

TLC5916-Q1, TLC5917-Q1

SLVS814A - JANUARY 2008 - REVISED MAY 2015

TLC591x-Q1 8-Bit Constant-Current LED Sink Drivers

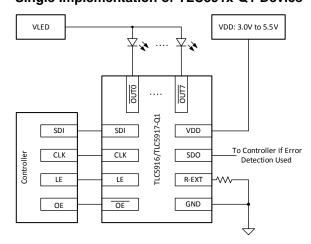
Features

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level 1C
 - Device CDM ESD Classification Level C4
- **Eight Constant-Current Output Channels**
- Output Current Adjusted Through External Resistor
- Constant Output Current Range: 5 mA to 120 mA
- Constant Output Current Invariant to Load Voltage Change
- Open Load, Short Load, and Overtemperature Detection
- 256-Step Programmable Global Current Gain
- **Excellent Output Current Accuracy:**
 - Between Channels: < ±3% (Maximum)
 - Between ICs: < ±6% (Maximum)
- Fast Response of Output Current
- 30-MHz Clock Frequency
- Schmitt Trigger Input
- 3.3-V or 5-V Supply Voltage
- Thermal Shutdown for Overtemperature Protection

2 Applications

- General LED Lighting Applications
- LED Display Systems
- LED Signage
- Automotive LED Lighting
- White Goods
- Gaming Machines and Entertainment

Description


The TLC591x-Q1 Constant-Current LED Sink Drivers is designed to work alone or cascaded. Because each output is independently controlled, they can be programmed to be on or off by the user. The high LED voltage (VLED) allows for the use of one LED per output or multiple LEDs on a single string. With independently controlled outputs supplied constant current, the LEDs can be combined in parallel to create higher currents on a single string. The constant sink current for all channels is set through a single external resistor. This allows different LED drivers in the same application to sink various currents which provides optional implementation of multicolor LEDs. An additional advantage of the independent outputs is the ability to leave unused channels floating. The flexibility of the TLC591x-Q1 LED driver is ideal for applications such as (but not limited to): automotive LED lighting, 7segment displays, scrolling single-color displays, gaming machines, white goods, video billboards, and video panels.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TLC591x-Q1	SOIC (16)	9.90 mm × 3.91 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Single Implementation of TLC591x-Q1 Device

Table of Contents

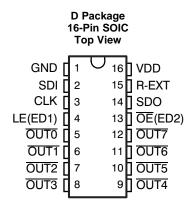
1 2 3	Features 1 Applications 1 Description 1		9.1 Overview	1
4 5 6	Revision History 2 Device Comparison Table 3 Pin Configuration and Functions 3		9.4 Device Functional Modes	2
7	Specifications 4 7.1 Absolute Maximum Ratings 4 7.2 ESD Ratings 4 7.3 Recommended Operating Conditions 4 7.4 Thermal Information 5 7.5 Electrical Characteristics: VDD = 3 V 6 7.6 Electrical Characteristics: VDD = 5.5 V 7	12	10.2 Typical Applications Power Supply Recommendations Layout 12.1 Layout Guidelines 12.2 Layout Example Device and Documentation Support	28 28 28
8 9	7.6 Electrical Characteristics: VDD = 5.5 V 7 7.7 Timing Requirements 8 7.8 Switching Characteristics: VDD = 3 V 9 7.9 Switching Characteristics: VDD = 5.5 V 10 7.10 Typical Characteristics 11 Parameter Measurement Information 12 Detailed Description 15	14	13.1 Related Links	2 ¹

4 Revision History

Changes from Original (January 2008) to Revision A

Page

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and



5 Device Comparison Table

DEVICE ⁽¹⁾ OVERTEMPERATURE DETECTION		OPEN-LOAD DETECTION	SHORT TO GND DETECTION	SHORT TO V _{LED} DETECTION
TLC5916-Q1	X	Χ	X	
TLC5917-Q1	X	X	X	X

(1) The device has one error register for all these conditions (1 error bit per channel).

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
CLK	3	I	Clock input for data shift on rising edge
GND	1	_	Ground for control logic and current sink
LE(ED1)	4	I	Data strobe input. Serial data is transferred to the respective latch when LE(ED1) is high. The data is latched when LE(ED1) goes low. Also, LE(ED1) is a control signal input for an Error Detection mode and Current Adjust mode (See Timing Diagram). LE(ED1) has an internal pulldown.
ŌE(ED2)	13	I	Output enable. When $\overline{\text{OE}}(\text{ED2})$ is active (low), the output drivers are enabled; when $\overline{\text{OE}}(\text{ED2})$ is high, all output drivers are turned OFF (blanked). Also, $\overline{\text{OE}}(\text{ED2})$ is a control signal input for an Error Detection mode and Current Adjust mode (See Timing Diagram). $\overline{\text{OE}}(\text{ED2})$ has an internal pullup.
OUT0 to	5 to 12	0	Constant-current outputs
R-EXT	15	I	Input used to connect an external resistor for setting up all output currents
SDI	2	I	Serial-data input to the Shift register
SDO	14	0	Serial-data output to the following SDI of next driver IC or to the microcontroller
VDD	16	1	Supply voltage

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
$V_{DD}^{(2)}$	Supply voltage	0	7	V
V _I ⁽³⁾	Input voltage	-0.4	$V_{DD} + 0.4$	V
$V_{O}^{(4)}$	Output voltage	-0.5	20	V
f _{clk}	Clock frequency		25	MHz
I _{OUT}	Output current		120	mA
I_{GND}	GND terminal current		960	mA
T _A	Operating free-air temperature	-40	125	°C
T_{J}	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), per AEC Q100-002 ⁽¹⁾		±1500	
	Charged device model (CDM), per AEC Q100-011 Machine Model	Charged device model (CDM) nor	Other pins	±1000	
V _(ESD)		Corner pins (GND, OUT3, VDD, and OUT4)	±1000	V	
		Machine Model		±150	

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

				MIN	NOM	MAX	UNIT
V_{DD}	Supply voltage			3		5.5	V
Vo	Supply voltage to output pins	OUT0-OUT7				17	V
	I _O Output current DC test circuit	V _O ≥ 0.6 V	5			A	
IO		DC test circuit	V _O ≥ 1 V			120	mA
I _{OH}	High-level output current source	SDO shorted to GN	ND	-1			mA
I _{OL}	Low-level output current sink	SDO shorted to V _C	С	1			mA
V _{IH}	High-level input voltage	CLK, OE(ED2), LE	CLK, OE(ED2), LE(ED1), and SDI			V_{DD}	V
V _{IL}	Low-level input voltage	CLK, OE(ED2), LE	(ED1), and SDI	0		0.3 x V _{DD}	V

⁽²⁾ All voltages are with respect to GND.

⁽³⁾ Absolute negative voltage on these terminals must not go below 0 V.

⁽⁴⁾ Absolute maximum voltage is 7 V for 200 ms.

