

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

SDIO PORT EXPANDER WITH VOLTAGE-LEVEL TRANSLATION

FEATURES

- 6-to-12 Demultiplexer/Multiplexer Allows SDIO
 Port Expansion
- Built-in Level Translator Eliminates Voltage Mismatch Between Baseband and SD Card or SDIO Peripheral
- V_{CCA}, V_{CCB0}, and V_{CCB1} Each Operate Over Full 1.1-V to 3.6-V Range
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance A Port
 - 2000-V Human-Body Model (A114-B)
 - 100-V Machine Model (A115-A)
 - 1500-V Charged-Device Model (C101)
- ±8-kV Contact Discharge IEC 61000-4-2 ESD Performance (B Port)

DESCRIPTION/ORDERING INFORMATION

The TXS02612 is designed to interface the cell phone baseband with external SDIO peripherals. The device includes a 6-channel SPDT switch with voltage-level translation capability. This allows a single SDIO port to be interfaced with two SDIO peripherals. The TXS02612 has three separate supply rails that operate over the full range of 1.1 V to 3.6 V. This allows the baseband and SDIO peripherals to operate at different supply voltages if required.

The select (SEL) input is used to choose between the B0 port and B1 port. When SEL = Low, B0 port is selected; when SEL = High, B1 port is selected. SEL is referenced to V_{CCA} . For the unselected B port, the clock output is held low, whereas the data and command I/Os are pulled high to their respective V_{CCB} through a 70-k Ω resistor (±30% tolerance).

ORDERING INFORMATION⁽¹⁾

T _A	PACKAGE	(2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	MicroStar Junior™ BGA (VFBGA) – ZQS	Reel of 3000	TXS02612ZQSR	YJ612	
	QFN – RTW Reel of 3000		TXS02612RTWR	YJ612	

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

ZQS PACKAGE (TOP VIEW)									
	1 2 3 4 5								
А	00000								
В	0 000								
С	00000								
D	00000								
Е	00000								

For RTW, if the exposed center pad is used, it must be connected to ground or electrically open.

Table 1. ZQS PACKAGE TERMINAL ASSIGNMENTS

	1	2	3	4	5
Α	DAT2A	SEL	DAT3 _{B0}	CMD _{B0}	CLK _{B0}
В	DAT3A		DAT2 _{B0}	V _{CCB0}	DAT0 _{B0}
С	CMDA	V _{CCA}	GND	V _{CC B1}	DAT1 _{B0}
D	DAT0A	CLKA	GND	DAT1 _{B1}	DAT0 _{B1}
E	DAT1A	DAT2 _{B1}	DAT3 _{B1}	CMD _{B1}	CLK _{B1}

