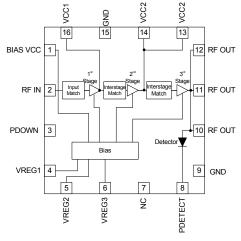


3.0V TO 5.0V, 2.3GHz TO 2.7GHz LINEAR POWER AMPLIFIER

Package Style: QFN, 16-Pin, 3mm x 3mm x 0.45mm


RF5605

Features

- 32dB to 34dB Small Signal Gain
- 2.5% EVM (RMS) at 27dBm, 5.0V
- 2.5% EVM (RMS) at 25.5dBm, 4.2V
- 2.5% EVM (RMS) at 24dBm, 3.3V
- Integrated Power Detector on Die
- Multiple Frequency Ranges
- High Impedance Control

Applications

- IEEE 802.11b/g/n WiFi Systems
- 2.4GHz ISM Band Applications
- Commercial and Consumer Systems
- WiBro 2.3GHz to 2.4GHz Band Applications
- WiFi 2.4GHz to 2.5GHz Band Applications
- WiMAX 2.5GHz to 2.7GHz Band Applications

Functional Block Diagram

Product Description

The RF5602 is a linear power amplifier IC designed specifically for medium power applications. The device is manufactured on an advanced InGaP Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in 802.11b/g/n access point transmitters. The device is provided in a 3mm x 3mm x 0.45mm, 16-pin, leadless chip carrier with a backside ground. The RF5602 is designed to maintain linearity over a wide range of supply voltages and power outputs.

Optimum	Technology	Matching®	Applied	

🗀 GaAs HBT	SiGe BiCMOS	GaAs pHEMT	GaN HEMT
GaAs MESFET	Si BiCMOS	Si CMOS	BiFET HBT
🗹 InGaP HBT	SiGe HBT	🗌 Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^w, PowerStar®, POLARIS^w TOTAL RADIO^w and UtimateBlue^{tw} are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG Inc. U.S.A. and licensed for use by RFMD. All other trade names trademarks and redistored trademarks are the property of their respective owners. ©2006 RF Micro Devices. Inc.

7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.

rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage, RF applied	-0.5 to +5.25	V _{DC}
Supply Voltage, no RF applied	-0.5 to +6.0	V _{DC}
DC Supply Current	800	mA
Input RF Power	+10*	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Moisture Sensitivity	MSL1	

*Maximum Input Power with a 50Ω load

→ Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Parameter	S	Specification		Unit	Condition	
Falameter	Min.	Typ. Max.		Unit	Condition	
WiFi IEEE 802.11b/g/n					Nominal Condition T = 25 °C, V_{CC} = 3.3V, 4.2V, and 5V, V_{REG} = 2.9V, Freq = 2450MHz, Duty Cycle 10 to 100% unless otherwise noted	
Frequency Range	2400		2500	MHz		
Compliance					IEEE 802.11g/n and IEEE 802.11b	
Output Power	26	27		dBm	With a standard IEEE 802.11g waveform (54Mbit/s), V_{CC} = 5.0V	
EVM		2.5	3	%	RMS, Mean (at 100% duty cycle over Full V _{REG} and fre- quency ranges)	
IEEE 802.11b P _{OUT}	28	28.5		dBm		
ACP1		-34	-30		using a standard IEEE 802.11b waveform at 1Mbps	
ACP2		-54	-50		using a standard IEEE 802.11b waveform at 1Mbps	
Output Power	25	25.5		dBm	With a standard IEEE 802.11g waveform (54Mbit/s), V_{CC} = 4.2V	
EVM		2.5	3	%	RMS, Mean (at 100% duty cycle over Full V_{REG} and frequency ranges)	
IEEE 802.11b POUT		27		dBm		
ACP1		-34	-30		using a standard IEEE 802.11b waveform at 1Mbps	
ACP2		-54	-50		using a standard IEEE 802.11b waveform at 1Mbps	
Output Power	23.5	24		dBm	With a standard IEEE 802.11g waveform (54Mbit/s), V _{CC} = $3.3V$	
EVM		2.5	3.5	%	RMS, Mean (at 100% duty cycle over Full V_{REG} and frequency ranges)	
IEEE 802.11b P _{OUT}		25.5		dBm		
ACP1		-34	-30		using a standard IEEE 802.11b waveform at 1Mbps	
ACP2		-54	-50		using a standard IEEE 802.11b waveform at 1Mbps	