7.4 Thermal Information

		TLC591x-Q1	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	86.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	47.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	43.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	11.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	43.7	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: VDD = 3 V

 $V_{DD} = 3 \text{ V}, T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{DD}	Input voltage			3		5.5	V
Vo	Supply voltage to the output pins					17	V
	Outrat summer	V _O ≥ 0.6 V		5			Λ
l _O	Output current	V _O ≥ 1 V				120	mA
I _{OH}	High-level output current, source			-1			mA
l _{OL}	Low-level output current, sink			1			mA
V_{IH}	High-level input voltage			$0.7 \times V_{DD}$		V_{DD}	V
V_{IL}	Low-level input voltage			GND		$0.3 \times V_{DD}$	V
I _{leak}	Output leakage current	V _{OH} = 17 V	$T_J = 25^{\circ}C$			0.5	μΑ
V	High lovel output voltage	SDO 1 1 mA	T _J = 125°C	V 0.4		2	V
V _{OH}	High-level output voltage	SDO, $I_{OL} = -1 \text{ mA}$		$V_{DD} - 0.4$		0.4	V
V _{OL}	Coutput current 1	SDO, $I_{OH} = 1 \text{ mA}$ $V_{OUT} = 0.6 \text{ V}, R_{ext}$ CG = 0.992	= 720 Ω,		26	0.4	mA
I _{O(1)}	Output current error, die-die		0.6 V, $R_{ext} = 720 \Omega$,		±3%	±6%	
	Output current skew, channel-to-channel	3	0.6 V, $R_{ext} = 720 \Omega$,		±1.5%	±3%	
	Output current 2	V _O = 0.8 V, R _{ext} =	360 Ω, CG = 0.992		52		mA
I _{O(2)}	Output current error, die-die		0.8 V, $R_{ext} = 360 \Omega$,		±2%	±6%	
	Output current skew, channel-to-channel	$I_{OL} = 52 \text{ mA}, V_{O} = T_{J} = 25^{\circ}\text{C}$	0.8 V, $R_{ext} = 360 \Omega$,		±1.5%	±3%	
_	6	$V_0 = 1 \text{ V to 3 V, I}$	_O = 26 mA		±0.1		
I _{OUT} vs V _{OUT}	Output current vs output voltage regulation	$V_{DD} = 3 \text{ V to } 5.5 \text{ V}$ $I_{O} = 26 \text{ mA/} 120 \text{ m}$			±1		%/V
	Pullup resistance	OE(ED2)			500		kΩ
	Pulldown resistance	LE(ED1)			500		kΩ
T _{sd}	Overtemperature shutdown ⁽²⁾			150	175	200	°C
T _{hys}	Restart temperature hysteresis				15		°C
I _{OUT,Th1}	Threshold current for open error detection	I _{OUT,target} = 26 mA			0.5 × I _{target} %		
I _{OUT,Th2}	Threshold current for open error detection	I _{OUT,target} = 52 mA			0.5 × I _{target} %		
I _{OUT,Th3}	Threshold current for open error detection	I _{OUT,target} = 104 m.	A		0.5 × I _{target} %		
$I_{OUT,Th}$	Threshold current for open error detection	I _{OUT,target} = 5 mA t	o 120 mA		0.5 × I _{target} %		
$V_{OUT,TTh}$	Trigger threshold voltage for short-error detection (TLC5917-Q1 only)	I _{OUT,target} = 5 mA t	o 120 mA	2.44	2.7	3.1	V
$V_{OUT,RTh}$	Return threshold voltage for short-error detection (TLC5917-Q1 only)	I _{OUT,target} = 5 mA t	o 120 mA	2.2			V
		R _{ext} = Open			5	10	
	Cupply ourrent	$R_{ext} = 720 \Omega$			8	14	Λ
I _{DD}	Supply current	$R_{\text{ext}} = 360 \ \Omega$			11	18	mA
		R _{ext} = 180 Ω			16	22	

Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material.

(2) Specified by design

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

7.6 Electrical Characteristics: VDD = 5.5 V

 $V_{DD} = 5.5 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{DD}	Input Voltage			3		5.5	V
Vo	Supply voltage to the output pins					17	V
Io	Output current	$V_O \ge 0.6 \text{ V}$ $V_O \ge 1 \text{ V}$		5		120	mA
I _{OH}	High-level output current, source			-1			mA
l _{OL}	Low-level output current, sink			1			mA
V _{IH}	High-level input voltage			$0.7 \times V_{DD}$		V_{DD}	V
V _{IL}	Low-level input voltage			GND		0.3 × V _{DD}	V
I _{leak}	Output leakage current	V _{OH} = 17 V	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			0.5	μΑ
V _{OH}	High-level output voltage	SDO, I _{OL} = -1 mA	-	V _{DD} – 0.4		_	V
V _{OL}	Low-level output voltage	SDO, I _{OH} = 1 mA		- DD - 0.1.		0.4	V
· OL	Output current 1	$V_{OUT} = 0.6 \text{ V}, R_{ext}$ $CG = 0.992$	= 720 Ω,		26	0.1	mA
I _{O(1)}	Output current error, die-die	I _{OL} = 26 mA, V _O = T _J = 25°C	0.6 V, $R_{ext} = 720 \Omega$,		±3%	±6%	
	Output current skew, channel-to-channel	$I_{OL} = 26 \text{ mA}, V_{O} = T_{J} = 25^{\circ}\text{C}$	0.6 V, $R_{ext} = 720 \Omega$,		±1.5%	±3%	
	Output current 2	$V_0 = 0.8 \text{ V}, R_{ext} =$	360 Ω, CG = 0.992		52		mA
I _{O(2)}	Output current error, die-die	$\begin{split} I_{OL} &= 52 \text{ mA}, \text{ V}_{O} = 0.8 \text{ V}, \text{ R}_{ext} = 360 \Omega, \\ T_{J} &= 25^{\circ}\text{C} \end{split}$			±2%	±6%	
	Output current skew, channel-to-channel	$I_{OL} = 52 \text{ mA}, V_{O} = T_{J} = 25^{\circ}\text{C}$	0.8 V, $R_{ext} = 360 \Omega$,		±1.5%	±3%	
1 10	Output ourrent vo	$V_O = 1 V \text{ to } 3 V$, I	_O = 26 mA		±0.1		
I _{OUT} vs V _{OUT}	Output current vs output voltage regulation	$V_{DD} = 3 \text{ V to } 5.5 \text{ V}$ $I_{O} = 26 \text{ mA}/120 \text{ m}$	Ϋ́, A		±1		%/V
	Pullup resistance	OE(ED2),			500		kΩ
	Pulldown resistance	LE(ED1),			500		kΩ
T _{sd}	Overtemperature shutdown (2)			150	175	200	°C
T _{hys}	Restart temperature hysteresis				15		°C
I _{OUT,Th1}	Threshold current for open error detection	I _{OUT,target} = 26 mA			0.5 × I _{target} %		
I _{OUT,Th2}	Threshold current for open error detection	I _{OUT,target} = 52 mA			0.5 × I _{target} %		
I _{OUT,Th3}	Threshold current for open error detection	I _{OUT,target} = 104 m	A		0.5 × I _{target} %		
I _{OUT,Th}	Threshold current for open error detection	I _{OUT,target} = 5 mA t	o 120 mA		0.5 × I _{target} %		
$V_{OUT,TTh}$	Trigger threshold voltage for short-error detection (TLC5917- Q1 only)	I _{OUT,target} = 5 mA t	o 120 mA	2.44	2.7	3.1	V
$V_{OUT,RTh}$	Return threshold voltage for short-error detection (TLC5917-Q1 only)	I _{OUT,target} = 5 mA t	o 120 mA	2.2			V
		R _{ext} = Open			6	10	
	Supply current	$R_{ext} = 720 \Omega$			11	14	m ^
I _{DD}	Supply current	$R_{ext} = 360 \Omega$			13	18	mA
		$R_{ext} = 180 \Omega$			19	24	

⁽¹⁾ Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material.