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Texas Instruments

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

			PIN ASSIGNMENTS	
RTW PACKAGE PIN NO.	ZQS PACKAGE BALL NO.	NAME	FUNCTION	TYPE
1	A1	DAT2A	Data bit 2. Referenced to V _{CCA} .	I/O
3	B1	DAT3A	Data bit 3. Referenced to V _{CCA} .	I/O
4	C1	CMDA	Command bit. Referenced to V _{CCA} .	I/O
6	D1	DAT0A	Data bit 0. Referenced to V _{CCA} .	I/O
7	E1	DAT1A	Data bit 1. Referenced to V _{CCA} .	I/O
24	A2	SEL	Select pin to choose between B0 and B1. Referenced to V_{CCA} .	Input
	B2		Depopulated	
5	C2	V _{CCA}	A-port supply voltage. 1.1 V \leq V _{CCA} \leq 3.6 V.	Power
9	D2	CLKA	Clock input A. Referenced to V _{CCA} .	Input
8	E2	DAT2 _{B1}	Data bit 2. Referenced to V _{CCB1} .	I/O
22	A3	DAT3 _{B0}	Data bit 3. Referenced to V _{CCB0} .	I/O
23	B3	DAT2 _{B0}	Data bit 2. Referenced to V _{CCB0} .	I/O
2	C3	GND	Ground	
11	D3	GND	Ground	
10	E3	DAT3 _{B1}	Data bit 3. Referenced to V _{CCB1} .	I/O
20	A4	CMD _{B0}	Command bit. Referenced to V _{CCB0} .	I/O
21	B4	V _{CCB0}	B0-port supply voltage. 1.1 V \leq V _{CCB0} \leq 3.6 V.	Power
17	C4	V _{CCB1}	B1-port supply voltage. 1.1 V \leq V _{CCB1} \leq 3.6 V.	Power
15	D4	DAT1 _{B1}	Data bit 1. Referenced to V _{CCB1} .	I/O
12	E4	CMD _{B1}	Command bit. Referenced to V _{CCB1} .	I/O
19	A5	CLK _{B0}	Clock output. Referenced to V _{CCB0} .	Output
18	B5	DAT0 _{B0}	Data bit 0. Referenced to V _{CCB0} .	I/O
16	C5	DAT1 _{B0}	Data bit 1. Referenced to V _{CCB0} .	I/O
14	D5	DAT0 _{B1}	Data bit 0. Referenced to V _{CCB1} .	I/O
13	E5	CLK _{B1}	Clock output. Referenced to V _{CCB1} .	Output

SIMPLIFIED INTERNAL STRUCTURE

Simplified Architecture of the Clock Path

A. R_1 and R_2 resistor values are determined based upon the logic level applied to the A port or B port, as follows: R_1 and $R_2 = 40 \text{ k}\Omega$ when a logic level low is applied to the A port or B port. R_1 and $R_2 = 4 \text{ k}\Omega$ when a logic level high is applied to the A port or B port. R_1 and $R_2 = 70 \text{ k}\Omega$ when the port is deselected.

www.ti.com

EXAS

NSTRUMENTS

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

	FUNCTION TABLE									
Clock Channel										
SEL	CLKB0	CLKB1	OPERATION							
L	Active	Low	CLKA to CLKB0							
Н	Low	Active	CLKA to CLKB1							
	Da	ta and Command Channel								
SEL	DATxB0 or CMDxB0	DATxB1 or CMDxB1	OPERATION							
L	Active	Disabled, pulled to V_{CCB1} through 70 $k\Omega$	DATxA to DATxB0, CMDA to CMDB0							
Н	Disabled, pulled to V_{CCB0} through 70 $k\Omega$	Active	DATxA to DATxB1, CMDA to CMDB1							

ABSOLUTE MAXIMUM RATINGS⁽¹⁾ ⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA} V _{CCB0} V _{CCB1}	Supply voltage range ⁽²⁾		-0.5	4.6	V
VI	Input voltage range	A port, B0 port, B1 port, control inputs	-0.5	V _{CCx} + 0.5	V
Vo	Voltage range applied to any output in the high-impedance or power-off state	A port, B0 port, B1 port	-0.5	V _{CCx} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _{CC} / I _{GND}	Continuous current through V_{CCA} , V_{CCB0} , V_{CCB1} , or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

PACKAGE THERMAL IMPEDANCE

		PARAMETER		UNIT	
0	Declary the median edge of	RTW package	66	0 0 0 0 0	
θ_{JA}	Package thermal impedance	ZQS package	171.6	-C/W	

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

www.ti.com

RECOMMENDED OPERATING CONDITIONS

			V _{CCA}	V _{CCBx} ⁽¹⁾	MIN	MAX	UNIT
V _{CCA} V _{CCB0} V _{CCB1}	Supply voltage				1.1	3.6	V
		A-port I/Os			V _{CCI} – 0.2	V _{CCI}	
VIH	High-level input voltage	B-port I/Os	1.1 V to 3.6 V	1.1 V to 3.6 V	V _{CCI} - 0.2	V _{CCI}	V
		SEL, CLKA			V _{CCA} × 0.65 V	3.6	
		A-port I/Os			0	0.15	5
VIL	Low-level input voltage	B-port I/Os	1.1 V to 3.6 V	1.1 V to 3.6 V	0	0.15	V
		SEL, CLKA	_		0	$V_{CCA} \times 0.35$	
Δt/Δv	Input transition rise or fall rate	CLK, SEL				10	ns/V
T _A	Operating free-air temperature				-40	85	°C

(1) V_{CCBx} refers to V_{CCB0} and V_{CCB1} .