rfmd.com

Deverter	Specification			Unit	Condition
Parameter	Min.	Тур.	Max.	Unit	Condition
WiFi IEEE 802.11b/g/n, cont.					Nominal Condition T = 25 °C, V _{CC} = 3.3V, 4.2V, and 5V, V _{REG} = 2.9V, Freq = 2450MHz, Duty Cycle 10 to 100% unless otherwise noted
Gain	31	34		dB	At nominal condition and V_{CC} = 5.0V (Over V_{REG} and Frequency)
	31	34		dB	At nominal condition and V_{CC} = 4.2V (Over V_{REG} and Frequency)
	31	34		dB	At nominal condition and V_{CC} = 3.3V (Over V_{REG} and Frequency)
Gain Variation over Temperature	-2		2	dB	-40°C to +85°C
Power Detector	+10		+29	dBm	Power detector usable range
Input Impedance		50		Ω	Input matched to 50Ω
Output P1dB		33		dBm	At nominal conditions with CW signal and V_{CC} = 5.0V
		32		dBm	At nominal conditions with CW signal and V_{CC} = 4.2V
		30.5		dBm	At nominal conditions with CW signal and $\rm V_{CC}$ = 3.3V
Power Down					
PA is "OFF"			0.6	V _{CC}	
PA is "ON"	1.75	2.9	5.0	V _{DC}	
Power Supply					
Operating Voltage		3 to 5		V	
Current Consumption		450	600	mA	RF P _{OUT} = +26dBm and V _{CC} = 5.0V (Over V _{REG} and frequency)
		175	225	mA	Idle current, No RF and V _{CC} = 5.0V (Over V _{REG} and frequency)
		400	475	mA	RF P _{OUT} = +25dBm and V _{CC} = 4.2V (Over V _{REG} and frequency)
		160	210	mA	Idle current, No RF and V _{CC} = 4.2V (Over V _{REG} and frequency)
		350	400	mA	RF P_{OUT} = +23.5dBm and V_{CC} = 3.3V (Over V_{REG} and frequency)
		150	180	mA	Idle current, No RF and V _{CC} = 3.3V (Over V _{REG} and frequency)
Power Down Current			10	mA	P_{DOWN} = Low, V_{REG} = High (I_{CC} + I_{BIAS} + I_{REG})
Leakage Current		0.2	1	mA	$V_{REG} = P_{DOWN} = 0V, V_{CC} = 3.3V, RF = OFF (I_{CC} + I_{BIAS} + I_{REG})$
V _{REG} Voltage (at Eval Board VREG pin)	2.8	2.9	3.0	VDC	Higher V_{REG} voltage is possible but with adjusting the series resistors to keep the voltage constant at VREG pin of Eval board at R1, R2 and R3
		5	10	mA	I_REG Current

rfmd.com

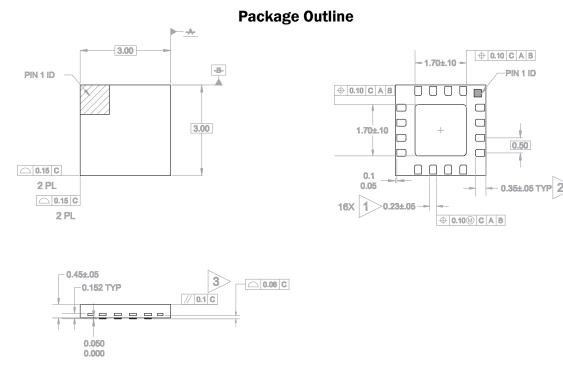
Deverseter	Specification			11	
Parameter	Min.	Тур.	Max.	Unit	Condition
WiMax IEEE 802.16e					Nominal Condition T = 25 °C, V_{CC} = 3.3V, 4.2V, 5V, V_{REG} = 2.9V, Freq = 2600MHz, Duty Cycle 1 to 100% unless otherwise noted
Frequency Range	2500		2700	MHz	
Compliance					IEEE 802.16e
Output Power	26	26.5		dBm	Measured standard IEEE 802.16e waveform (16QAM, 10MHz BW), V_{CC} = 5.0V
EVM		2.5	3	%	RMS, Mean
Output Power	25	25.5		dBm	Measured standard IEEE 802.16e waveform (16QAM, 10MHz BW), V_{CC} = 4.2V
EVM		2	3.0	%	RMS, Mean
Output Power	23.5	24		dBm	Measured standard IEEE 802.16e waveform (16QAM, 10MHz BW), V_{CC} = 3.3V
EVM		3	4	%	RMS, Mean
Gain	31	32		dB	At nominal condition and V_{CC} = 5.0V (Over V_{REG} and frequency)
	31	32		dB	At nominal condition and V_{CC} = 4.2V (Over V_{REG} and frequency)
	31	32		dB	At nominal condition and V_{CC} = 3.3V (Over V_{REG} and frequency)
Gain variation over temperature	-2		2	dB	-40°C to +85°C
Power Detector	+10		+29	dB	Power detector usable range
Low Gain Mode (Gain Reduction)		33		dB	At V _{CC} = 5.0V, V _{REG} 1 and 3 = 2.9V, V _{REG} 2 = Low, and Temp = 25 °C (In this mode, the gain of the power amplifier drops by 33dB typical from its orig- inal gain)
Input Impedance		50		Ω	Input matched to 50Ω
Output P1dB		33		dBm	At nominal conditions with CW Signal and V_{CC} = 5.0V
		32		dBm	At nominal conditions with CW Signal and V_{CC} = 4.2V
		30.5		dBm	At nominal conditions with CW Signal and $V_{CC} = 3.3V$
Power Down					
PA is "OFF"			0.6	V _{CC}	
PA is "ON"	1.75	2.9	5.0	V _{DC}	
Power Supply					
Operating Voltage		3 to 5		V	
Current Consumption		500	600	mA	RF P_{OUT} = +26dBm and V_{CC} = 5.0V (Over V_{REG} and frequency)
		175	225	mA	Idle current, No RF and V_{CC} = 5.0V (Over V_{REG} and fre- quency)
		400	475	mA	RF P _{OUT} = +25dBm and V _{CC} = 4.2V (Over V _{REG} and frequency)
		160	210	mA	Idle current, No RF and V_{CC} = 4.2V (Over V_{REG} and frequency)
		350	400	mA	RF P _{OUT} = +23.5dBm and V _{CC} = 3.3V (Over V _{REG} and frequency)
		150	180	mA	Idle current, No RF and V _{CC} = 3.3V (Over V _{REG} and frequency)