⁽²⁾ Specified by design

7.7 Timing Requirements

 V_{DD} = 3 V to 5.5 V (unless otherwise noted)

			MIN	NOM MAX	UNIT
t _{w(L)}	LE(ED1) pulse duration	Normal mode	20		ns
t _{w(CLK)}	CLK pulse duration	Normal mode	20		ns
4	OF(FDO) mules direction	Normal mode, I _{OUT} < 60 mA	675		
t _{w(OE)}	()E(EL)2) pulse duration	Normal mode, I _{OUT} > 60 mA	800		ns
t _{su(D)}	Setup time for SDI	Normal mode	3		ns
t _{h(D)}	Hold time for SDI	Normal mode	2		ns
t _{su(L)}	Setup time for LE(ED1)	Normal mode	15		ns
t _{h(L)}	Hold time for LE(ED1)	Normal mode	15		ns
t _{w(CLK)}	CLK pulse duration	Error Detection mode	20		ns
t _{w(ED2)}	OE(ED2) pulse duration	Error Detection mode	2000		ns
t _{su(ED1)}	Setup time for LE(ED1)	Error Detection mode	4		ns
t _{h(ED1)}	Hold time for LE(ED1)	Error Detection mode	10		ns
t _{su(ED2)}	Setup time for OE(ED2)	Error Detection mode	8.5		ns
t _{h(ED2)}	Hold time for $\overline{OE}(ED2)$	Error Detection mode	10		ns
f _{CLK}	Clock frequency	Cascade operation		30	MHz

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

7.8 Switching Characteristics: VDD = 3 V

 $V_{DD} = 3 \text{ V}, T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH1}	Low-to-high propagation delay time, CLK to OUTn		40	65	95	ns
t _{PLH2}	Low-to-high propagation delay time, LE(ED1) to OUTn		40	65	95	ns
t _{PLH3}	Low-to-high propagation delay time, OE(ED2) to OUTn	-	40	65	95	ns
t _{PLH4}	Low-to-high propagation delay time, CLK to SDO		12	20	30	ns
t _{PHL1}	High-to-low propagation delay time, CLK to OUTn			300	365	ns
t _{PHL2}	High-to-low propagation delay time, LE(ED1) to OUTn			300	365	ns
t _{PHL3}	High-to-low propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to $\overline{\text{OUTn}}$			300	365	ns
t _{PHL4}	High-to-low propagation delay time, CLK to SDO		12	20	30	ns
t _{w(CLK)}	Pulse duration, CLK		20			ns
t _{w(L)}	Pulse duration, LE(ED1)		20			ns
t _{w(OE)}	Pulse duration, OE(ED2)	V - V V - CND	500			ns
t _{w(ED2)}	Pulse duration, OE(ED2) in Error Detection mode	$V_{IH} = V_{DD}, V_{IL} = GND,$ $R_{ext} = 360 \Omega, V_{L} = 4 V,$	2			μs
t _{h(ED1,ED2)}	Hold time, LE(ED1) and $\overline{\text{OE}}(\text{ED2})$	$R_L = 44 \Omega, C_L = 10 pF,$ CG = 0.992	10			ns
t _{h(D)}	Hold time, SDI	CG = 0.992	2			ns
t _{su(D,ED1)}	Setup time, SDI, LE(ED1)		4			ns
t _{su(ED2)}	Setup time, OE(ED2)		8.5			ns
t _{h(L)}	Hold time, LE(ED1), Normal mode		15			ns
t _{su(L)}	Setup time, LE(ED1), Normal mode		15			ns
t _r	Rise time, CLK ⁽²⁾				500	ns
t _f	Fall time, CLK ⁽²⁾				500	ns
t _{or}	Rise time, outputs (off)		40	85	105	ns
t _{or}	Rise time, outputs (off), $T_J = 25^{\circ}C$			83	100	ns
t _{of}	Rise time, outputs (on)		100	280	370	ns
t _{of}	Rise time, outputs (on), $T_J = 25^{\circ}C$			170	225	ns
f _{CLK}	Clock frequency	Cascade operation			30	MHz

⁽¹⁾ Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material.

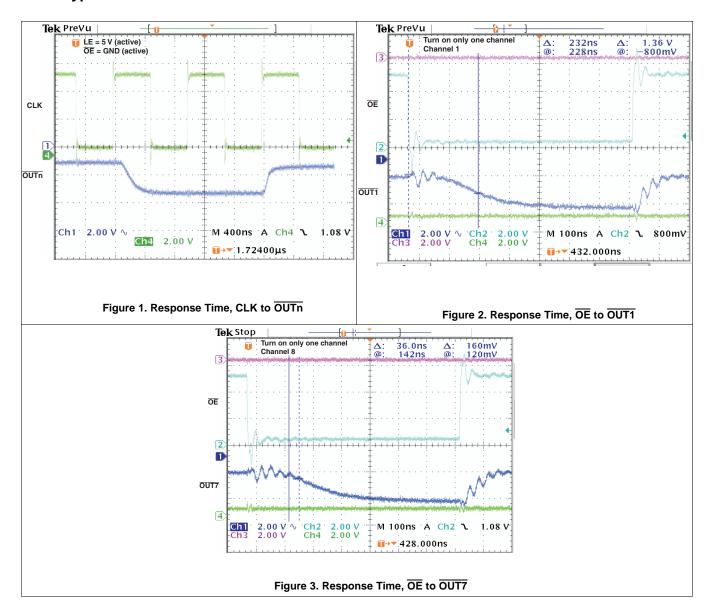
⁽²⁾ If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

7.9 Switching Characteristics: VDD = 5.5 V

 $V_{DD} = 5.5 \text{ V}, T_{J} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH1}	Low-to-high propagation delay time, CLK to OUTn		40	65	95	ns
t _{PLH2}	Low-to-high propagation delay time, LE(ED1) to OUTn		40	65	95	ns
t _{PLH3}	Low-to-high propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to $\overline{\text{OUTn}}$		40	65	95	ns
t _{PLH4}	Low-to-high propagation delay time, CLK to SDO		8	20	30	ns
t _{PHL1}	High-to-low propagation delay time, CLK to OUTn			300	365	ns
t _{PHL2}	High-to-low propagation delay time, LE(ED1) to OUTn			300	365	ns
t _{PHL3}	High-to-low propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to $\overline{\text{OUTn}}$			300	365	ns
t _{PHL4}	High-to-low propagation delay time, CLK to SDO		8	20	30	ns
t _{w(CLK)}	Pulse duration, CLK		20			ns
t _{w(L)}	Pulse duration, LE(ED1)		20			ns
w(OE)	Pulse duration, OE(ED2)	V V V CND	500			ns
t _{w(ED2)}	Pulse duration, OE(ED2) in Error Detection mode	$V_{IH} = V_{DD}, V_{IL} = GND,$ $R_{ext} = 360 \Omega, V_{L} = 4 V,$	2			μs
t _{h(D,ED1,ED2)}	Hold time, SDI, LE(ED1), and OE(ED2)	$R_L = 44 \Omega, C_L = 10 pF,$	10			ns
t _{h(D)}	Hold time, SDI	CG = 0.992	2			ns
t _{su(D,ED1)}	Setup time, SDI, LE(ED1)		4			ns
t _{su(ED2)}	Setup time, OE(ED2)		8.5			ns
t _{h(L)}	Hold time, LE(ED1), Normal mode		15			ns
t _{su(L)}	Setup time, LE(ED1), Normal mode		15			ns
tr	Rise time, CLK ⁽²⁾				500	ns
t _f	Fall time, CLK ⁽²⁾				500	ns
or	Rise time, outputs (off)		40	85	105	ns
t _{or}	Rise time, outputs (off), $T_J = 25^{\circ}C$			83	100	ns
t _{of}	Rise time, outputs (on)		100	280	370	ns
t _{of}	Rise time, outputs (on), $T_J = 25^{\circ}C$			170	225	ns
f _{CLK}	Clock frequency	Cascade operation			30	MHz

⁽¹⁾ Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material.


Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

⁽²⁾ If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

7.10 Typical Characteristics

8 Parameter Measurement Information

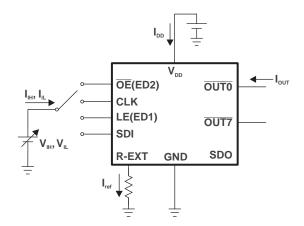


Figure 4. Test Circuit for Electrical Characteristics

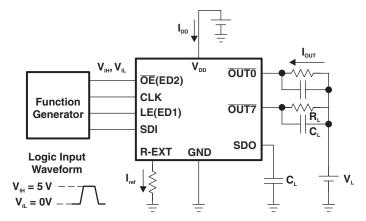


Figure 5. Test Circuit for Switching Characteristics

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

Parameter Measurement Information (continued)

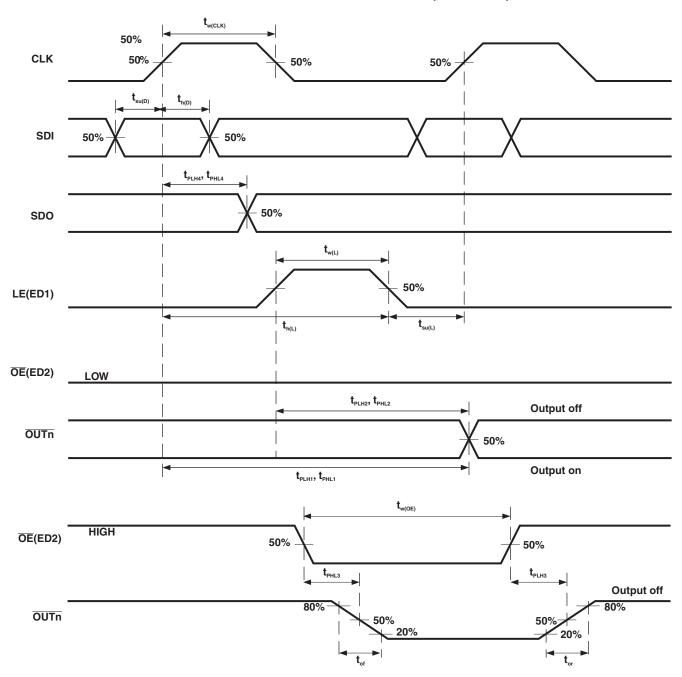


Figure 6. Normal Mode Timing Waveforms

Parameter Measurement Information (continued)

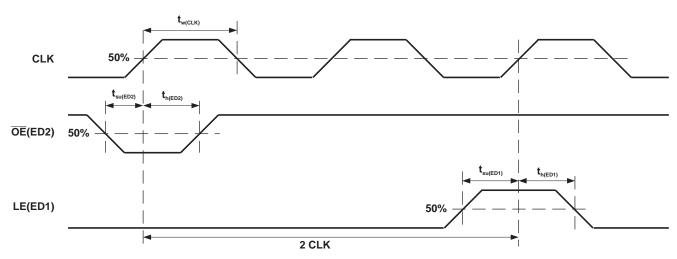


Figure 7. Switching to Special Mode Timing Waveforms

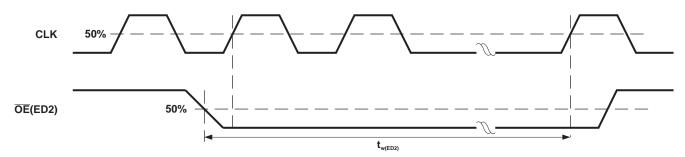
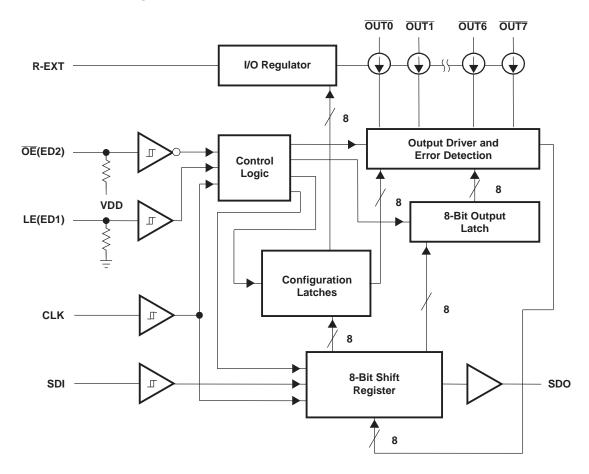


Figure 8. Reading Error Status Code Timing Waveforms

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated



9 Detailed Description

9.1 Overview

The TLC591x-Q1 is designed for LED displays and LED lighting applications with constant-current control and open-load, shorted-load, and overtemperature detection. The TLC591x-Q1 contains an 8-bit shift register and data latches, which convert serial input data into parallel output format. At the output stage, eight regulated current ports are designed to provide uniform and constant current for driving LEDs within a wide range of VF variations. Used in system design for LED display applications, for example, LED panels, the TLC591x-Q1 device provides great flexibility and device performance. Users can adjust the output current from 5 mA to 120 mA through an external resistor, R-EXT, which gives flexibility in controlling the light intensity of LEDs. The devices are designed for up to 17 V at the output port. The high clock frequency, 30 MHz, also satisfies the system requirements of high-volume data transmission.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Open-Circuit Detection Principle

The LED Open-Circuit Detection compares the effective current level I_{out} with the open load detection threshold current $I_{OUT,Th}$. If I_{OUT} is below the $I_{OUT,Th}$ threshold, the TLC591x-Q1 detects an open-load condition. This error status can be read as an error status code in the Special mode. For open-circuit error detection, a channel must be on.

Feature Description (continued)

Table 1. Open-Circuit Detection

STATE OF OUTPUT PORT	CONDITION OF OUTPUT CURRENT	ERROR STATUS CODE	MEANING	
Off	$I_{OUT} = 0 \text{ mA}$	0	Detection not possible	
On	$I_{OUT} < I_{OUT,Th}^{(1)}$	0	Open circuit	
On	I _{OUT} ≥ I _{OUT,Th} ⁽¹⁾	Channel n error status bit 1	Normal	

⁽¹⁾ $I_{OUT,Th} = 0.5 \times I_{OUT,target}$ (typical)

9.3.2 Short-Circuit Detection Principle (TLC5917-Q1 Only)

The LED short-circuit detection compares the effective voltage level (V_{OUT}) with the shorted-load detection threshold voltages $V_{OUT,TTh}$ and $V_{OUT,RTh}$. If V_{OUT} is above the $V_{OUT,TTh}$ threshold, the TLC5917-Q1 detects an shorted-load condition. If V_{OUT} is below the $V_{OUT,RTh}$ threshold, no error is detected and the error bit is reset. This error status can be read as an error status code in the Special mode. For short-circuit error detection, a channel must be on.

