2.4-GHz RF Front End, 14-dBm output power

FEATURES

- Seamless Interface to 2.4-GHz Low Power RF Devices from Texas Instruments
- Up to +14-dBm (25mW) Output Power
- 6-dB Typical Improved Sensitivity on CC24xx and CC2500, CC2510, and CC2511
- Few External Components
 - Integrated Switches
 - Integrated Matching Network
 - Integrated Balun
 - Integrated Inductors
 - Integrated PA
 - Integrated LNA
- Digital Control of LNA Gain by HGM Pin
- 100-nA in Power Down (EN = PAEN = 0)
- Low Transmit Current Consumption
 - 22-mA at 3-V for +12-dBm, PAE = 23%
- Low Receive Current Consumption
 - 3.4-mA for High Gain Mode
 - 1.8-mA for Low Gain Mode
- 4.6-dB LNA Noise Figure, including T/R Switch and external antenna match
- RoHS Compliant 4x4-mm QFN-16 Package
- 2.0-V to 3.6-V Operation

APPLICATIONS

- All 2.4-GHz ISM Band Systems
- Wireless Sensor Networks
- Wireless Industrial Systems
- IEEE 802.15.4 and ZigBee Systems
- Wireless Consumer Systems
- Wireless Audio Systems

DESCRIPTION

CC2590 is a cost-effective and high performance RF Front End for low-power and low-voltage 2.4-GHz wireless applications.

CC2590 is a range extender for all existing and future 2.4-GHz low-power RF transceivers, transmitters and System-on-Chip products from Texas Instruments.

CC2590 increases the link budget by providing a power amplifier for increased output power, and an LNA with low noise figure for improved receiver sensitivity.

CC2590 provides a small size, high output power RF design with its 4x4-mm QFN-16 package.

CC2590 contains PA, LNA, switches, RF-matching, and balun for simple design of high performance wireless applications.

CC2590 BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS

Under no circumstances must the absolute maximum ratings be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>All supply pins must have the same voltage</td>
<td>–0.3 to 3.6 V</td>
</tr>
<tr>
<td>Voltage on any digital pin</td>
<td>–0.3 to VDD + 0.3; max 3.6 V</td>
<td></td>
</tr>
<tr>
<td>Input RF level</td>
<td>+10 dBm</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>–50 to 150 °C</td>
<td></td>
</tr>
<tr>
<td>Reflow soldering temperature</td>
<td>According to IPC/JEDEC J-STD-020</td>
<td>260 °C</td>
</tr>
<tr>
<td>ESD</td>
<td>Human Body Model, all pins except pin 10</td>
<td>2000 V</td>
</tr>
<tr>
<td></td>
<td>Human Body Model, pin 10</td>
<td>1900 V</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model</td>
<td>1000 V</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

The operating conditions for CC2590 are listed below.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>–40 °C</td>
<td>85 °C</td>
<td></td>
</tr>
<tr>
<td>Operating supply voltage</td>
<td>2.0 V</td>
<td>3.6 V</td>
<td></td>
</tr>
<tr>
<td>Operating frequency range</td>
<td>2400 MHz</td>
<td>2483.5 MHz</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

\(T_C = 25°C, V_{DD} = 3.0V \), \(f_{RF} = 2440\text{MHz} \) (unless otherwise noted). Measured on CC2590EM reference design including external matching components.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive current, High Gain Mode</td>
<td>HGM = 1</td>
<td>3.4</td>
<td>4.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Receive current, Low Gain Mode</td>
<td>HGM = 0</td>
<td>1.8</td>
<td>2.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Transmit current</td>
<td>(P_{IN} = 0.5 \text{ dBm}, P_{OUT} = 12.2 \text{ dBm})</td>
<td>22.1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P_{IN} = -3.5 \text{ dBm}, P_{OUT} = 10.0 \text{ dBm})</td>
<td>16.8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmit current</td>
<td>No input signal</td>
<td>8.0</td>
<td>10.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power down current</td>
<td>EN = PAEN = 0</td>
<td>0.1</td>
<td>0.3</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>High input level (control pins)</td>
<td>EN, PAEN, HGM, RXTX</td>
<td>1.3</td>
<td>VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low input level (control pins)</td>
<td>EN, PAEN, HGM, RXTX</td>
<td>0.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power down - Receive mode switching time</td>
<td>EN, PAEN, HGM, RXTX</td>
<td>1.4</td>
<td>VDD</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Power down - Transmit mode switching time</td>
<td>EN, PAEN, HGM, RXTX</td>
<td>0.8</td>
<td>VDD</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