rfmd.com

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Typ. Max.		Condition	
Power Supply, cont.						
Power Down Current			10	mA	P_{DOWN} = Low, V_{REG} = High (I_{CC} + I_{BIAS} + I_{REG})	
Leakage Current		0.2	1	mA	$V_{REG} = P_{DOWN} = 0V, V_{CC} = 3.3V, RF = OFF (I_{CC} + I_{BIAS} + I_{REG})$	
VREG1, 2, 3 Voltage	2.8	2.9	3.0	V _{DC}	Higher V_{REG} voltage is possible but with adjusting the series resistors to keep the voltage constant at the pins.	
		5	10	mA	I_REG Current	
WiBro IEEE 802.16e					Nominal Condition T = 25 °C, V_{CC} = 3.3V, 4.2V, 5.0V, V_{REG} = 2.9V, Freq = 2350MHz, Duty Cycle 1 to 100% unless otherwise noted	
Frequency Range	2300		2400	MHz		
Compliance					IEEE 802.16e	
Output Power	26	26.5		dBm	Measured standard IEEE 802.16e waveform (16QAM, 10MHz BW), $V_{\rm CC}$ = 5.0V	
EVM		2	3	%	RMS, Mean (Over V _{REG} and frequency)	
Output Power	25	25.5		dBm	Measured standard IEEE 802.16e waveform (16QAM, 10MHz BW), V_{CC} = 4.2V	
EVM		2	3	%	RMS, Mean (Over V _{REG} and frequency)	
Output Power	23.5	24		dBm	Measured standard IEEE 802.16e waveform (16QAM, 10MHz BW), V_{CC} = 3.3V	
EVM		3	4	%	RMS, Mean (Over V _{REG} and frequency)	
Gain	32	34		dB	At nominal condition and $V_{CC} = 5.0V$	
	32	34		dB	At nominal condition and $V_{CC} = 4.2V$	
	32	34		dB	At nominal condition and $V_{CC} = 3.3V$	
Gain variation over temperature	-2		2	±dB	-40°C to +85°C	
Power Detector	+10		+29		Power detector usable range	
Low Gain Mode (Gain Reduction)		33		dB	At $V_{CC} = 5.0V$, V_{REG} 1 and 3 = 2.9V, V_{REG} 2 = Low, and Temp = 25 °C (In this mode, the gain of the power amplifier drops by 33dB typical from its orig- inal gain)	
Input Impedance		50		Ω	Input matched to 50Ω	
Output P1dB		33		dBm	At nominal conditions with CW Signal and V _{CC} = $5.0V$	
		32		dBm	At nominal conditions with CW Signal and V_{CC} = 4.2V	
		30.5		dBm	At nominal conditions with CW Signal and V_{CC} = 3.3V	
Power Down						
PA is OFF			0.6	V _{CC}		
PA is ON	1.75	2.9	5.0	V _{DC}		