Table 2. Shorted-Load Detection

STATE OF OUTPUT PORT	CONDITION OF OUTPUT VOLTAGE	ERROR STATUS CODE	MEANING
Off	I _{OUT} = 0 mA	0	Detection not possible
Q	$V_{OUT} \ge V_{OUT,TTh}$	0	Short circuit
On	V _{OUT} < V _{OUT RTh}	1	Normal

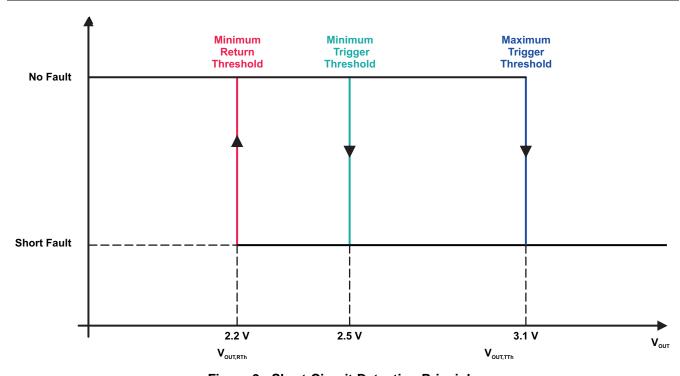


Figure 9. Short-Circuit Detection Principle

9.3.3 Overtemperature Detection and Shutdown

TLC591x-Q1 is equipped with a global overtemperature sensor and eight individual, channel-specific, overtemperature sensors.

When the global sensor reaches the trip temperature, all output channels are shutdown, and the error status
is stored in the internal Error Status register of every channel. After shutdown, the channels automatically
restart after cooling down, if the control signal (output latch) remains on. The stored error status is not reset

after cooling down and can be read out as the error status code in the Special mode.

 When one of the channel-specific sensors reaches trip temperature, only the affected output channel is shut down, and the error status is stored only in the internal Error Status register of the affected channel. After shutdown, the channel automatically restarts after cooling down, if the control signal (output latch) remains on. The stored error status is not reset after cooling down and can be read out as error status code in the Special mode.

For channel-specific overtemperature error detection, a channel must be on.

The error status code is reset when TLC591x-Q1 returns to Normal mode.

Table 3. Overtemperature Detection⁽¹⁾

STATE OF OUTPUT PORT	CONDITION	ERROR STATUS CODE	MEANING
Off	I _{OUT} = 0 mA	0	
On	T _j < T _{j,trip} global	1	Normal
On → all channels Off	T _j > T _{j,trip} global	All error status bits = 0	Global overtemperature
On	$T_j < T_{j,trip}$ channel n	1	Normal
$On \rightarrow Off$	$T_j > T_{j,trip}$ channel n	Channel n error status bit = 0	Channel n overtemperature

⁽¹⁾ The global shutdown threshold temperature is approximately 170°C.

9.4 Device Functional Modes

The TLC591x-Q1 provides a Special Mode in which two functions are included: Error Detection and Current Gain Control. There are two operation modes and three phases: Normal Mode phase, Mode Switching transition phase, and Special Mode phase. The signal on the multiple function pin OE(ED2) is monitored to determine the mode. When an one-clock-wide pulse appears on OE(ED2), the device enters the Mode Switching phase. At this time, the voltage level on LE(ED1) determines the mode to which the TLC591x-Q1 switches. In the Normal Mode phase, the serial data can be transferred into TLC591x-Q1 via the pin SDI, shifted in the shift register, and transferred out via the pin SDO. LE(ED1) can latch the serial data in the shift register to the output latch. OE(ED2) enables the output drivers to sink current.

In the Special Mode phase, the low-voltage-level signal OE(ED2) can enable output channels and detect the status of the output current, to determine if the driving current level is sufficient. The detected Error Status is loaded into the 8-bit shift register and shifted out via the pin SDO, synchronous to the CLK signal. The system controller can read the error status and determine whether or not the LEDs are properly lit.

In the Special Mode phase, the TLC591x-Q1 allows users to adjust the output current level by setting a runtime-programmable Configuration Code. The code is sent into the TLC591x-Q1 via SDI. The positive pulse of LE(ED1) latches the code in the shift register into a built-in 8-bit configuration latch, instead of the output latch. The code affects the voltage at the terminal R-EXT and controls the output-current regulator. The output current can be finely adjusted by a gain ranging from 1/12 to 127/128 in 256 steps. Therefore, the current skew between ICs can be compensated within less than 1%. This feature is suitable for white balancing in LED color display panels.

Table 4. Truth Table in Normal Mode

CLK	LE(ED1)	OE(ED2)	SDI	OUT0OUT7	SDO
↑	Н	L	Dn	DnDn – 7	Dn – 7
↑	L	L	Dn + 1	No change	Dn – 6
↑	Н	L	Dn + 2	Dn + 2Dn – 5	Dn – 5
↓	X	L	Dn + 3	Dn + 2Dn – 5	Dn – 5
<u> </u>	Х	Н	Dn + 3	Off	Dn – 5

The signal sequence shown in Figure 11 makes the TLC591x-Q1 enter Current Adjust and Error Detection mode.

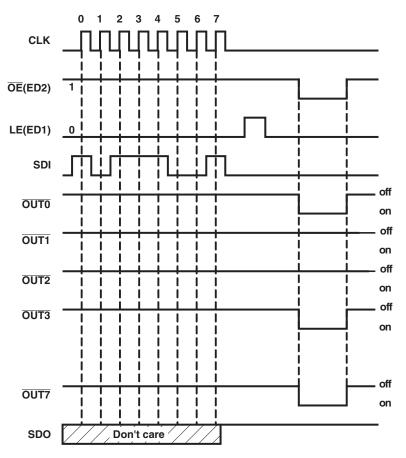


Figure 10. Normal Mode

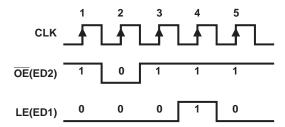


Figure 11. Switching to Special Mode

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

In the Current Adjust mode, sending the positive pulse of LE(ED1), the content of the Shift register (a current adjust code) is written to the 8-bit configuration latch (see Figure 12).

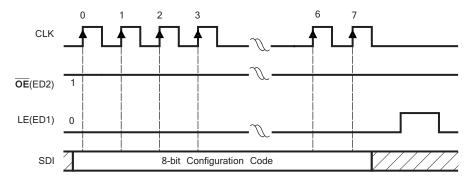


Figure 12. Writing Configuration Code

When the TLC591x-Q1 is in the Error Detection mode, the signal sequence shown in Figure 13 enables a system controller to read error status codes through SDO.

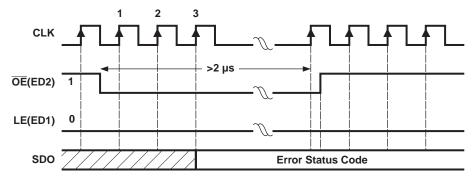


Figure 13. Reading Error Status Code

The signal sequence shown in Figure 14 makes TLC591x-Q1 resume the Normal mode. Switching to Normal mode resets all internal Error Status registers. $\overline{OE}(ED2)$ always enables the output port, whether the TLC591x-Q1 enters Current Adjust mode or not.

