is rising edge or
level High sensitive, with the default being level High sensitive. Each event flag is set to 1 when a rising
edge or High level is detected on the corresponding interrupt input.
When rising edge sensitive operation is selected (by setting the type control bit to 1), the relevant event
flag will be automatically cleared when the interrupt is serviced. This automatic clearing of the event flags
is made possible by logic in the processor that detects vectoring to address 03H (in the case of an INT0
interrupt) or 13H (in the case of an INT1 interrupt).
When level sensitive interrupt operation is selected, the relevant event flag is not cleared when the
interrupt is serviced and remains asserted until the source of the interrupt is cleared. The event flag
effectively follows the (INT0 or INT1) interrupt input when level sensitive operation is selected. The
interrupt service routine must clear the source of the interrupt when level sensitive interrupts are used.

OCI Block
The on-chip instrumentation (OCI) block communicates with external debugger hardware and software
as a debugging aid to the user. The OCI debug block can be optionally included, refer to "Debug
Configuration" on page 22 for more information on debug related configuration options. The following
debug features are present in Core8051s:

• Run/stop control
• Single-step mode
• Software breakpoint
• Execution of a debugger program
• Hardware breakpoint
• Program trace
• Access to ACC (accumulator) register

Revision 2 35

5 – Instruction Set

The Core8051s instructions are binary code compatible and perform the same functions as the industry-
standard 8051. This is the ASM51 instruction set. Some of these instructions, however, are not enabled
by default and so must be explicitly enabled if required.
Table 5-1 and Table 5-2 contain notes for mnemonics used in the various instruction set tables. In
Table 5-3 on page 36 through Table 5-7 on page 40, the instructions are ordered in functional groups. In
Table 5-8 on page 41, the instructions are ordered in the hexadecimal order of the operation code. For
more detailed information about the Core8051s instruction set, refer to the Core8051 Instruction Set
Details User’s Guide.

Table 5-1 • Notes on Data Addressing Modes

Rn Working register, R0–R7

direct 128 internal RAM locations, any I/O port, control or status register

@Ri Indirect internal or external RAM location addressed by register, R0 or R1

#data 8-bit constant included in instruction

#data 16 16-bit constant included as bytes 2 and 3 of instruction

bit 128 software flags, any bit-addressable I/O pin, control or status bit

A Accumulator

Table 5-2 • Notes on Programming Addressing Modes

addr16 Destination address for LCALL and LJMP may be anywhere within the 64 kbytes
program memory address space.

addr11 Destination address for ACALL and AJMP will be within the same 2 kbytes page of
program memory as the first byte of the following instruction.

Rel SJMP and all conditional jumps include an 8-bit offset byte. Range is from plus 127 to
minus 128 bytes, relative to the first byte of the following instruction.

http://www.actel.com/ipdocs/Core8051UG.pdf
http://www.actel.com/ipdocs/Core8051UG.pdf

Instruction Set

36 Revision 2

Functional Ordered Instructions
Table 5-3 through Table 5-7 on page 40 list the functional ordered instructions.

Table 5-3 • Arithmetic Instructions

Mnemonic Description Byte Cycle

ADD A,Rn Adds the register to the accumulator. 1 1

ADD A,direct Adds the direct byte to the accumulator. 2 2

ADD A,@Ri Adds the indirect RAM to the accumulator. 1 2

ADD A,#data Adds the immediate data to the accumulator. 2 2

ADDC A,Rn Adds the register to the accumulator with a carry flag. 1 1

ADDC A,direct Adds the direct byte to A with a carry flag. 2 2

ADDC A,@Ri Adds the indirect RAM to A with a carry flag. 1 2

ADDC A,#data Adds the immediate data to A with carry a flag. 2 2

SUBB A,Rn Subtracts the register from A with a borrow. 1 1

SUBB A,direct Subtracts the direct byte from A with a borrow. 2 2

SUBB A,@Ri Subtracts the indirect RAM from A with a borrow. 1 2

SUBB A,#data Subtracts the immediate data from A with a borrow. 2 2

INC A Increments the accumulator. 1 1

INC Rn Increments the register. 1 2

INC direct Increments the direct byte. 2 3

INC @Ri Increments the indirect RAM. 1 3

DEC A Decrements the accumulator. 1 1

DEC Rn Decrements the register. 1 1

DEC direct Decrements the direct byte. 1 2

DEC @Ri Decrements the indirect RAM. 2 3

INC DPTR Increments the data pointer. 1 3

MUL A,B Multiplies A and B. 1 5

DIV A,B Divides A by B. 1 5

DA A Decimal adjust accumulator 1 1

Core8051s v2.4 Handbook

Revision 2 37

Table 5-4 • Logic Operations

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data AND immediate data to accumulator 2 2