RFMD	- ›)))) [®]
rfmd.com	

Baramatar	Specification			11	Condition
Parameter	Min. Typ.		Max.	Unit	Condition
Power Supply					
Operating Voltage		3 to 5		V	
Current Consumption		410	600	mA	RF P _{OUT} = +26dBm and V _{CC} = 5.0V (Over V _{REG} and frequency)
		175	225	mA	Idle Current, No RF and V_{CC} = 5.0V (Over V_{REG} and frequency)
		400	475	mA	RF P _{OUT} = +25dBm and V _{CC} = 4.2V (Over V _{REG} and frequency)
		160	210	mA	Idle Current, No RF and V _{CC} = 4.2V (Over V _{REG} and frequency)
		350	400	mA	RF P _{OUT} = +23.5dBm and V _{CC} = 3.3V (Over V _{REG} and frequency)
		150	180	mA	Idle Current, No RF and V_{CC} = 3.3V (Over V_{REG} and frequency)
Power Down Current			10	mA	P_{DOWN} = Low, V_{REG} = High (I_{CC} + I_{BIAS} + I_{REG})
Leakage Current		0.2	1	mA	$V_{REG} = P_{DOWN} = OV, V_{CC} = 3.3V, RF = OFF (I_{CC} + I_{BIAS} + I_{REG})$
V _{REG} Voltage (at Eval Board VREG pin)	2.8	2.9	3	V _{DC}	Higher V _{REG} voltage is possible but with adjusting the series resistors to keep the voltage constant at VREG pin of the Eval board at R1, R2 and R3
		5	10	mA	I_REG Current
Thermal Data					
Maximum Junction Temperature for long term reliability, Tj Max		150		°C	$\label{eq:POUT} \begin{array}{l} P_{OUT} = 26 \text{dBm}, \text{Using a standard IEEE802.11g waveform, 54Mbps, 64QAM Duty Cycle = 100%, V_{CC} = 5VDc, \\ V_{REG} = 2.85 \text{VDc}. \ T_{REF} = 85^\circ\text{C} \end{array}$
Thermal Resistance, Øjc		22		°C/W	$\label{eq:POUT} \begin{array}{l} P_{OUT} = 26 \text{dBm}, \text{Using a standard IEEE802.11g wave-}\\ \text{form, 54Mbps, 64QAM Duty Cycle} = 100\%, \text{V}_{\text{CC}} = 5 \text{VDc},\\ \text{V}_{\text{REG}} = 2.85 \text{VDc}, \text{Junction to bottom of QFN package.}\\ \text{T}_{\text{REF}} = 85^{\circ}\text{C} \end{array}$
Thermal Resistance, Øj-Ref		28		°C/W	$\label{eq:POUT} \begin{array}{l} P_{OUT} = 26 \text{dBm}, \text{Using a standard IEEE802.11g wave-}\\ \text{form, 54Mbps, 64QAM Duty Cycle} = 100\%, \text{V}_{CC} = 5 \text{VDc}, \\ \text{V}_{REG} = 2.85 \text{VDc}, \text{Junction to bottom of PCB. T}_{REF} = 85 ^{\circ} \text{C} \end{array}$
ESD					
Human Body Model	500			V	
Charge Device Model	750			V	



rfmd.com

RF5602

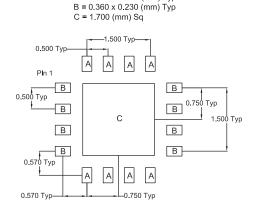
Pin	Function	Description
1	BIAS VCC	Supply voltage for the bias reference and control circuits. May be connected with VCC1 and VCC2 as long as V_{CC} does not exceed $5.0V_{DC}$ in this configuration.
2	RF IN	RF input.
3	PDOWN	Power down pin. Apply <0.6V _{DC} to power down the three power amplifier stages. Apply 1.75V _{DC} to $5.0V_{DC}$ to power up. If function is not desired, pin may be connected to V _{REG} .
4	VREG1	First stage input bias voltage. This pin requires a regulated supply to maintain nominal bias current.
5	VREG2	Second stage input bias voltage. This pin requires a regulated supply to maintain nominal bias current.
6	VREG3	Third stage input bias voltage. This pin requires a regulated supply to maintain nominal bias current.
7	NC	Not connected. May be connected to ground.
8	P DETECT	Power detector provides an output voltage proportional to the RF output power level.
9	NC	Not connected. May be connected to ground.
10	VCC3/	RF output and bias for the output stage. Output is externally matched to 50Ω and needs DC block.
	RF OUT	
11	VCC3/	Same as pin 10.
	RF OUT	
12	VCC3/	Same as pin 10.
	RF OUT	
13	VCC2	Second stage supply voltage.
14	VCC2	Same as pin 13.
15	NC	Not connected. May be connected to ground.
16	VCC1	First stage supply voltage.
Pkg	GND	Ground connection. The back side of the package should be connected to the ground plane through as short a
Base		connection as possible, e.g., PCB vias under the device are recommended.