RF Receive

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain, High Gain Mode</td>
<td>HGM = 1</td>
<td>11.4</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain, Low Gain Mode</td>
<td>HGM = 0</td>
<td>0</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain variation, 2400 – 2483.5 MHz, High Gain Mode</td>
<td>HGM = 1</td>
<td>1.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain variation, 2.0V – 3.6V, High Gain Mode</td>
<td>HGM = 1</td>
<td>1.7</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise figure, High Gain Mode</td>
<td>HGM = 1, including internal T/R switch and external antenna match</td>
<td>4.6</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 1 dB compression, High Gain Mode</td>
<td>HGM = 1</td>
<td>–21</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain, High Gain Mode</td>
<td>HGM = 1</td>
<td>11.4</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain, Low Gain Mode</td>
<td>HGM = 0</td>
<td>0</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain variation, 2400 – 2483.5 MHz, High Gain Mode</td>
<td>HGM = 1</td>
<td>1.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain variation, 2.0V – 3.6V, High Gain Mode</td>
<td>HGM = 1</td>
<td>1.7</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise figure, High Gain Mode</td>
<td>HGM = 1, including internal T/R switch and external antenna match</td>
<td>4.6</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 1 dB compression, High Gain Mode</td>
<td>HGM = 1</td>
<td>–21</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

$T_C = 25^\circ C$, $V_{DD} = 3.0V$, $f_{RF} = 2440MHz$ (unless otherwise noted). Measured on CC2590EM reference design including external matching components.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input IP3, High Gain Mode</td>
<td>HGM = 1</td>
<td>–9</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input reflection coefficient, S11</td>
<td>HGM = 1, measured at antenna port</td>
<td>–19</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Transmit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td></td>
<td>14.1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output power, P_{OUT}</td>
<td>$P_{IN} = 4.5$ dBm</td>
<td>13.8</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{IN} = 0.5$ dBm</td>
<td>12.2</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{IN} = -3.5$ dBm</td>
<td>10.0</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Added Efficiency, PAE</td>
<td>$P_{IN} = 0.5$ dBm</td>
<td>23.5</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 1 dB compression</td>
<td></td>
<td>10.4</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output IP3</td>
<td></td>
<td>23</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output power variation over frequency</td>
<td>2400 – 2483.5 MHz, $P_{IN} = 0.5$ dBm</td>
<td>0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output power variation over power supply</td>
<td>2.0V – 3.6V, $P_{IN} = 0.5$ dBm</td>
<td>3.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output power variation over temperature</td>
<td>-40°C – 85°C, $P_{IN} = 0.5$ dBm</td>
<td>1.1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd harmonic power</td>
<td>The 2nd harmonic can be reduced to below regulatory limits by using an external LC filter and antenna. See application note AN032 for regulatory requirements.</td>
<td>–14</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd harmonic power</td>
<td>The 3rd harmonic can be reduced to below regulatory limits by using an external LC filter and antenna. See application note AN032 for regulatory requirements.</td>
<td>–28</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The CC2590 pinout and description are shown in Figure 1 and Table 1, respectively.

PIN AND I/O CONFIGURATION

(TOP VIEW)

![Diagram of CC2590 pinout](image)

NOTE:

The exposed die attach pad **must** be connected to a solid ground plane as this is the primary ground connection for the chip. Inductance in vias to the pad should be minimized. It is highly recommended to follow the reference layout. Changes will alter the performance. Also see the PCB landpattern information in this data sheet.

For best performance, minimize the length of the ground vias, by using a 4-layer PCB with ground plane as layer 2 when CC2590 is mounted onto layer 1.
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td>GND</td>
<td>Ground The exposed die attach pad must be connected to a solid ground plane.</td>
</tr>
<tr>
<td>1</td>
<td>NC</td>
<td>Not Connected</td>
<td>RF interface towards CC24xx or CC25xx device.</td>
</tr>
<tr>
<td>2</td>
<td>RF_N</td>
<td>RF</td>
<td>RXTX switching voltage when connected to CC24xx devices.</td>
</tr>
<tr>
<td>3</td>
<td>RXTX</td>
<td>Analog/Control</td>
<td>RXTX switching voltage when connected to CC24xx devices.</td>
</tr>
<tr>
<td>4</td>
<td>RF_P</td>
<td>Digital Input</td>
<td>RF interface towards CC24xx or CC25xx device.</td>
</tr>
<tr>
<td>5</td>
<td>PAEN</td>
<td>Digital Input</td>
<td>Digital control pin.</td>
</tr>
<tr>
<td>6</td>
<td>EN</td>
<td>Digital Input</td>
<td>Digital control pin.</td>
</tr>
<tr>
<td>7</td>
<td>HGM</td>
<td>Digital Input</td>
<td>Digital control pin.</td>
</tr>
<tr>
<td>8, 9, 12, 14</td>
<td>GND</td>
<td>Ground</td>
<td>Secondary ground connections. Should be shorted to the die attach pad on the top PCB layer.</td>
</tr>
<tr>
<td>10</td>
<td>AVDD_PA2</td>
<td>Power</td>
<td>2.0-V – 3.6-V Power. PCB trace to this pin serves as inductive load to PA.</td>
</tr>
<tr>
<td>11</td>
<td>ANT</td>
<td>RF</td>
<td>Antenna interface.</td>
</tr>
<tr>
<td>13</td>
<td>AVDD_LNA</td>
<td>Power</td>
<td>2.0-V – 3.6-V Power. PCB trace to this pin serves as inductive load to LNA.</td>
</tr>
<tr>
<td>15</td>
<td>BIAS</td>
<td>Analog</td>
<td>Biasing input. Resistor between this node and ground sets bias current to PAs.</td>
</tr>
<tr>
<td>16</td>
<td>AVDD_BIAS</td>
<td>Power</td>
<td>2.0-V – 3.6-V Power.</td>
</tr>
</tbody>
</table>
CC2590EM Evaluation Module