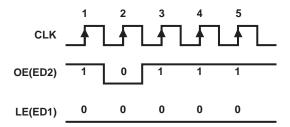


Figure 14. Switching to Normal Mode

9.4.1 Operation Mode Switching

In order to switch between its two modes, TLC591x-Q1 monitors the signal $\overline{OE}(ED2)$. When an one-clock-wide pulse of $\overline{OE}(ED2)$ appears, TLC591x-Q1 enters the two-clock-period transition phase, the Mode Switching phase. After power on, the default operation mode is the Normal Mode (see Figure 15).

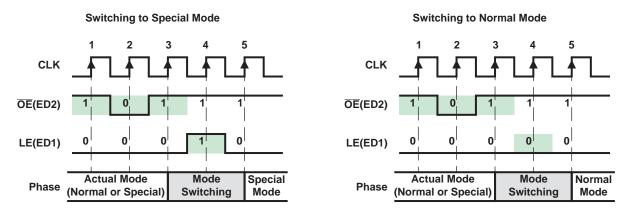


Figure 15. Mode Switching

As shown in Figure 15, once a one-clock-wide short pulse (101) of $\overline{\text{OE}}(\text{ED2})$ appears, TTLC591x-Q1 enters the Mode Switching phase. At the fourth rising edge of CLK, if LE(ED1) is sampled as voltage high, TLC591x-Q1 switches to Special mode; otherwise, it switches to Normal mode. The signal LE(ED1) between the third and the fifth rising edges of CLK cannot latch any data. Its level is used only to determine into which mode to switch. However, the short pulse of $\overline{\text{OE}}(\text{ED2})$ can still enable the output ports. During mode switching, the serial data can still be transferred through SDI and shifted out from SDO.

NOTE

- The signal sequence for the mode switching may be used frequently to ensure that TLC591x-Q1 is in the proper mode.
- 2. The 1 and 0 on the LE(ED1) signal are sampled at the rising edge of CLK. The X means its level does not affect the result of mode switching mechanism.
- 3. After power on, the default operation mode is Normal mode.

9.4.1.1 Normal Mode Phase

Serial data is transferred into TLC591x-Q1 via SDI, shifted in the Shift register, and output via SDO. LE(ED1) can latch the serial data in the Shift register to the Output Latch. OE(ED2) enables the output drivers to sink current. These functions differ only as described in Operation Mode Switching, in which case, a short pulse triggers TLC591x-Q1 to switch the operation mode. However, as long as LE(ED1) is high in the Mode Switching phase, TLC591x-Q1 remains in the Normal mode, as if no mode switching occurred.

9.4.1.2 Special Mode Phase

In the Special mode, as long as $\overline{\text{OE}}(\text{ED2})$ is not low, the serial data is shifted to the Shift register via SDI and shifted out via SDO, as in the Normal mode. However, there are two differences between Special mode and Normal mode, as shown in the following sections.

9.5 Programming

9.5.1 Reading Error Status Code in Special Mode

When $\overline{\text{OE}}(\text{ED2})$ is pulled low while in Special mode, error detection and load error status codes are loaded into the Shift register, in addition to enabling output ports to sink current. Figure 16 shows the timing sequence for error detection. The 0 and 1 signal levels are sampled at the rising edge of each CLK. At least three zeros must be sampled at the voltage low signal $\overline{\text{OE}}(\text{ED2})$. Immediately after the second zero is sampled, the data input source of the Shift register changes to the 8-bit parallel Error Status Code register, instead of from the serial data on SDI. Normally, the error status codes are generated at least 2 μ s after the falling edge of $\overline{\text{OE}}(\text{ED2})$. The occurrence of the third or later zero saves the detected error status codes into the Shift register. Therefore, when $\overline{\text{OE}}(\text{ED2})$ is low, the serial data cannot be shifted into TLC591x-Q1 via SDI. When $\overline{\text{OE}}(\text{ED2})$ is pulled high, the data input source of the Shift register is changed back to SDI. At the same time, the output ports are disabled and the error detection is completed. Then, the error status codes saved in the Shift register can be shifted out via SDO bit by bit along with CLK, as well as the new serial data can be shifted into TLC591x-Q1 via SDI.

While in Special mode, the TLC591x-Q1 cannot simultaneously transfer serial data and detect LED load error status.

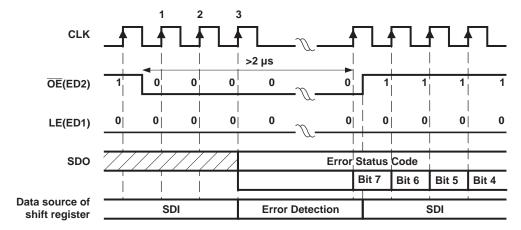


Figure 16. Reading Error Status Code

9.5.2 Writing Configuration Code in Special Mode

When in Special mode, the active high signal LE(ED1) latches the serial data in the Shift register to the Configuration Latch, instead of the Output Latch. The latched serial data is used as the Configuration Code.

The code is stored until power off or the Configuration Latch is rewritten. As shown in Figure 17, the timing for writing the Configuration Code is the same as the timing in the Normal Mode to latching output channel data. Both the Configuration Code and Error Status Code are transferred in the common 8-bit Shift register. Users must pay attention to the sequence of error detection and current adjustment to avoid the Configuration Code being overwritten by Error Status Code.

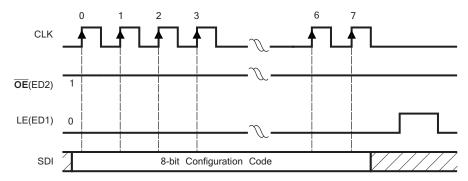


Figure 17. Writing Configuration Code

Programming (continued)

9.5.3 8-Bit Configuration Code and Current Gain

Bit definition of the Configuration Code in the Configuration Latch is shown in Table 5.

Table 5. Bit Definition of 8-Bit Configuration Code

	BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7
Meaning	СМ	HC	CC0	CC1	CC2	CC3	CC4	CC5
Default	1	1	1	1	1	1	1	1

Bit 7 is first sent into TLC591x-Q1 via SDI. Bits 1 to 7 {HC, CC[0:5]} determine the voltage gain (VG) that affects the voltage at R-EXT and indirectly affects the reference current, I_{ref}, flowing through the external resistor at R-EXT. Bit 0 is the Current Multiplier (CM) that determines the ratio I_{OUT,target}/I_{ref}. Each combination of VG and CM gives a specific Current Gain (CG).

VG: the relationship between {HC,CC[0:5]} and the voltage gain is calculated as shown below:

$$VG = (1 + HC) \times (1 + D/64) / 4$$

$$D = CC0 \times 2^5 + CC1 \times 2^4 + CC2 \times 2^3 + CC3 \times 2^2 + CC4 \times 2^1 + CC5 \times 2^0$$

Where HC is 1 or 0, and D is the binary value of CC[0:5]. So, the VG could be regarded as a floating-point number with 1-bit exponent HC and 6-bit mantissa CC[0:5]. {HC,CC[0:5]} divides the programmable voltage gain VG into 128 steps and two sub-bands:

Low-voltage subband (HC = 0): VG = 1/4 ~ 127/256, linearly divided into 64 steps

High-voltage subband (HC = 1): VG = 1/2 ~ 127/128, linearly divided into 64 steps

CM: In addition to determining the ratio I_{OUT,target}/I_{ref}, CM limits the output current range. High Current Multiplier (CM = 1): $I_{OUT,target}/I_{ref}$ = 15, suitable for output current range I_{OUT} = 10 mA to 120 mA. Low Current Multiplier (CM = 0): I_{OUT,target}/I_{ref} = 5, suitable for output current range I_{OUT} = 5 mA to 40 mA

CG: The total Current Gain is defined as the following.

$$V_{R-FXT} = 1.26 \text{ V} \times \text{VG}$$

$$\begin{split} I_{ref} &= V_{R\text{-EXT}}/R_{ext}, \text{ if the external resistor, } R_{ext}, \text{ is connected to ground.} \\ I_{OUT,target} &= I_{ref} \times 15 \times 3^{CM - 1} = 1.26 \text{ V/R}_{ext} \times \text{VG} \times 15 \times 3^{CM - 1} = (1.26 \text{ V/R}_{ext} \times 15) \times \text{CG} \\ CG &= VG \times 3^{CM - 1} \end{split}$$

Therefore, CG = 1/12 to 127/128, and it is divided into 256 steps.