Notes:

- 1. Dimension applies to metallized terminal and is measured between 0.25mm and 0.30mm from terminal tip.
- 2. Dimension represents terminal pull back from package edge up to 0.1mm is acceptable.
- 3. Complanarity applies to the exposed heat slug, as well as the terminal.
- 4. Radius on terminal is optional.

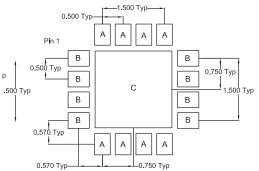
PCB Design Requirements

PCB Surface Finish

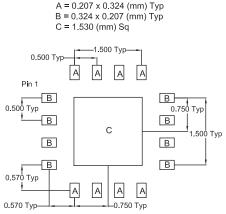

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3 microinch to 8 micro-inch gold over 180 micro-inch nickel.

PCB Land Pattern Recommendation *

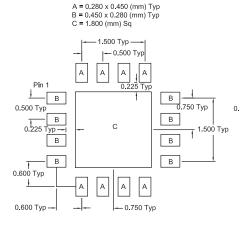
PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.


A = 0.230 x 0.360 (mm) Typ

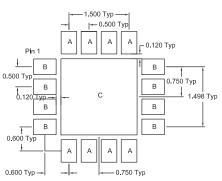
PCB Metal Land Pattern


PCB Solder Mask Pattern

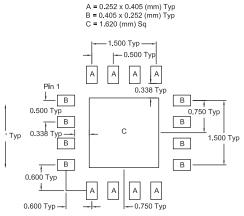
PCB Stencil Pattern

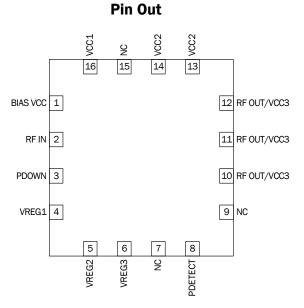

Note: Thermal vias for center slug "C" should be incoporated into the PCB design. The number and size of thermal vias will depend on the application. Example of the number and size of vias can be found on the RFMD evaluation board layout.

Note: If it is desired to build the same PCB to accommodate the RF5602 as well as the RF5623/RF5603 use the following PCB Patterns.


PCB Design Requirements

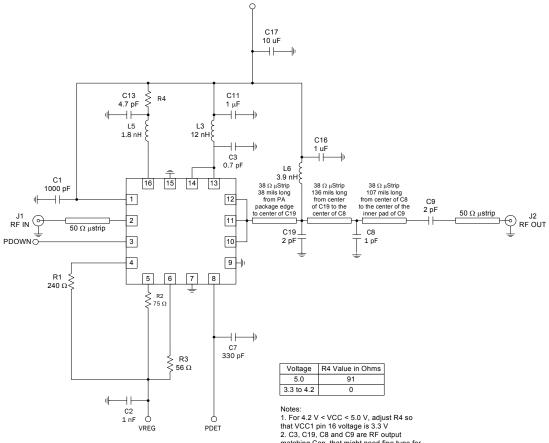
PCB Metal Land Pattern


PCB Solder Mask Pattern



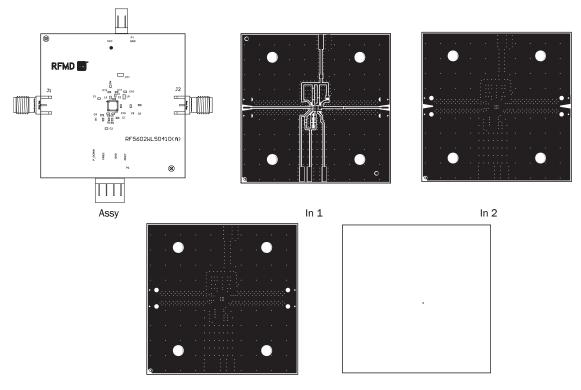
PCB Stencil Pattern

Note: Thermal vias for center slug "C" should be incoporated into the PCB design. The number and size of thermal vias will depend on the application. Example of the number and size of vias can be found on the RFMD evaluation board layout.