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS	м	V	T _A = 25°C	T _A = -40°C to 8	5°C		
PARAMETER	TEST CONDITIONS	VCCA	VCCBx	TYP	MIN	MAX	UNIT	
		1.1 V	1.1 V		0.74			
Vous		1.4 V	1.4 V		V _{CCA} × 0.67			
(DATA &	$I_{OH} = -20 \ \mu A$,	1.65 V	1.65 V		V _{CCA} × 0.67		V	
$\begin{array}{ c c c c c c } \hline PARAMETER & TEST CONDITIONS & V_{CCA} & V_{CCBx} & \hline I_A = 25°C & I_A = -4 \\ \hline TYP & \hline TTYP & \hline TTTYP & \hline TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$	V _{CCA} × 0.67							
		3 V	3 V		V _{CCA} × 0.67			
	I _{OL} = 135 μA, V _{IBx} ≤ 0.15 V	1.1 V	1.1 V			0.35		
Vol	I _{OL} = 180 μA, V _{IBx} ≤ 0.15 V	1.4 V	1.4 V			0.35		
(DATA &	I _{OL} = 220 μA, V _{IBx} ≤ 0.15 V	1.65 V	1.65 V			0.45	V	
CMD)	I _{OL} = 300 μA, V _{IBx} ≤ 0.15 V	2.3 V	2.3 V			0.55		
	I _{OL} = 620 μA, V _{IBx} ≤ 0.15 V	3 V	3 V			0.70		
		1.1 V	1.1 V		0.74			
V _{ОНВ} (DATA & CMD)		1.4 V	1.4 V		V _{CCBx} × 0.67			
	$I_{OH} = -20 \ \mu A$,	1.65 V	1.65 V		$V_{CCBx} \times 0.67$		V	
	$V_{IAX} = V_{CCAX} = 0.2 V$	2.3 V	2.3 V		$V_{CCBx} \times 0.67$			
		3 V	3 V		$V_{CCBx} \times 0.67$			
	I _{OH} = - 0.5 mA	1.1 V	1.1 V		0.74			
	$I_{OH} = -1 \text{ mA}$	1.4 V	1.4 V		1.05		V	
V _{OHCLKB}	$I_{OH} = -2 \text{ mA}$	1.65 V	1.65 V		1.2			
V _{OHCLKB}	$I_{OH} = -4 \text{ mA}$	2.3 V	2.3 V		1.75			
	$I_{OH} = -8 \text{ mA}$	3 V	3 V		2.3			
	I_{OL} = 135 μ A, $V_{IAx} \leq 0.15$ V	1.1 V	1.1 V			0.35		
Volb	I_{OL} = 180 μ A, V_{IAx} \leq 0.15 V	1.4 V	1.4 V			0.35		
(DATA &	I_{OL} = 220 μ A, V_{IAx} \leq 0.15 V	1.65 V	1.65 V			0.45	V	
CMD)	$I_{OL} = 300 \ \mu A, \ V_{IAx} \le 0.15 \ V$	2.3 V	2.3 V			0.55		
	$I_{OL} = 620 \ \mu A, \ V_{IAx} \le 0.15 \ V$	3 V	3 V			0.70		
	I _{OL} = 0.5 mA	1.1 V	1.1 V			0.35		
	I _{OL} = 1 mA	1.4 V	1.4 V			0.35	V	
V _{OLCLKB}	I _{OL} = 2 mA	1.65 V	1.65 V			0.45		
	I _{OL} = 4 mA	2.3 V	2.3 V			0.55		
	I _{OL} = 8 mA	3 V	3 V			0.7		