ANL direct,A AND accumulator to direct byte 2 3

ANL direct,#data AND immediate data to direct byte 3 4

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 2

ORL A,@Ri OR indirect RAM to accumulator 1 2

ORL A,#data OR immediate data to accumulator 2 2

ORL direct,A OR accumulator to direct byte 2 3

ORL direct,#data OR immediate data to direct byte 3 4

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A,direct Exclusive OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 2

XRL A,#data Exclusive OR immediate data to accumulator 2 2

XRL direct,A Exclusive OR accumulator to direct byte 2 3

XRL direct,#data Exclusive OR immediate data to direct bytre 3 4

CLR A Clears the accumulator. 1 1

CPL A Complements the accumulator. 1 1

RL A Rotates the accumulator left. 1 1

RLC A Rotates the accumulator left through carry. 1 1

RR A Rotates the accumulator right. 1 1

RRC A Rotates the accumulator right through carry. 1 1

SWAP A Swaps nibbles within the accumulator. 1 1

Instruction Set

38 Revision 2

Table 5-5 • Data Transfer Operations

Mnemonic Description Byte Cycle

MOV A,Rn Moves the register to the accumulator. 1 1

MOV A,direct Moves the direct byte to the accumulator. 2 2

MOV A,@Ri Moves the indirect RAM to the accumulator. 1 2

MOV A,#data Moves the immediate data to the accumulator. 2 2

MOV Rn,A Moves the accumulator to the register. 1 2

MOV Rn,direct Moves the direct byte to the register. 2 4

MOV Rn,#data Moves the immediate data to the register. 2 2

MOV direct,A Moves the accumulator to the direct byte. 2 3

MOV direct,Rn Moves the register to the direct byte. 2 3

MOV direct,direct Moves the direct byte to the direct byte. 3 4

MOV direct,@Ri Moves the indirect RAM to the direct byte. 2 4

MOV direct,#data Moves the immediate data to the direct byte 3 3

MOV @Ri,A Moves the accumulator to the indirect RAM. 1 3

MOV @Ri,direct Moves the direct byte to the indirect RAM. 2 5

MOV @Ri,#data Moves the immediate data to the indirect RAM. 2 3

MOV DPTR,#data16 Loads the data pointer with a 16-bit constant. 3 3

MOVC A,@A + DPTR Moves the code byte relative to the DPTR to the accumulator. 1 3

MOVC A,@A + PC Moves the code byte relative to the PC to the accumulator. 1 3

MOVX A,@Ri Moves the external RAM (8-bit address) to A. 1 3–10

MOVX A,@DPTR Moves the external RAM (16-bit address) to A. 1 3–10

MOVX @Ri,A Moves A to the external RAM (8-bit address). 1 4–11

MOVX @DPTR,A Moves A to the external RAM (16-bit address). 1 4–11

PUSH direct Pushes the direct byte onto the stack. 2 4

POP direct Pops the direct byte from the stack. 2 3

XCH A,Rn Exchanges the register with the accumulator. 1 2

XCH A,direct Exchanges the direct byte with the accumulator. 2 3

XCH A,@Ri Exchanges the indirect RAM with the accumulator. 1 3

XCHD A,@Ri Exchanges the low-order nibble indirect RAM with A. 1 3

Core8051s v2.4 Handbook

Revision 2 39

Table 5-6 • Boolean Manipulation Operations

Mnemonic Description Byte Cycle

CLR C Clears the carry flag. 1 1

CLR bit Clears the direct bit. 2 3

SETB C Sets the carry flag. 1 1

SETB bit Sets the direct bit. 2 3

CPL C Complements the carry flag. 1 1

CPL bit Complements the direct bit. 2 3

ANL C,bit AND direct bit to the carry flag. 2 2

ANL C,bit AND complements of direct bit to the carry. 2 2

ORL C,bit OR direct bit to the carry flag. 2 2

ORL C,bit OR complements of direct bit to the carry. 2 2

MOV C,bit Moves the direct bit to the carry flag. 2 2

MOV bit, C Moves the carry flag to the direct bit. 2 3

Instruction Set

40 Revision 2

Table 5-7 • Program Branch Operations

Mnemonic Description Byte Cycle

ACALL addr11 Absolute subroutine call 2 6

LCALL addr16 Long subroutine call 3 6

RET Return Return from subroutine 1 4

RETI Return Return from interrupt 1 4

AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel Short jump (relative address) 2 3