Evaluation Board Schematic

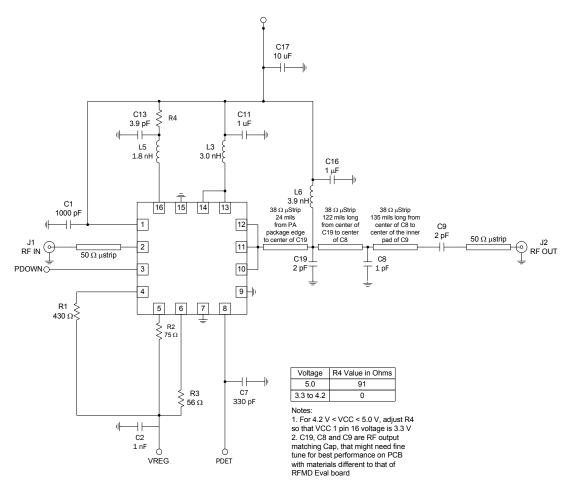
WiFi 2.4GHz to 2.5GHz Operation



that VCC1 pin 16 voltage is 3.3 V 2. C3, C19, C8 and C9 are RF output matching Cap, that might need fine tune for best performance on PCB with materials different to that of RFMD Eval board

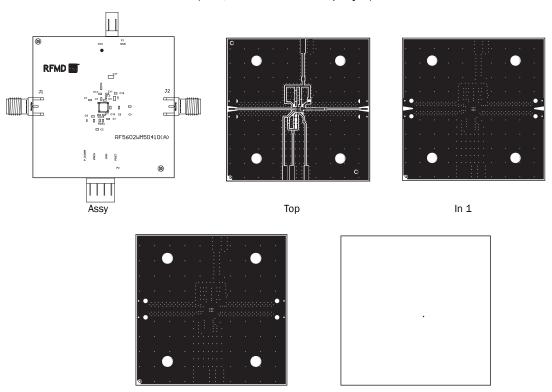
Evaluation Board Layout

WiFi 2.4GHz to 2.5GHz Operation (FR4, 8mils thickness top layer)


In 2

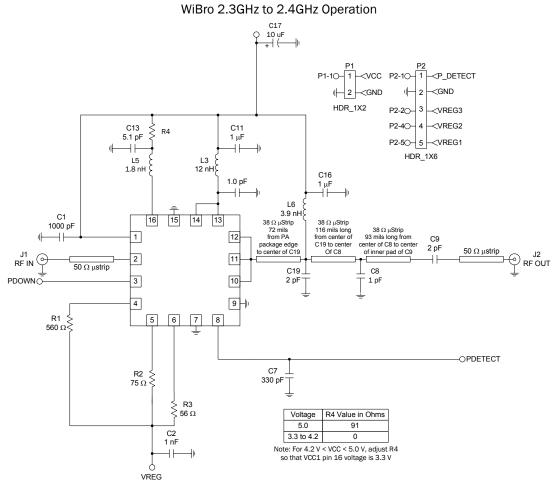
Back

Evaluation Board Schematic


WiMAX 2.5GHz to 2.7GHz Operation

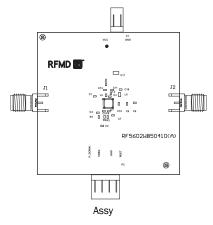
Evaluation Board Layout

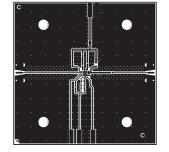
WiMAX 2.5GHz to 2.7GHz Operation (FR4, 8mils thickness top layer)