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range (unless otherwise noted)

		N/	N N	T _A = 25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$		
PARAMETER	TEST CONDITIONS	VCCA	VCCBx	ТҮР	MIN MAX	UNIT	
1	SEL, CLKA	1 1 \/ to 2 6 \/	1 1 V to 2 6 V	±1	±2	۸	
ц	DAT, CMD	1.1 V 10 3.6 V	1.1 V 10 3.6 V	±1	±2	μΑ	
		1.1 V to 3.6 V	1.1 V to 3.6 V		12		
I _{CCA}	V _I = V _O = Open, I _O = 0, SEL CLK = High or Low	3.6 V	0 V		12	μA	
		0 V	3.6 V		-1		
		1.1 V to 3.6 V	1.1 V to 3.6 V		24		
I _{CCB0} or	$V_{I} = V_{O} = Open, I_{O} = 0,$	3.6 V	0 V		-12	μA	
CCBI		0 V	3.6 V		24		
C _i	SEL, CLKA	3.3 V	3.3 V	2.5	3.5	pF	
	A port	2.2.1/	2.2.1/	7	7.5	pF	
Uio	B port	3.3 V	3.3 V	9.5	10		

TIMING REQUIREMENTS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 V$

				V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3.3 V	
				TYP	TYP	TYP	TYP	ТҮР	UNIT
	Command	Push-pull driv	/ing	60	80	120	120	120	Mhna
Data	Commanu	Open-drain d	riving	2	2	2	2	2	ivipps
rate	Clock	Push-pull driving		30	40	60	60	60	MHz
	Data	Push-pull driving		60	80	120	120	120	Mbps
	Pulse duration	Push-pull driving	CLK	17	13	8	8	8	
t _w		Open-drain driving	CMD	500	500	500	500	500	ns
		Push-pull	Data	17	13	8	8	8	
		driving	CMD	17	13	8	8	8	

TIMING REQUIREMENTS

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (unless otherwise noted)

			V _{CCB} = 1.2 V	V _{CCB} = 1.5 V ± 0.1 V		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V		UNIT		
				ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
	Command	Push-pull dri	ving	60		80		120		120		120	Mhoo	
Data	Command	Command Open-o	Open-drain o	driving	2		2		2		2		2	Nops
rate	Clock	Push-pull driving		30		40		60		60		60	MHz	
	Data	Push-pull driving		60		80		120		120		120	Mbps	
	Pulse duration	Push-pull driving	CLK	17	13		8		8		8			
t _w		Open-drain driving	CMD	500	500		500		500		500		ns	
		Push-pull	Data	17	13		8		8		8			
		driving	CMD	17	13		8		8		8			

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 1.8 V \pm 0.15 V (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V 1 V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = ± 0.2	2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	UNIT
				ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Command	Push-pull dri	ving	60		80		120		120		120	Mhno
Data	Commanu	Open-drain o	driving	2		2		2		2		2	wops
rate	Clock	Push-pull dri	ving	30		40		60		60		60	MHz
	Data	Push-pull dri	ving	60		80		120		120		120	Mbps
		Push-pull driving	CLK	17	13		8		8		8		
t _w	Pulse duration	Open-drain driving	CMD	500	500		500		500		500		ns
		Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

www.ti.com

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V 1 V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = ± 0.2	2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	UNIT
				ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Command	Push-pull dri	ving	60		80		120		120		120	Mhaa
Data	Commanu	Open-drain o	driving	2		2		2		2		2	wops
rate	Clock	Push-pull dri	ving	30		40		60		60		60	MHz
	Data	Push-pull dri	ving	60		80		120		120		120	Mbps
		Push-pull driving	CLK	17	13		8		8		8		
t _w	Pulse duration	Open-drain driving	CMD	500	500		500		500		500		ns
		Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 3.3 V \pm 0.3 V (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V 1 V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = ± 0.2	2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	UNIT
				ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Command	Push-pull dri	ving	60		80		120		120		120	Mhno
Data rate	Commanu	Open-drain o	driving	2		2		2		2		2	wops
	Clock	Push-pull dri	ving	30		40		60		60		60	MHz
	Data	Push-pull dri	ving	60		80		120		120		120	Mbps
t _w		Push-pull driving	CLK	17	13		8		8		8		
	Pulse duration	Open-drain driving	CMD	500	500		500		500		500		ns
		Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

SCES682C-DECEMBER 2008-REVISED FEBRUARY 2009

www.ti.com

SWITCHING CHARACTERISTICS

$T_A = 25^{\circ}C, V_{CCA} = 1.2 V$

DADAMETED	FROM	то	TEST	V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3.3 V	
FARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	TYP	ТҮР	ТҮР	ТҮР	TYP	UNIT
	CMDA	CMDD	Push-pull driving	5.9	4.8	4.4	4	4.46	
	CIVIDA	CIVIDB	Open-drain driving	238	214	192	159	140	
	CMDD	CMDA	Push-pull driving	5.6	4.8	4.4	4.1	4	
	CIVIDB	CIVIDA	Open-drain driving	227	201	176	137	114	
ч _{РD}	CLKA	CLKB	Push-pull driving	5.5	4.1	3.6	3.2	3	ns
	DATA	DATB	Duch pull driving	5.8	4.8	4.4	4.2	6.8	
	DATB	DATA	Push-pull anving	5.6	4.8	4.4	4.1	4	
	SEL	B-Port	Push-pull driving	13	11	10	9.4	9.1	
t _{rA}	A-port	rise time	Push-pull driving	4.8	5.1	5.1	5.3	5.7	
t _{rB}	B-port	rise time	Push-pull driving	6.1	3.8	2.9	1.9	1.5	
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	3.4	2.6	1.7	1.3	
t _{fA}	A-port	fall time	Push-pull driving	3.4	2.8	2.6	2.6	2.6	ns
t _{fB}	B-port	fall time	Push-pull driving	4.2	3	2.3	1.7	1.5	
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	2.1	1.6	1.2	1	
	ChA-to-	ChB skew	Push-pull driving	0.4	0.4	0.3	0.4	0.4	
t-wo	ChB-to-	ChA skew	Push-pull driving	0.3	0.3	0.3	0.3	0.4	ns
t _{sk(O)}	Channe	el-to-Clock kew	Push-pull driving	1.68	1.5	1.5	1.5	1.7	113
	0		Push-pull driving	60	80	120	120	120	A dia a
	Con	nmand	Open-drain driving	2	2	2	2	2	ividps
wax uata rate	С	lock	Push-pull driving	30	40	60	60	60	MHz
	C	Data	Push-pull driving	60	80	120	120	120	Mbps

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

www.ti.com

SWITCHING CHARACTERISTICS

over operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (unless otherwise noted)

	0		0 00/1					,					
PARAMETER	FROM	TO	TEST	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V V	V _{ссв} = ± 0.1	1.8 V 5 V	V _{ССВ} = ± 0.2	2.5 V 2 V	V _{ССВ} = ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(001901)	CONDITIONS	ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDD	Push-pull driving	5.1		13		9		8		7.5	
	CIVIDA	CIVIDB	Open-drain driving	210		777		756		684		758	
	CMDB	CMDA	Push-pull driving	4.5		10.6		9.2		8.5		8.2	
	CIVIDB	CIVIDA	Open-drain driving	200		616		560		433		375	-
^L PD	CLKA	CLKB	Push-pull driving	4.7		13.1		9.8		6		5.2	115
	DATA	DATB	Duch null driving	5.1		13		9		8		7.8	
	DATB	DATA	Push-pull anving	4.5		11		9.3		8.8		8.4	
	SEL	B-Port	Push-pull driving	9.5		26		21		19		18	
t _{rA}	A-port	rise time	Push-pull driving	2.7	1.5	5.8	1.7	5.9	1.7	6	1.8	6.1	
t _{rB}	B-port	rise time	Push-pull driving	3.3	1.7	8.2	1.3	6.6	1	4.3	0.8	2.9	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.7	6.4	1.3	4.9	0.9	3.2	0.8	2.5	
t _{fA}	A-port	t fall time	Push-pull driving	2.4	1	3.9	0.9	3.4	0.9	3.2	1.3	3.3	
t _{fB}	B-port	t fall time	Push-pull driving	3.7	1.1	6.3	0.9	5.2	0.6	3.9	0.6	3.2	ns
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	0.9	4.1	0.8	3.2	0.5	2.2	0.5	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.32		0.47		0.58		0.63		0.63	
turo	ChB-to-	ChA skew	Push-pull driving	0.27		0.24		0.23		0.22		0.22	ns
t _{sk(O)}	Channe s	el-to-Clock kew	Push-pull driving	1.47		1.66		1.68		1.82		1.77	
	0		Push-pull driving	60		80		120		120		120	Mahara
	Con	nmand	Open-drain driving	2		2		2		2		2	ivips
wax data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
-	C	Data	Push-pull driving	60		80		120		120		120	Mbps

SCES682C-DECEMBER 2008-REVISED FEBRUARY 2009

SWITCHING CHARACTERISTICS

over operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted)

	FROM	то	TEOT	V _{CCB} = 1.2 V	V _{CCB} =	1.5 V	V _{CCB} =	1.8 V	V _{CCB} = 2	2.5 V	V _{CCB} =	3.3 V	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS		± 0.1	v	± 0.1	5 V	± 0.2	V	± 0.3	3 V	UNIT
	((001101)	Combinionio	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDP	Push-pull driving	4.8		12		8		6		5.7	
	CIVIDA	CIVIDB	Open-drain driving	183		726		715		686		780	
	CMDD	CMDA	Push-pull driving	4		9		7		6.4		6	
	CIVIDB	CIVIDA	Open-drain driving	175		565		563		441		392	
^L PD	CLKA	CLKB	Push-pull driving	4.5		13		9		5.4		4.5	ns
	DATA	DATB	Duch null driving	4.7		12		8.4		6		5.8	
	DATB	DATA	Push-pull anving	4.1		9		7.5		6.4		6.3	
t .	SEL	B-Port	Push-pull driving	8.2		22		17		14.8		14	
t _{rA}	A-port	rise time	Push-pull driving	2	1.1	4	1.1	4.3	1.2	4.5	1.3	4.6	
t _{rB}	B-port	rise time	Push-pull driving	6.2	1.7	7.9	1.2	6.2	1	4.3	0.8	3.1	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.7	6.4	1.3	4.9	0.9	3.2	0.8	2.5	
t _{fA}	A-port	fall time	Push-pull driving	1.8	0.8	3.2	0.7	2.8	0.7	1.7	0.7	2.6	
t _{fB}	B-port	fall time	Push-pull driving	3.5	1	5.6	0.9	3.5	0.6	1.9	0.6	3	ns
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	0.9	4.1	0.8	3.2	0.5	2.2	0.5	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.33		0.45		0.48		0.53		0.67	
turo	ChB-to-	ChA skew	Push-pull driving	0.28		0.24		0.23		0.23		0.22	ns
t _{sk(O)}	Channe s	el-to-Clock kew	Push-pull driving	1.51		1.58		1.46		1.56		1.48	
	0		Push-pull driving	60		80		120		120		120	
	Con	nmand	Open-drain driving	2		2		2		2		2	wbps
Max data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
=	C	Data	Push-pull driving	60		80		120		120		120	Mbps

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

www.ti.com

SWITCHING CHARACTERISTICS

over operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

•	•		• • • • • • •		•			,					
PARAMETER	FROM	TO	TEST	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{ССВ} = ± 0.2	2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(001901)	CONDITIONS	ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDD	Push-pull driving	4.4		11		7.4		4.4		3.8	
	CIMDA	CIVIDB	Open-drain driving	143		544		596		605		669	
	CMDB	CMDA	Push-pull driving	3.8		7.6		5.5		4.2		3.7	
	CIVIDB	CIVIDA	Open-drain driving	137		434		444		414		372	-
чРD	CLKA	CLKB	Push-pull driving	4.1		12		8		4.8		3.8	115
	DATA	DATB	Duch null driving	4.4		11		7		4.5		3.8	
	DATB	DATA	Push-pull anving	4.4		8		5.5		4.1		3.7	
	SEL	B-Port	Push-pull driving	7		18		13		10.5		9	
t _{rA}	A-port	rise time	Push-pull driving	1.4	0.75	2.2	0.74	2.2	1.06	2.6	0.7	2.8	
t _{rB}	B-port	rise time	Push-pull driving	6.3	1.91	7.7	1.34	6.1	0.95	4.2	0.83	3.2	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.67	6.4	1.27	4.9	0.9	3.2	0.76	2.6	
t _{fA}	A-port	fall time	Push-pull driving	1.1	0.58	1.9	0.58	2	0.61	1.9	0.57	1.9	
t _{fB}	B-port	fall time	Push-pull driving	3.6	1.04	5.4	0.87	4.3	0.66	3.4	0.57	3	ns
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	0.92	4.2	0.79	3.2	0.56	2.2	0.49	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.41		0.43		0.39		0.59		0.68	
turo	ChB-to-	ChA skew	Push-pull driving	0.41		0.24		0.2		0.19		0.18	ns
t _{sk(O)}	Channes	el-to-Clock kew	Push-pull driving	2.11		1.47		1.3		1.25		1.21	10
	0		Push-pull driving	60		80		120		120		120	
	Con	nmand	Open-drain driving	2		2		2		2		2	ivips
wax data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
	C	Data	Push-pull driving	60		80		120		120		120	Mbps

SCES682C-DECEMBER 2008-REVISED FEBRUARY 2009

www.ti.com

SWITCHING CHARACTERISTICS

over operating free-air	temperati	ure range,	$V_{CCA} =$	3.3 V ± 0.3	V (unless otherv	wise noted)

PARAMETER	FROM	TO	TEST	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = 2 ± 0.2	2.5 V V	V _{CCB} = ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(001901)	CONDITIONS	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDP	Push-pull driving	4.4		11		7		4.1		3.3	
	CIVIDA	CIVIDB	Open-drain driving	116		432		477		506		533	
	CMDB	CMDA	Push-pull driving	4.2		7.5		5.4		3.8		3	
+	CIVIDB	CIVIDA	Open-drain driving	112		349		363		347		324	200
'PD	CLKA	CLKB	Push-pull driving	4.1		12		7.8		4.4		3.5	115
	DATA	DATB	Buch pull driving	4.3		11		6.8		4		3.8	
t _{rA}	DATB	DATA	Push-puli unving	7.9		7.8		5.4		3.4		3	
	SEL	B-Port	Push-pull driving	6.4		16		11.5		8.8		7.6	
t _{rA}	A-port	rise time	Push-pull driving	1.1	0.57	1.7	0.57	1.8	0.56	1.7	0.53	1.8	
t _{rB}	B-port	rise time	Push-pull driving	6.2	1.96	7.7	1.43	6.1	0.95	4.2	0.71	3.1	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.67	6.4	1.26	4.9	0.91	3.3	0.76	2.5	
t _{fA}	A-port	fall time	Push-pull driving	1	0.53	1.6	0.52	1.6	0.53	1.6	0.56	1.6	
t _{fB}	B-port	fall time	Push-pull driving	3.4	0.95	5.2	0.8	4.1	0.63	3.2	0.58	2.9	ns
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	0.92	4.1	0.79	3.2	0.56	2.2	0.49	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.39		0.36		0.39		0.57		0.65	
takio	ChB-to-	ChA skew	Push-pull driving	0.45		0.3		0.19		0.19		0.18	ns
t _{sk(O)}	Channe	l-to-Clock kew	Push-pull driving	1.7		1.61		1.34		1.22		1.14	
	0		Push-pull driving	60		80		120		120		120	Misso
	Con	imanu	Open-drain driving	2		2		2		2		2	wops
iviax uata rate	C	lock	Push-pull driving	30		40		60		60		60	MHz
	C	ata	Push-pull driving	60		80		120		120		120	Mbps