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if accumulator is zero 2 3

JNZ rel Jump if accumulator is not zero 2 3

JC rel Jump if carry flag is set 2 3

JNC rel Jump if carry flag is not set 2 3

JB bit,rel Jump if direct bit is set 3 4

JNB bit,rel Jump if direct bit is not set 3 4

JBC bit,rel Jump if direct bit is set and clears bit 3 4

CJNE A,direct,rel Compares direct byte to A and jumps if not equal. 3 4

CJNE A,#data,rel Compares immediate to A and jumps if not equal. 3 4

CJNE Rn,#data rel Compares immediate to the register and jumps if not equal. 3 4

CJNE @Ri,#data,rel Compares immediate to indirect and jumps if not equal. 3 4

DJNZ Rn,rel Decrements register and jumps if not zero. 2 3

DJNZ direct,rel Decrements direct byte and jumps if not zero. 3 4

NOP No operation 1 1

Core8051s v2.4 Handbook

Revision 2 41

Hexadecimal Ordered Instructions
The Core8051s instructions are listed in Table 5-8 in order of hexadecimal opcode (operation code).

Table 5-8 • Core8051s Instruction Set in Hexadecimal Order

Opcode Mnemonic Opcode Mnemonic

00H NOP 10H JBC bit,rel

01H AJMP addr11 11H ACALL addr11

02H LJMP addr16 12H LCALL addr16

03H RR A 13H RRC A

04H INC A 14H DEC A

05H INC direct 15H DEC direct

06H INC @R0 16H DEC @R0

07H INC @R1 17H DEC @R1

08H INC R0 18H DEC R0

09H INC R1 19H DEC R1

0AH INC R2 1AH DEC R2

0BH INC R3 1BH DEC R3

0CH INC R4 1CH DEC R4

0DH INC R5 1DH DEC R5

0EH INC R6 1EH DEC R6

0FH INC R7 1FH DEC R7

20H JB bit,rel 30H JNB bit,rel

21H AJMP addr11 31H ACALL addr11

22H RET 32H RETI

23H RL A 33H RLC A

24H ADD A,#data 34H ADDC A,#data

25H ADD A,direct 35H ADDC A,direct

26H ADD A,@R0 36H ADDC A,@R0

27H ADD A,@R1 37H ADDC A,@R1

28H ADD A,R0 38H ADDC A,R0

29H ADD A,R1 39H ADDC A,R1

2AH ADD A,R2 3AH ADDC A,R2

2BH ADD A,R3 3BH ADDC A,R3

2CH ADD A,R4 3CH ADDC A,R4

2DH ADD A,R5 3DH ADDC A,R5

2EH ADD A,R6 3EH ADDC A,R6

2FH ADD A,R7 3FH ADDC A,R7

Note: *The A5H opcode is used as a trap instruction for the implementation of software breakpoints.

Instruction Set

42 Revision 2

40H JC rel 50H JNC rel

41H AJMP addr11 51H ACALL addr11

42H ORL direct,A 52H ANL direct,A

43H ORL direct,#data 53H ANL direct,#data

44H ORL A,#data 54H ANL A,#data

45H ORL A,direct 55H ANL A,direct

46H ORL A,@R0 56H ANL A,@R0

47H ORL A,@R1 57H ANL A,@R1

48H ORL A,R0 58H ANL A,R0

49H ORL A,R1 59H ANL A,R1

4AH ORL A,R2 5AH ANL A,R2

4BH ORL A,R3 5BH ANL A,R3

4CH ORL A,R4 5CH ANL A,R4

4DH ORL A,R5 5DH ANL A,R5

4EH ORL A,R6 5EH ANL A,R6

4FH ORL A,R7 5FH ANL A,R7

60H JZ rel 70H JNZ rel

61H AJMP addr11 71H ACALL addr11

62H XRL direct,A 72H ORL C,bit

63H XRL direct,#data 73H JMP @A+ DPTR

64H XRL A,#data 74H MOV A,#data

65H XRL A,direct 75H MOV direct,#data

66H XRL A,@R0 76H MOV @R0,#data

67H XRL A,@R1 77H MOV @R1

68H XRL A,R0 78H MOV R0,#data

69H XRL A,R1 79H MOV R1,#data

6AH XRL A,R2 7AH MOV R2,#data

6BH XRL A,R3 7BH MOV R3,#data

6CH XRL A,R4 7CH MOV R4,#data

6DH XRL A,R5 7DH MOV R5,#data

6EH XRL A,R6 7EH MOV R6,#data

6FH XRL A,R7 7FH MOV R7,#data

Table 5-8 • Core8051s Instruction Set in Hexadecimal Order (continued)

Opcode Mnemonic Opcode Mnemonic

Note: *The A5H opcode is used as a trap instruction for the implementation of software breakpoints.