Figure 2. CC2590EM Evaluation Module

Table 2. List of Materials (See CC2590EM Reference Design)

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>FUNCTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L112</td>
<td>Part of antenna match.</td>
<td>1.5 nH: LQW15AN1N5B00 from Murata</td>
</tr>
<tr>
<td>C111</td>
<td>Part of antenna match.</td>
<td>0.5 pF, GRM1555C1HR50BZ01 from Murata</td>
</tr>
<tr>
<td>C112</td>
<td>DC block.</td>
<td>47 pF, GRM1555C1H470JZ01 from Murata</td>
</tr>
<tr>
<td>C161</td>
<td>Decoupling capacitor.</td>
<td>1 nF: GRM1555C1H102JA01 from Murata</td>
</tr>
<tr>
<td>C101/C102</td>
<td>Decoupling, Will affect PA resonance. See CC2590EM reference design for placement.</td>
<td>27 pF</td>
</tr>
<tr>
<td>C131/C132</td>
<td>Decoupling, Will affect LNA resonance. See CC2590EM reference design for placement.</td>
<td>18 pF</td>
</tr>
<tr>
<td>C2</td>
<td>Decoupling of external balun</td>
<td>1 nF: LWQ15AN1N5B00 from Murata</td>
</tr>
<tr>
<td>TL101(1)</td>
<td>Transmission line. Will affect PA resonance. (simulated inductance: 0.87nH)</td>
<td>See CC2590EM reference design. Transmission line: Length = 40 mil, Width = 8 mil</td>
</tr>
<tr>
<td>TL131</td>
<td>Transmission line. Will affect LNA resonance. (simulated inductance: 1.64nH)</td>
<td>See CC2590EM reference design. Transmission line: Length = 100 mil, Width = 8 mil</td>
</tr>
<tr>
<td>R151</td>
<td>Bias resistor</td>
<td>4.3 kΩ: RK73H1ETTP4301F from Koa</td>
</tr>
</tbody>
</table>

(1) Transmission lines are measured from edge of pad of the CC2590 footprint to edge of pad of DC coupling capacitor. The length of the transmission lines depend on the distance to the ground plane. If another PCB stack up is chosen the length of the transmission lines needs to be adjusted.

PCB description: 4 layer PCB 1.6mm
- Copper 1: 35 µm
- Dielectric 1-2: 0.35 mm (e.g. 2x Prepreg 7628 AT05 47% Resin)
- Copper 2: 18 µm
- Dielectric 2-3: 0.76 mm (4 x 7628M 43% Resin)
- Copper 3: 18 µm
- Dielectric 3-4: 0.35 mm (e.g. 2x Prepreg 7628 AT05 47% Resin)
- Copper 4: 35 µm

DE104iML or equivalent substrate (Resin contents around 45%, which gives Er=4.42 at 2.4GHz, TanD=0.016)
TYPICAL CHARACTERISTICS

LNA GAIN AND NOISE FIGURE
 VS FREQUENCY

Gain LGM
Noise Figure HGM
Gain HGM

LNA GAIN
 VS TEMPERATURE

Gain LGM
Gain HGM

LNA GAIN
 VS POWER SUPPLY

Gain LGM
Gain HGM

Figure 3.

Figure 4.

Figure 5.

Figure 6. Input Impedance of LNA Measured from Antenna Port on CC2590EM
TYPICAL CHARACTERISTICS (continued)

OUTPUT POWER, PAE AND CURRENT CONSUMPTION
vs INPUT POWER

OUTPUT POWER, PAE AND CURRENT CONSUMPTION
vs FREQUENCY

Figure 7.