Examples

Configuration Code {CM, HC, CC[0:5]} = {1,1,111111}

$$VG = 127/128 = 0.992$$
 and $CG = VG \times 3^0 = VG = 0.992$

Configuration Code = $\{1,1,000000\}$

$$VG = (1 + 1) \times (1 + 0/64)/4 = 1/2 = 0.5$$
, and $CG = 0.5$

Configuration Code = $\{0.0,0000000\}$

$$VG = (1 + 0) \times (1 + 0/64)/4 = 1/4$$
, and $CG = (1/4) \times 3^{-1} = 1/12$

After power on, the default value of the Configuration Code (CM, HC, CC[0:5]) is {1,1,111111}. Therefore, VG = CG = 0.992. The relationship between the Configuration Code and the Current Gain is shown in Figure 18.

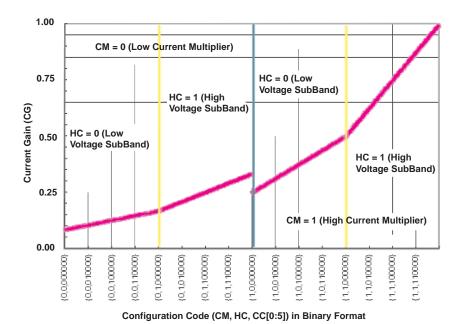


Figure 18. Current Gain vs Configuration Code

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

10.1.1 Constant Current

In LED display applications, the TLC591x-Q1 provides nearly no current variations from channel to channel and from IC to IC. While $I_{OUT} \le 100$ mA, the maximum current skew between channels is less than $\pm 3\%$ and between ICs is less than $\pm 6\%$.

10.1.2 Adjusting Output Current

The TLC591x-Q1 scales up the reference current, I_{ref} , set by the external resistor R_{ext} to sink a current, I_{out} , at each output port. Use the following formulas to calculate the target output current

$$I_{ref} = V_{R-EXT}/R_{ext}$$
, if another end of the external resistor R_{ext} is connected to ground $V_{R-EXT} = 1.26 \text{ V} \times \text{VG}$ (2)

 $I_{OUT,target} = I_{ref} \times 15 \times 3^{CM-1}$

where

- R_{ext} is the resistance of the external resistor connected to the R-EXT terminal.
- V_{R-EXT} is the voltage of R-EXT, which is controlled by the programmable voltage gain (VG), which is defined by the Configuration Code.

The Current Multiplier (CM) determines that the ratio $I_{OUT,target}/I_{ref}$ is 15 or 5. After power on, the default value of VG is 127/128 = 0.992, and the default value of CM is 1, so that the ratio $I_{OUT,target}/I_{ref}$ = 15. Based on the default VG and CM.

$$V_{R-EXT} = 1.26 \text{ V} \times 127/128 = 1.25 \text{ V}$$
 (4)
 $I_{OUT,target} = (1.25 \text{ V/R}_{ext}) \times 15$

Therefore, the default current is approximately 52 mA at 360 Ω and 26 mA at 720 Ω . The default relationship after power on between $I_{OUT,target}$ and R_{ext} is shown in Figure 19.

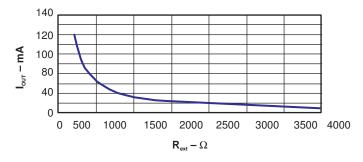


Figure 19. Default Relationship Curve Between I_{OUT,target} and R_{ext} After Power Up

10.2 Typical Applications

10.2.1 Single Implementation of TLC591x-Q1 Device

The TLC5917/TLC5917-Q1 Constant-Current LED Sink Drivers is designed to work alone or cascaded. Figure 20 shows implementation of a single TLC591x-Q1 device.

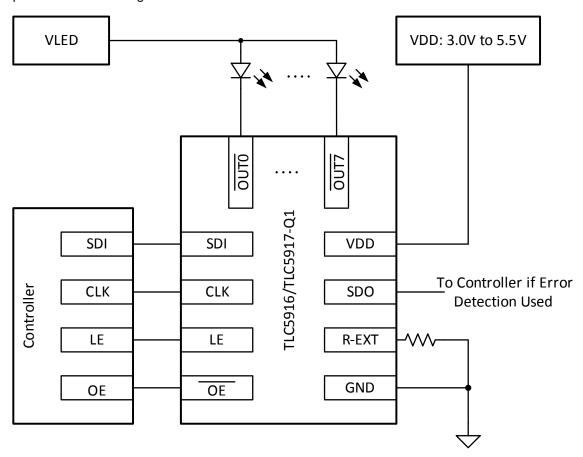


Figure 20. Single Implementation of TLC591x-Q1 Device

10.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 6. The purpose of this design procedure is to calculate the power dissipation in the device and the operating junction temperature.

Table 6. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Number of LED strings	8
Number of LEDs per string	3
LED Current (mA)	20
Forward voltage of each LED (V)	3.5
Junction-to-ambient thermal resistance (°C/W)	86.9
Ambient temperature of application (°C)	115
VDD (V)	5
IDD (mA)	10
Max operating junction temperature (°C)	150

10.2.1.2 Detailed Design Procedure

Use the following equations to determine the design parameters.

$$T_J = T_A + R_{\theta JA} \times P_{D TOT}$$

where

- T_J is the junction temperature
- T_A is the ambient temperature
- R_{0JA} is the junction-to-ambient thermal resistance

 $P_{D_TOT} = P_{D_CS} + I_{DD} \times V_{DD}$

where

- P_{D CS} is the power dissipation in the LED current sinks.
- I_{DD} is the IC supply current.

 $P_{D CS} = I_{O} \times V_{O} \times n_{CH}$

where

- Io is the LED current
- V_O is the voltage at the output pin
- n_{CH} is the number of LED strings. (8)

 $V_O = V_{LED} - (n_{LED} \times V_F)$

where

- V_{LED} is the voltage applied to the LED string
- n_{LED} is the number of LEDs in the string
- V_F is the forward voltage of each LED. (9)

Vo must not be too high as this causes excess power dissipation inside the current sink. However, Vo also must not be too low as this does not allow the full LED current Figure 21.