Core8051s v2.4 Handbook

Revision 2 43

80H SJMP rel 90H MOV DPTR,#data16

81H AJMP addr11 91H ACALL addr11

82H ANL C,bit 92H MOV bit,C

83H MOVC A,@A+ PC 93H MOVC A,@A+ DPTR

84H DIV AB 94H SUBB A,#data

85H MOV direct,direct 95H SUBB A,direct

86H MOV direct,@R0 96H SUBB A,@R0

87H MOV direct,@R1 97H SUBB A,@R1

88H MOV direct,R0 98H SUBB A,R0

89H MOV direct,R1 99H SUBB A,R1

8AH MOV DIRECT,R2 9AH SUBB A,R2

8BH MOV DIRECT,R3 9BH SUBB A,R3

8CH MOV DIRECT,R4 9CH SUBB A,R4

8DH MOV DIRECT,R5 9DH SUBB A,R5

8EH MOV DIRECT,R6 9EH SUBB A,R6

8FH MOV DIRECT,R7 9FH SUBB A,R7

A0H ORL C,~bit B0H ANL C,~bit

A1H AJMP addr11 B1H ACALL addr11

A2H MOV C,bit B2H CPL bit

A3H INC DPTR B3H CPL C

A4H MUL AB B4H CJNE A,#data,rel

A5H* – B5H CJNE A,direct,rel

A6H MOV @R0,direct B6H CJNE @R0,#data,rel

A7H MOV @R1,direct B7H CJNE @R1,#data,rel

A8H MOV R0,direct B8H CJNE R0,#data,rel

A9H MOV R1,direct B9H CJNE R1,#data,rel

AAH MOV R2,direct BAH CJNE R2,#data,rel

ABH MOV R3,direct BBH CJNE R3,#data,rel

ACH MOV R4,direct BCH CJNE R4,#data,rel

ADH MOV R5,direct BDH CJNE R5,#data,rel

AEH MOV R6,direct BEH CJNE R6,#data,rel

AFH MOV R7,direct BFH CJNE R7,#data,rel

Table 5-8 • Core8051s Instruction Set in Hexadecimal Order (continued)

Opcode Mnemonic Opcode Mnemonic

Note: *The A5H opcode is used as a trap instruction for the implementation of software breakpoints.

Instruction Set

44 Revision 2

C0H PUSH direct D0H POP direct

C1H AJMP addr11 D1H ACALL addr11

C2H CLR bit D2H SETB bit

C3H CLR C D3H SETB C

C4H SWAP A D4H DA A

C5H XCH A,direct D5H DJNX direct,rel

C6H XCH A,@R0 D6H XCHD A,@R0

C7H XCH A,@R1 D7H XCHD A,@R1

C8H XCH A,R0 D8H DJNZ R0,rel

C9H XCH A,R1 D9H DJNZ R1,rel

CAH XCH A,R2 DAH DJNZ R2,rel

CBH XCH A,R3 DBH DJNZ R3,rel

CCH XCH A,R4 DCH DJNZ R4,rel

CDH XCH A,R5 DDH DJNZ R5,rel

CEH XCH A,R6 DEH DJNZ R6,rel

CFH XCH A,R7 DFH DJNZ R7,rel

E0H MOVX A,@DPTR F0H MOVX@DPTR,A

E1H AJMP addr11 F1H ACALL addr11

E2H MOVX A,@R0 F2H MOVX@R0,A

E3H MOVX A,@R1 F3H MOVX@R1,A

E4H CLR A F4H CPL A

E5H MOV A,direct F5H MOV direct,a

E6H MOV A,@R0 F6H MOV@R0,A

E7H MOV A,@R1 F7H MOV@R1,A

E8H MOV A,R0 F8H MOV R0,A

E9H MOV A,R1 F9H MOV R1,A

EAH MOV A,R2 FAH MOV R2,A

EBH MOV A,R3 FBH MOV R3,A

ECH MOV A,R4 FCH MOV R4,A

EDH MOV A,R5 FDH MOV R5,A

EEH MOV A,R6 FEH MOV R6,A

EFH MOV A,R7 FFH MOV R7,A

Table 5-8 • Core8051s Instruction Set in Hexadecimal Order (continued)

Opcode Mnemonic Opcode Mnemonic

Note: *The A5H opcode is used as a trap instruction for the implementation of software breakpoints.

Core8051s v2.4 Handbook

Revision 2 45

Instruction Definitions
All Core8051s core instructions can be condensed to 53 basic operations, alphabetically ordered
according to the operation mnemonic section, as shown in Table 5-9.

Table 5-9 • PSW Flag Modification (CY, OV, AC)

Instruction

Flag

Instruction

Flag

CY OV AC CY OV AC

ADD X X X SETB C 1 – –

ADDC X X X CLR C 0 – –

SUBB X X X CPL C X – –

MUL 0 X – ANL C,bit X – –

DIV 0 X – ANL C,~bit X – –

DA X – – ORL C,bit X – –

RRC X – – ORL C,~bit X – –

RLC X – – MOV C,bit X – –

CJNE X – –

Note: In this table, ‘X’ denotes that the indicated flag is affected by the instruction and can be a logic 1 or
logic 0, depending upon specific calculations. If a particular box is blank, that flag is unaffected by
the listed instruction.