OPERATING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

						V_{CCA}			
				1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
		PARAMETER	TEST CONDITIONS			V _{CCB}			UNIT
				1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
				TYP	TYP	TYP	TYP	TYP	
Data	0	A-port input, B-port output		14.5	12.9	12.1	13.4	15	
	C _{pdA}	B-port input, A-port output	$C_{L} = 0, f = 10 \text{ MHz},$	20.7	20.7	21	22	23.2	
and		A-port input, B-port output	$v_r = v_r = 1$ Hs, OE = outputs enabled	23.2	23.4	23.6	24.5	25.5	pF
CMD	C _{pdB}	B-port input, A-port output		14.1	12.2	11.5	12.9	14.4	
		A-port input, B-port output	OE = outputs disabled	0.1	0.1	0.1	0.1	0.1	
Clock (C _{pdA}	A-port input, B-port output	$C_{L} = 0, f = 10 \text{ MHz},$	0.4	0.4	0.4	0.5	0.7	
	C_{pdB}	B-port input, A-port output	$t_r = t_r = 1$ ns, OE = outputs enabled	14	13.9	13.8	13.8	13.7	pF

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

POWER-UP CONSIDERATIONS

The following power-up sequence for this TXS02612 SDIO port expander with voltage-level translator should be followed to ensure proper operation and to avoid any unnecessary excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins. The following power-up sequence should be used to safe-guard against these problems:

- 1. Connect the ground pin of the device first before any power-supply voltage is applied.
- 2. Connect and power up V_{CCA}, which internally powers up the SEL control logic of the TXS02612.
- 3. Depending on the port to be chosen, the SEL pin can be high or low. If SEL high is needed (i.e., A port to B_1 port), ramp the SEL pin with the V_{CCA} power supply. Otherwise, keep SEL Low.
- 4. Apply V_{CCB0} and V_{CCB1} only after the V_{CCA} power supply is applied.

TEXAS INSTRUMENTS

www.ti.com

SCES682C - DECEMBER 2008 - REVISED FEBRUARY 2009

PARAMETER MEASUREMENT INFORMATION

NOTES:

ES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is lowexcept when disabled by the output control. Waveform2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z_Ω = 50Ω, dv/dt≥1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and b_{HZ} are the same as t_{dis} .
- F. t_{PZL} and b_{ZH} are the same as t_{en} .
- G. t_{PLH} and b_{HL} are the same as b_{d} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CC} is the V_{CC} associated with the input point.
- J. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
TXS02612RTWR	ACTIVE	WQFN	RTW	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YJ612	Samples
TXS02612ZQSR	ACTIVE	BGA MICROSTAR JUNIOR	ZQS	24	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	YJ612	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS02612ZQSR	BGA MI CROSTA R JUNI OR	ZQS	24	2500	330.0	12.4	3.3	3.3	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Feb-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXS02612ZQSR	BGA MICROSTAR JUNIOR	ZQS	24	2500	338.1	338.1	20.6

ZQS (S-PBGA-N24)

PLASTIC BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This package is lead-free.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 F. Falls within JEDEC M0-220.

<u>RTW (S-PWQFN-</u>N24)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

RTW (S-PWQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments: <u>TXS02612RTWR</u> <u>TXS02612ZQSR</u>