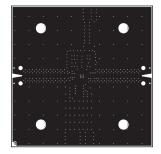


In 2

Back

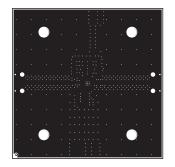

Evaluation Board Schematic

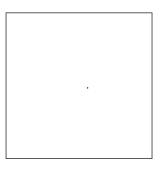




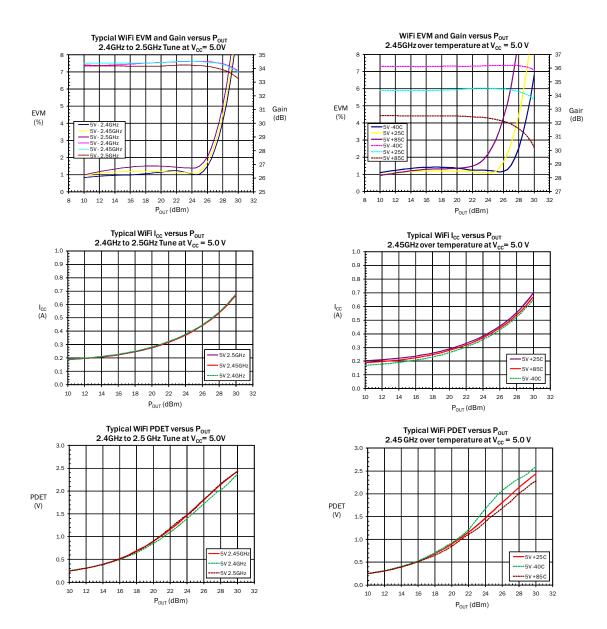
Evaluation Board Layout

WiBro 2.3GHz to 2.4GHz Operation (FR4, 8mils thickness

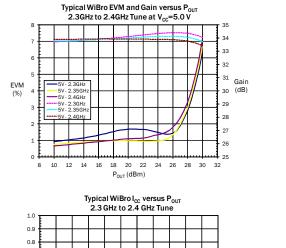


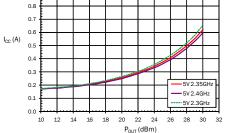


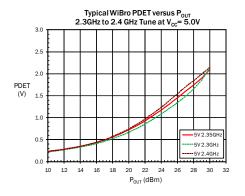
Тор

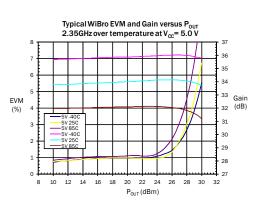


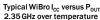
In 2

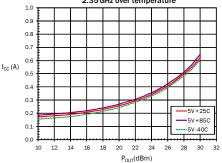

Back

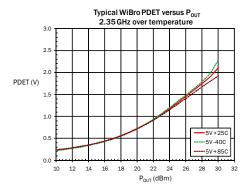


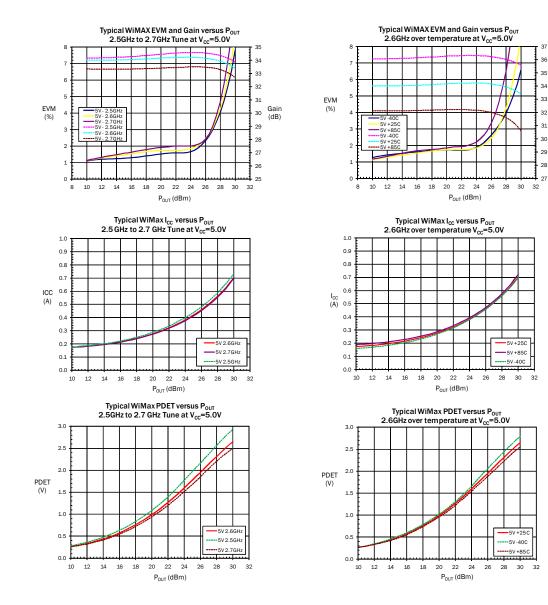


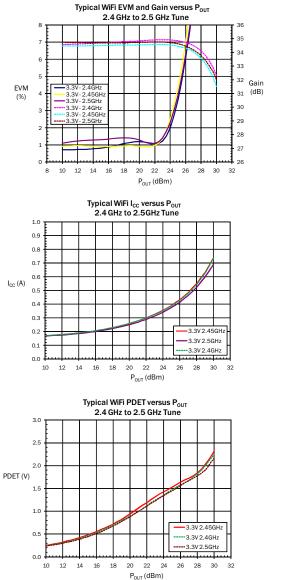

20 of 27

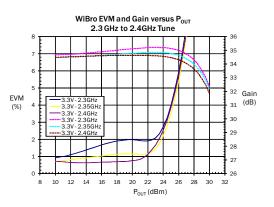




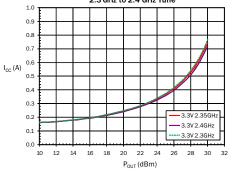


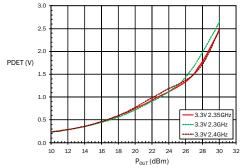


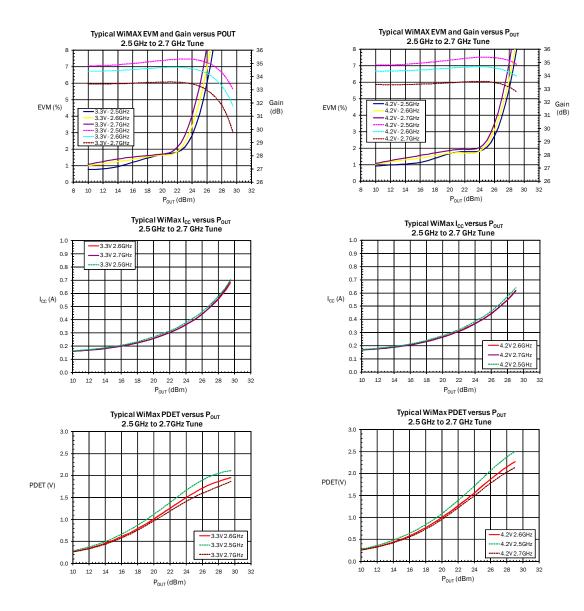


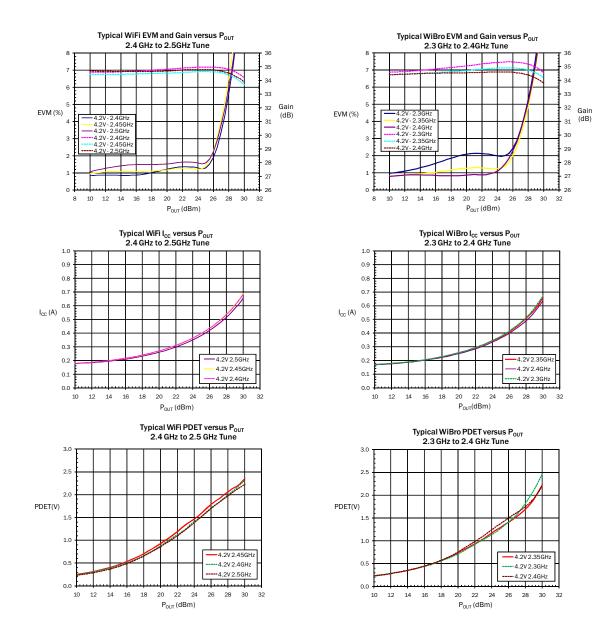

Gain

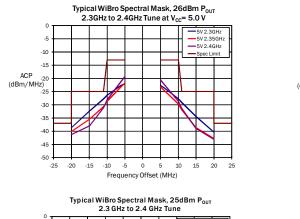
(dB)

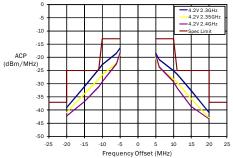


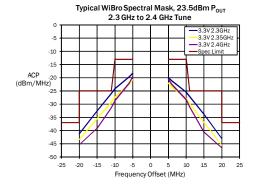


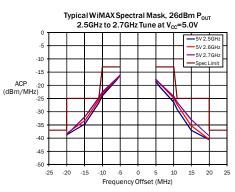


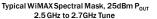


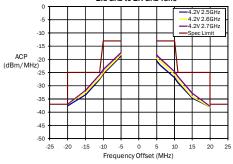


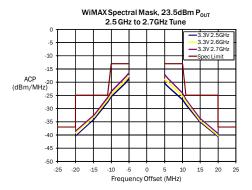