Instruction Set

46 Revision 2

C Compiler Support
Because the Core8051s is 100% compatible with the ASM51 instruction set and supports the three
traditional 8051 microcontroller memory spaces, it may be targeted by existing 8051 C compilers.
The following section describes in more detail the considerations involved in writing C code for the 8051,
when using the Keil Cx51 C compiler. Note that the considerations are similar to those required for other
8051 C compilers, such as the Small Device C Compiler (SDCC), which is bundled with Actel's
SoftConsole software development environment.

ANSI C Compliance
It is theoretically possible to write fully compliant ANSI C code and target it to the Core8051s. However,
there are a number of issues to be aware of, as listed below.

• Some of the types for the arguments of functions in the Keil C runtime library are modified from
those defined in the standard ANSI C. This is to use smaller sizes, where possible.

• Some of the functions in the Keil C runtime library use proprietary extensions to C (as described
in "Allocation of Variables in C"), such as bit and xdata types.

• Some of the functions defined by ANSI C are not present in the Keil C runtime library.
• The Keil C runtime library contains some extra functions not defined in ANSI C.

Therefore, pure standard ANSI C code is guaranteed to run only if it does not use any of the above
functions when using the Keil C runtime library. Alternatively, the user may provide a runtime library other
than the Keil C runtime library.
To get optimal usage of the 8051 architecture, however, many users would just modify their ANSI C
application, if necessary, to make optimal use of the 8051 architecture.

Allocation of Variables in C
One of the considerations in writing C software for an 8051-based system is allocation of variables.
Specifically, from which of the three memory spaces is a particular variable allocated? By default, if no C
extensions are used, all variables are allocated from a single memory space, therefore allowing no
confusion. The Keil C compiler allows the user to select a “memory model” from one of three possible
models. These are the small, compact, and large models. The small and large models are of particular
interest in targeting the Core8051s. These are described in the following sections.

Small Model
In this model, all variables, by default, reside in internal data memory. In this model, variable access is
very efficient. However, all objects (if not explicitly located in another memory area) and the stack must fit
into internal RAM. Stack size is critical because the stack size depends on the nesting depth of the
various functions.

Large Model
In the large model, all variables, by default, reside in external data memory (which may be up to 64
kbytes). In the case of Core8051s, this covers 60 kbytes of external RAM and 4 kbytes of memory-
mapped peripherals. The data pointer (DPTR) is used to address external memory, which results in
slower accesses to variables than in the small model. It is likely, however, that the large model is the
more appropriate of the two for targeting Core8051s without having to use language extensions, as this
allows the peripheral resources to be mapped as C variables.

Proprietary Extensions to C for 8051
As mentioned above, the user may decide to write the application in portable ANSI C. However, many
users will make use of nonstandard extensions provided by the various C compilers, to make more
optimal use of the 8051 architecture. In particular, the features of the 8051 architecture that are of

Core8051s v2.4 Handbook

Revision 2 47

interest are the address/data path widths as well as the different memory spaces. C compilers for the
8051 provide some extensions to C, which allow more efficient use of the 8051 memory spaces.

Memory Types
Different memory types are specified. For example, Table 5-10 summarizes some of the memory type
specifiers, which may be used with the Keil Cx51 compiler.

As with signed and unsigned attributes, the memory type specifiers may be included in the variable
declaration. For example:
char data var1;
char code text[] = “ENTER PARAMETER:”;
unsigned long xdata array[100];
float idata x,y,z;
unsigned char xdata vector[10][4][4];
char bdata flags;

If no memory type is specified for a variable, the compiler implicitly locates the variable in the default
memory space determined by the memory model: SMALL or LARGE. Function arguments and
automatic variables that cannot be located in registers are also stored in the default memory area.

Data Types
As well as the standard data types, 8051 C compilers also define specific data types, which may be used
in the C code. For example, the Keil Cx51 compiler specifies the additional data types shown in
Table 5-11.

Note that data types relate to the sizes of the standard data types, as implemented by C compilers for the
8051. The following sizes are used:

Table 5-10 • Memory Type Specifiers for Keil Cx51 Compiler

Memory Type Description

code Program memory (64 kbytes); accessed by opcode MOVC @A + DPTR.

data Directly addressable internal data memory. This gives the fastest access to variables
(128 bytes).

idata Indirectly addressable internal data memory. Variables with this type may be accessed
across the full internal address space (256 bytes).

bdata Bit-addressable internal data memory. This supports mixed bit and byte access.

xdata External data memory (64 kbytes). This is accessed by opcode MOVX @DPTR.

Table 5-11 • Cx51 Additional Data Types

Data Types Bits Bytes Value Range

bit 1 0 or 1

sbit 1 0 or 1

sfr 8 1 0 to 255

sfr16 16 2 0 to 65535

Table 5-12 • Size of Standard C data Types for 8051 Compilers

Data Type Size (bits)

char 8

int 16

long 32

Instruction Set

48 Revision 2

Pointers
Because of the unique nature of the 8051 architecture, management of variable pointers becomes an
issue. For example, the address of a variable in internal data memory is 8 bits and so a pointer to a
variable in this space is 8 bits. Similarly, a pointer to a variable in external data or program memory is 16
bits wide.

Memory-Specific Pointers
Memory-specific pointers always include a memory type specification in the pointer declaration and
always refer to a specific memory area. For example:
char data *str; /* ptr to string in data */
int xdata *numtab; /* ptr to int(s) in xdata */
long code *powtab; /* ptr to long(s) in code */

Memory-specific pointers can be stored using only one byte (idata, data, bdata pointers) or two bytes
(code and xdata pointers).

Generic Pointers
The Keil Cx51 compiler allows the use of generic pointers. Generic pointers are declared like standard C
pointers. For example:
char *s; /* string ptr */
int *numptr; /* int ptr */

Generic pointers are always stored using three bytes. The first byte is the memory type, the second is the
high-order byte of the offset, and the third is the low-order byte of the offset. Generic pointers may be
used to access any variable, regardless of its location in 8051 memory space. Code that uses generic
pointers runs more slowly and is larger due to the conversion required and the need to link in other library
routines. However, it is worthwhile if there is a need to mix different memory spaces. An example is the
case where a display function is required to accept pointers to code for fixed message prompts and
pointers to xdata for messages put together by software during execution. If a message stored in code
space is passed to a display function that uses xdata space, the result is garbage.
In summary, by selecting a specific memory model and by the use of generic pointers and a modified
runtime library, it is possible for a programmer to use ANSI C to target an 8051 derivative, such as
Core8051s. To achieve better system performance and smaller code size, however, the user may utilize
language extensions specified by the C compiler.

C Header Files

reg51.h
A customized version of the reg51.h file is required when compiling C code for Core8051s. This contains
the following:"
/*--
reg51.h

Header file for Actel Core8051s microcontroller.
Copyright (c) Actel Corporation 2006.
All rights reserved.
--*/

#ifndef __REG51_H__
#define __REG51_H__

float 32

double 64

Table 5-12 • Size of Standard C data Types for 8051 Compilers

Core8051s v2.4 Handbook

Revision 2 49

/* BYTE Registers */
sfr SP = 0x81;
sfr DPL = 0x82;
sfr DPH = 0x83;
sfr DPL1 = 0x84;
sfr DPH1 = 0x85;
sfr ICON = 0x88;
sfr DPS = 0x92;
sfr XWB1 = 0x9A;
sfr XWB2 = 0x9B;
sfr XWB3 = 0x9C;
sfr XRB1 = 0x9D;
sfr XRB2 = 0x9E;
sfr XRB3 = 0x9F;
sfr IE = 0xA8;
sfr PSW = 0xD0;
sfr ACC = 0xE0;
sfr B = 0xF0;

/* BIT Register */
/* PSW */
sbit CY = 0xD7;
sbit AC = 0xD6;
sbit F0 = 0xD5;
sbit RS1 = 0xD4;
sbit RS0 = 0xD3;
sbit OV = 0xD2;
sbit P = 0xD0;

#endif
"

stdio.h
Core8051s requires a custom-designed stdio library, as it doesn't contain the serial channel normally
found in 8051-based microcontrollers.

Revision 2 51

6 – Instruction Timing

Program Memory Bus Cycle
The execution for instruction N is performed during the fetch of instruction N + 1. A program memory
fetch cycle without wait states is shown in Figure 6-1. A program memory fetch cycle with wait states is
shown in Figure 6-2 on page 52. A program memory read cycle without wait states is shown in Figure 6-3
on page 52. A program memory read cycle with wait states is shown in Figure 6-4 on page 53. Figure 6-1
through to Figure 6-12 on page 57 have been taken from the Core8051 Datasheet. The following
conventions are used in Figure 6-1 to Figure 6-14 on page 57.

Table 6-1 • Conventions Used in Figure 18 to Figure 31

Convention Description

Tclk Time period of clk signal

N Address of actually executed instruction

(N) Instruction fetched from address N

N+1 Address of next instruction

Addr Address of memory cell

Data Data read from address Addrl

read sample Point of reading the data from the bus into the internal register

write sample Point of writing the data from the bus into memory

ramcs Off-core signal is made on the base ramwe and clk signals

Figure 6-1 • Program Memory Fetch Cycle Without Wait States

0 ns 50 ns 150 ns 200 ns 250 ns 300 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

N N + 1 N + 2

memdatai

Read
Sample

(N) (N + 2)(N + 1)

Read
Sample

Read
Sample

Sample Sample Sample

http://www.actel.com/ipdocs/Core8051_DS.pdf

Instruction Timing

52 Revision 2

Figure 6-2 • Program Memory Fetch Cycle With Wait States

Figure 6-3 • Program Memory Read Cycle Without Wait States

0 ns 50 ns 150 ns 200 ns 250 ns 300 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

N N + 1 N + 2

Sample

memdatai

Read Sample Read Sample

(N) (N + 1)

Read Sample

Sample Sample Sample Sample

0 ns 50 ns 150 ns 200 ns 250 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

N N + 1 Addr

memdatai

Read
Sample

Read
Sample

(N) (N + 1)

Read
Sample

Sample Sample Sample

300 ns 350 ns

N + 1

Data

Core8051s v2.4 Handbook

Revision 2 53

External Data Memory Bus Cycle
Example bus cycles for external data memory access are shown in Figure 6-5 through Figure 6-12 on
page 57. Figure 6-5 on page 53 shows an external data memory read cycle without stretch cycles.

Figure 6-4 • Program Memory Read Cycle with Wait States

0 ns 50 ns 150 ns 200 ns 250 ns 300 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

N N + 1Addr

Sample

memdatai

Read Sample Read Sample

(N) (N + 1)

Read Sample

Sample Sample Sample Sample

350 ns

N + 1

Data

Sample

Figure 6-5 • External Data Memory Read Cycle Without Stretch Cycles

0 ns 50 ns 150 ns 200 ns 250 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N N + 1 N + 1

memdatai

Read
Sample

Read
Sample

(N) (N + 1)

Read
Sample

Max. 1 × Tclk

Addr

Data

Instruction Timing

54 Revision 2

Figure 6-6 • External Data Memory Read Cycle With One Stretch Cycle

Figure 6-7 • External Data Memory Read With Two Stretch Cycles

0 ns 50 ns 150 ns 200 ns 250 ns 300 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

mempswr

mempsack

memdatao

N N + 1 N + 1

Sample

memdatai

Read Sample Read Sample

(N) (N + 1)

Read Sample

Sample Sample Sample Sample

350 ns

Addr

Sample

Data

0 ns 50 ns 150 ns 200 ns 250 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N N + 1 N + 1

memdatai

Read
Sample

Read
Sample

(N) (N + 1)

Read
Sample

Max. 3 × Tclk

Addr

Data

Core8051s v2.4 Handbook

Revision 2 55

Figure 6-8 • External Data Memory Read Cycle With Seven Stretch Cycles

Figure 6-9 • External Data Memory Write Cycle Without Stretch Cycles

0 ns 100 ns 300 ns 400 ns200 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N + 1

memdatai

Max. 8 × Tclk

(N) (N + 1)

Addr

Data

N + 1N

Read
Sample

Read
Sample

Read
Sample

50 ns 150 ns 350 ns 450 ns250 ns

0 ns 50 ns 150 ns 200 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N + 1

memdatai

Read Sample

Write Sample

(N)

Addr

Data

250 ns

Read Sample

N + 1N

(N + 1)

Instruction Timing

56 Revision 2

Figure 6-10 • External Data Memory Write Cycle With One Stretch Cycle

Figure 6-11 • External Data Memory Write Cycle With Two Stretch Cycles

0 ns 50 ns 150 ns 200 ns 250 ns100 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N + 1

memdatai

Read Sample

Write Sample

(N) (N + 1)

Addr

Data

Read
Sample

N + 1N

0 ns 100 ns 300 ns200 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N + 1

memdatai

Read
Sample

Write Sample

(N) (N + 1)

Addr

Data

Read
Sample

N + 1

50 ns 150 ns 350 ns250 ns

Core8051s v2.4 Handbook

Revision 2 57

APB Bus Cycles
Example bus cycles for APB bus cycles are shown in Figure 6-13 and Figure 6-14.