OUTPUT POWER, PAE AND CURRENT CONSUMPTION
vs TEMPERATURE

OUTPUT POWER, PAE AND CURRENT CONSUMPTION
vs POWER SUPPLY

Figure 9.

Figure 8.

Figure 10.
Controlling the Output Power from CC2590

The output power of CC2590 is controlled by controlling the input power. The CC2590 PA is designed to work in compression (class AB), and the best efficiency is reached when a strong input signal is applied.

Input Levels on Control Pins

The four digital control pins (PAEN, EN, HGM, RXTX) have built-in level-shifting functionality, meaning that if the CC2590 is operating from a 3.6-V supply voltage, the control pins will still sense 1.6-V - 1.8-V signals as logical '1'.

An example of the above would be that RXTX is connected directly to the RXTX pin on CC24xx, but the global supply voltage is 3.6-V. The RXTX pin on CC24xx will switch between 0-V (RX) and 1.8-V(TX), which is still a high enough voltage to control the mode of CC2590.

The input voltages should however not have logical ‘1’ level that is higher than the supply.

Connecting CC2590 to a CC24xx Device

Table 3. Control Logic for Connecting CC2590 to a CC24xx Device

<table>
<thead>
<tr>
<th>PAEN = EN</th>
<th>RXTX</th>
<th>HGM</th>
<th>MODE OF OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Power Down</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>RX Low Gain Mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>RX High Gain Mode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>TX</td>
</tr>
</tbody>
</table>

Figure 11. CC2590 + CC24xx Application Circuit
Connecting CC2590 to the CC2500, CC2510, or CC2511 Device

Table 4. Control Logic for Connecting CC2590 to a CC2500/10/11 Devices

<table>
<thead>
<tr>
<th>PAEN</th>
<th>EN</th>
<th>RXTX</th>
<th>HGM</th>
<th>MODE OF OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>NC</td>
<td>X</td>
<td>Power Down</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>NC</td>
<td>0</td>
<td>RX Low Gain Mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>NC</td>
<td>1</td>
<td>RX High Gain Mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>NC</td>
<td>X</td>
<td>TX</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>NC</td>
<td>X</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>

Figure 12. CC2590 + CC2500/10/11 Device Application Circuit
Connecting CC2590 to a CC2520 Device

Table 5. Control Logic for Connecting CC2590 to a CC2520 Device

<table>
<thead>
<tr>
<th>PAEN</th>
<th>EN</th>
<th>RXTX</th>
<th>HGM</th>
<th>MODE OF OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>NC</td>
<td>X</td>
<td>Power Down</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>NC</td>
<td>0</td>
<td>RX Low Gain Mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>NC</td>
<td>1</td>
<td>RX High Gain Mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>NC</td>
<td>X</td>
<td>TX</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>NC</td>
<td>X</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>

Figure 13. CC2590 + CC2520 Application Circuit

PCB Layout Guidelines

The exposed die attach pad must be connected to a solid ground plane as this is the primary ground connection for the chip. Inductance in vias to the pad should be minimized. It is highly recommended to follow the reference layout. Changes will alter the performance. Also see the PCB landpattern information in this data sheet. For best performance, minimize the length of the ground vias, by using a 4-layer PCB with ground plane as layer 2 when CC2590 is mounted onto layer 1.

PCB trace inductors are used to be able to optimize the inductance value, and they are too small to be replaced by discrete inductors. The placement of the power supply decoupling capacitors C101/C102 and C131/C132 are important to set the PCB trace inductance values accurately.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2590RGVR</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>CC2590</td>
<td></td>
</tr>
<tr>
<td>CC2590RGVRG4</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>CC2590</td>
<td></td>
</tr>
<tr>
<td>CC2590RGVT</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>CC2590</td>
<td></td>
</tr>
<tr>
<td>CC2590RGVTG4</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>CC2590</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI’s terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines “Green” to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. – The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

DEVICE INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2590RGVR</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>4.3</td>
<td>4.3</td>
<td>1.5</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>CC2590RGVT</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>4.3</td>
<td>4.3</td>
<td>1.5</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Q1: Upper-left quadrant
- Q2: Upper-right quadrant
- Q3: Lower-left quadrant
- Q4: Lower-right quadrant

Pack Materials-Page 1
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2590RGVR</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>2500</td>
<td>338.1</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>CC2590RGVT</td>
<td>VQFN</td>
<td>RGV</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No–leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO–220.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SQFN PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com (http://www.ti.com).
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

www.ti.com/audio
www.amplifier.ti.com
www.dataconverter.ti.com
www.dlp.com
www.dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-electronics
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

CC2590RGVRG4 CC2590RGVTG4 CC2590RGVR CC2590RGVT