Ordering Information

Part Number	Description
RF5602	Standard 25 piece bag
RF5602SR	Standard 100 piece reel
RF5602TR7	Standard 2500 piece reel
RF5602WM50PCK-410	Fully assembled RF5602WM50410 5.0 volts tune PCBA and 5 loose pcs for WiMAX tune 2.5GHz to 2.7GHz
RF5602WM33PCK-410	Fully assembled RF5602WM33410 3.3 volts tune PCBA and 5 loose pcs for WiMAX tune 2.5GHz to 2.7GHz
RF5602WL50PCK-410	Fully assembled RF5602WL50410 5.0 volts tune PCBA and 5 loose pcs for WiFi tune 2.4GHz to 2.5GHz
RF5602WL33PCK-410	Fully assembled RF5602WL33410 3.3 volts tune PCBA and 5 loose pcs for WiFi tune 2.4GHz to 2.5GHz
RF5602WB50PCK-410	Fully assembled RF5602WB50410 5.0 volts tune PCBA and 5 loose pcs for WiBro tune 2.3GHz to 2.4GHz
RF5602WB33PCK-410	Fully assembled RF5602WB33410 3.3 volts tune PCBA and 5 loose pcs for WiBro tune 2.3GHz to 2.4GHz
RF5602HWBPCK-410	Fully assembled balanced evaluation board with 5 loose samples tuned for 2.3 to 2.4GHz
RF5602HWLPCK-410	Fully assembled balanced evaluation board with 5 loose samples tuned for 2.4 to 2.5GHz
RF5602HWMPCK-410	Fully assembled balanced evaluation board with 5 loose samples tuned for 2.5 to 2.7GHz

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo: <u>RF5602</u> <u>RF5602TR7</u>