Figure 6-12 • External Data Memory Write Cycle With Seven Stretch Cycles

0 ns 100 ns 300 ns 400 ns 500 ns200 ns

clk

memaddr

memrd

memwr

mempsrd

memdatao

N + 1

memdatai

Read
Sample

Write Sample

(N) (N + 1)

Addr

Data

Read
Sample

Figure 6-13 • APB Write Transfer Bus Cycle

Figure 6-14 • APB Read Transfer Bus Cycle

0 ns 50 ns 150 ns 200 ns 250 ns 300 ns100 ns 350 ns 400 ns

CLK0

PADDR

PWRITE

PSEL

PENABLE

PWDATA

Addr 1

Data 1

0 ns 50 ns 150 ns 200 ns 250 ns 300 ns100 ns 350 ns 400 ns

PCLK

PADDR

PWRITE

PSEL

PENABLE

PRDATA

Addr 1

Data 1

Revision 2 59

7 – List of Changes

List of Changes
The following table lists critical changes that were made in each revision of the handbook

Date Changes Page

August 2010 The core version was updated to v2.4 N/A

Type was changed from input to output for the MEMDATAO signal in Table 2-1 •
Core8051s Ports.

18

The "Optional Registers and Instructions" section was updated to state that the
behavior of the processor is undefined when attempting to execute a MUL, DIV or
DA instruction while the processor is not configured to include support for these
instructions.

22

The name of the Interrupt Enable register was changed from IEN to IE in Table 4-1 •
Core8051s SFR Registers, the "Interrupt Enable Register (ie)" section, and the
"Interrupts" section.

31, 33,
34

The "Interrupt Control Register (icon)" section was revised to state that the ICON
register implements a subset of the Timer Control (TCON) register.

33

In Table 5-8 • Core8051s Instruction Set in Hexadecimal Order, the opcode "A5H*"
was corrected. It had previously been listed as "ASH." The "B5H" opcode was
corrected from "BSH."
A footnote was added to the table stating that the A5H opcode is used as a trap
instruction for the implementation of software breakpoints.

41, 43

The "C Compiler Support" section was modified by adding the statement that the
Small Device C Compiler (SDCC) is bundled with Actel's SoftConsole software
development environment.

46

Revision 2 61

A – Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical
Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix
contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer
your hardware, software, and design questions. The Customer Technical Support Center spends a great
deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our
online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 a.m. to 6:00 p.m., Pacific Time,
Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

http://www.actel.com/support/search/default.aspx
http://www.actel.com

Product Support

62 Revision 2

The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name,
company name, phone number and your question, and then issues a case number. The Center then
forwards the information to a queue where the first available application engineer receives the data and
returns your call. The phone hours are from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday.
The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email
(tech@actel.com) or contact a local sales office. Sales office listings can be found on the website at
www.actel.com/company/contact/default.aspx.

mailto:tech@actel.com
http://www.actel.com/company/contact/default.aspx

Revision 2 63

Index

A
Actel

electronic mail 61
telephone 62
web-based technical support 61
website 61

C
C header files 48
contacting Actel

customer service 61
electronic mail 61
telephone 62
web-based technical support 61

customer service 61

E
external data memory space 30

G
generics 20

I
instruction definitions 45
instruction set 35
instruction timing 51
internal data memory space 31

M
microcontroller features 5

O
overview 15

P
parameters 20
port signals 17
ports 17
product support 62

customer service 61
electronic mail 61
technical support 61
telephone 62
website 61

program memory 29

S
SFR registers 31
software memory map 29

speed advantage summary 15

T
technical support 61

W
web-based technical support 61

50200084-2/9.10

Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.
River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan
EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com

Actel Hong Kong
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn

Actel is the leader in low power FPGAs and mixed signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.

© 2010 Actel Corporation. All rights reserved. Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are
trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

http://jp.actel.com
http://www.actel.com.cn
http://www.actel.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Microsemi:

 Core8051-AR

http://www.mouser.com/microsemi
http://www.mouser.com/access/?pn=Core8051-AR

	Introduction
	Utilization and Performance
	Debug Column
	Program Memory Access Control
	Data Memory Access Control
	Internal RAM
	Registers

	1 - Core8051s Overview
	2 - Supported Interfaces
	Ports
	Interface Descriptions
	Parameters / Generics

	3 - Tool Flows
	SmartDesign
	Debug Configuration
	Optional Registers and Instructions
	Program Memory Access
	External Data Memory Access
	Other Options

	Example System
	Simulation
	BFM-Based Simulation
	BFM-Script Language

	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	4 - Core8051s Features
	Software Memory Map
	Program Memory
	External Data Memory Space
	Internal Data Memory Space

	Interrupts
	OCI Block

	5 - Instruction Set
	Functional Ordered Instructions
	Hexadecimal Ordered Instructions
	Instruction Definitions
	C Compiler Support
	ANSI C Compliance
	Allocation of Variables in C
	Small Model
	Large Model
	Proprietary Extensions to C for 8051

	C Header Files
	reg51.h
	stdio.h

	6 - Instruction Timing
	Program Memory Bus Cycle
	External Data Memory Bus Cycle
	APB Bus Cycles

	7 - List of Changes
	List of Changes

	A - Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