With $V_{LED} = 12 \text{ V}$:

$$V_0 = 12 \text{ V} - (3 \times 3.5 \text{ V}) = 1.5 \text{ V}$$
 (10)

$$P_{D,CS} = 20 \text{ mA} \times 1.5 \text{ V} \times 8 = 0.24 \text{ W}$$
 (11)

Using P_{D CS}, calculate:

$$P_{D \text{ TOT}} = P_{D \text{ CS}} + I_{DD} \times V_{DD} = 0.24 \text{ W} + 0.01 \text{ A} \times 5 \text{ V} = 0.29 \text{ W}$$
(12)

Using P_{D TOT}, calculate:

$$T_J = T_A + R_{\theta JA} \times P_{D_TOT} = 115^{\circ}C + 86.9^{\circ}C/W \times 0.29 W = 140^{\circ}C$$
 (13)

This design example demonstrates how to calculate power dissipation in the IC and ensure that the junction temperature is kept below 150°C.

NOTE

This design example assumes that all channels have the same electrical parameters (n_{IFD}, I_D, V_F, V_{LED}). If the parameters are unique for each channel, then the power dissipation must be calculated for each current sink separately. Then, add each result together to calculate the total power dissipation in the current sinks.

Product Folder Links: TLC5916-Q1 TLC5917-Q1

10.2.1.3 Application Curve

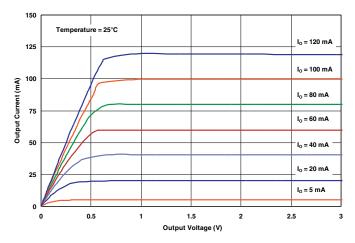


Figure 21. Output Current vs Output Voltage

10.2.2 Cascading Implementation of TLC591x-Q1 Device

The TLC5917/TLC5917-Q1 Constant-Current LED Sink Drivers is designed to work alone or cascaded. Figure 22 shows a cascaded driver implementation.

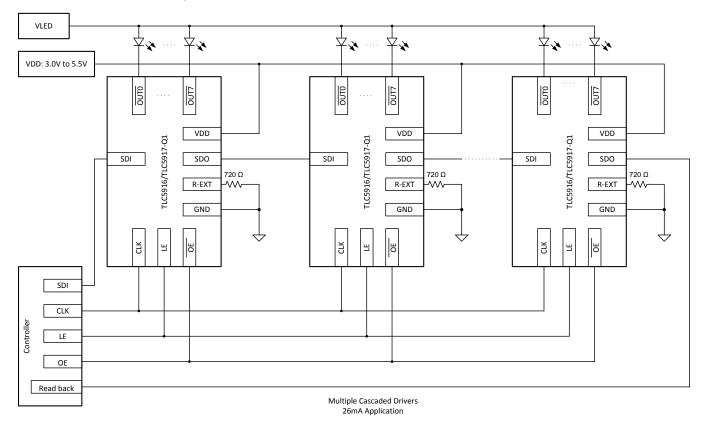


Figure 22. Cascading Implementation of TLC591x-Q1 Device

Copyright © 2008–2015, Texas Instruments Incorporated

11 Power Supply Recommendations

The device is designed to operate from a VDD supply between 3 V and 5.5 V. The LED supply voltage is determined by the number of LEDs in each string and the forward voltage of the LEDs (should be \leq 17 V in total).

12 Layout

12.1 Layout Guidelines

The traces that carry current from the LED cathodes to the OUTx pins must be wide enough to support the default current (up to 120 mA).

The SDI, CLK, LE (ED1), OE (ED2), and SDO pins are to be connected to the microcontroller.

There are several ways to achieve this, including the following methods:

- · Traces may be routed underneath the package on the top layer.
- The signal may travel through a via to another layer.

12.2 Layout Example

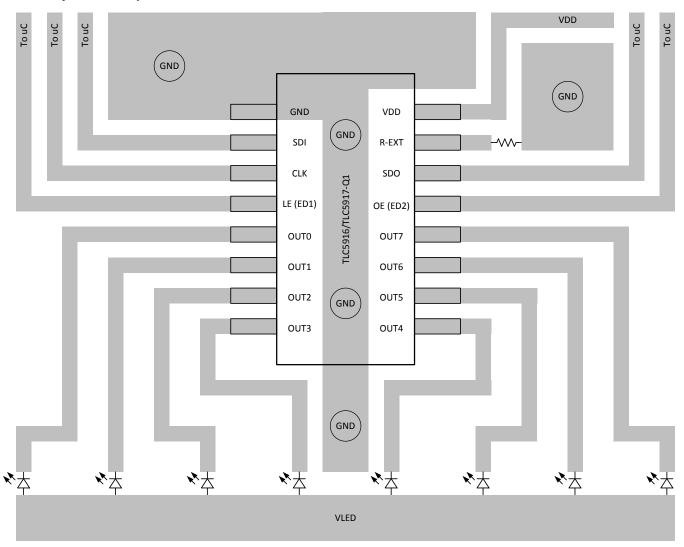


Figure 23. Recommended Layout Example

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 7. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TLC5916-Q1	Click here	Click here	Click here	Click here	Click here
TLC5917-Q1	Click here	Click here	Click here	Click here	Click here

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

20-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC5916QDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLC5916Q	Samples
TLC5917QDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLC5917Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

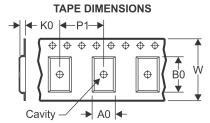
20-Apr-2015

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC5916-Q1, TLC5917-Q1:

• Catalog: TLC5916, TLC5917

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

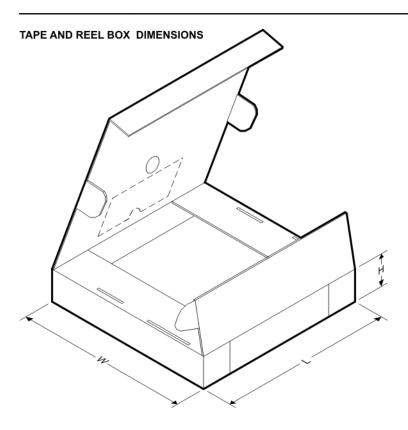
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Mar-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

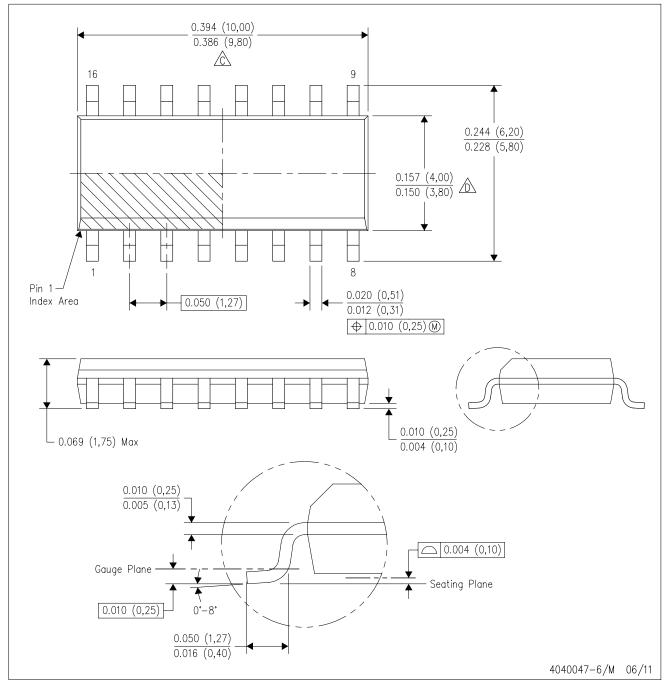


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC5917QDRQ1	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Mar-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC5917QDRQ1	SOIC	D	16	2500	333.2	345.9	28.6

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments: