AVR1607: Brushless DC Motor (BLDC) Control in Sensor mode using ATxmega128A1 and ATAVRMC323

Features

- BLDC Motor Basics
- Hardware Implementation
- Code Example

References

[1] ATxmega128A1 Data sheet

- [2] AVR430: MC300 Hardware User Guide
- [3] AVR1014: MC303 Hardware User Guide
- [4] AVR601: Atmel Modular Evaluation Kits for Motor Control Applications

Glossary

BLDC : Brushless DC PWM : Pulsed Width Modulation IGBT : Insulated Gate Bipolar Transistor AWEX : Advanced Waveform Extension

1 Introduction

This application note describes how to implement a control of Brushless DC motor (BLDC) in sensor mode using the ATxmega128A1, Atmel[®] AVR[®] microcontroller and the ATAVRMC323 development kit.

This application note deals only with BLDC motor control application using Hall effect position sensors to control commutation sequence.

In this document, we will give a short description of brushless DC motor theory of operations. We will detail how to control a brushless DC motor in sensor mode and we will also provide a short description of the ATAVRMC303 and ATAVRMC300 boards used in this application note.

Software implementation is also discussed with software control loop using a PID filter.

8-bit **AVR**[®] Microcontrollers

Application Note

Rev. 8311A-AVR-07/10

2 Brushless DC motor Theory of Operation

2.1 Simplified Model of a BLDC Motor

A simplified model of a three phases BLDC motor stator consists of three coils arranged in three directions U, V and W (Figure 1).

A permanent magnet forms the rotor. The rotor in a BLDC motor consists of an even number of permanent magnets. The number of magnetic poles in the rotor also affects the step size and torque ripple of the motor. More poles provide smaller steps and less torque ripple. The permanent magnets go from 1 to 5 pairs of poles. In certain cases it can go up to 8 pairs of poles.

Here the rotor is outlined as a bar magnet with its rotary axis at the intersection of the three axes U, V, W perpendicular to the plane of these axis. The orientation/position of the permanent magnet can be controlled by driving a configuration of currents through the three coils. The bar magnet comes to position sector 1 when a current is driven from W through V and it comes to the following orientation (sector 2) when a current is driven from W to U.

2.2 Six-step commutation

The method for energizing the motor windings in the sensor method described in this application note is the six-step commutation. Each step, or sector, is equivalent to 60 electrical degrees. Six sectors make up 360 degrees, or one electrical revolution.

The arrows in the winding diagram Figure 2 show the direction current flows through the motor windings in each of the six sectors.

The graph (Figure 3) shows the voltage applied at each lead of the motor during the six sectors. Sequencing through these six sectors moves the motor one electrical revolution.

For every sector, two windings are energized and the third winding is floating (not energized).

Connecting the coils to the power and neutral bus induces the current flow. This is referred to as trapezoidal commutation or block commutation.

² AVR1607

AVR1607

Figure 3. Commutation sequence

Notes :

- Open phase is the one shown with dotted line.
- Hall states are detailed in 2.4 section

2.3 Power Stage

The commutation pattern is controlled with a 3-phase bridge (see Figure 4). The 3 half bridges have 6 power switches (IGBT or MOSFET transistors) which are switched according to the defined commutation pattern.

Figure 4. 3-phases bridge

2.4 Hall sensors

For the estimation of the rotor position, the motor is equipped with three hall sensors. These hall sensors are placed every 120°. With these sensors, 6 different commutations are possible. Phase commutation will depend on these hall sensor values.

Figure 5 shows the three Hall sensors signals H1,H2,H3 as motor turns using sensor control. Hall states are the combination result of H1,H2,H3 signals.

Figure 5. Hall states versus Motor leads in Sensor mode

With a motor of n pairs of poles, the hall sensors frequency is n times faster than the motor rotation.

2.5 Phase Commutations

Power supply to the coils must be changed when hall sensor values change. With right synchronized commutations, the torque remains nearly constant and high.

4 **AVR1607**

Reading hall sensors values (HS_xxx variable) indicates which new scheme should be switched.(see following table)

Hall Sensors Value (H1 H2 H3) = HS_xxx	Hall States	Previous Phases	Previous scheme	Next Phases	Next scheme
110	3	V-W	T3 ; T6	U-W	T1 ; T6
100	1	U-W	T1 ; T6	U-V	T1 ; T4
101	5	U-V	T1 ; T4	W-V	T5 ; T4
001	4	W-V	T5 ; T4	W-U	T5 ; T2
011	6	W-U	T5 ; T2	V-U	T3 ; T2
010	2	V-U	T3 ; T2	V-W	T3 ; T6

Table 1-1. Switches commutation for CW rotation

For motors with multiple poles the electrical rotation does not correspond to a mechanical rotation. A motor with n pair of poles BLDC motor uses n electrical rotation cycles to have one mechanical rotation.

The strength of the magnetic field determines the force and speed of the motor. By varying the current flow through the coils, the speed and torque of the motor can be adjusted. The most common way to control the current flow is to control the average current flow through the coils. PWM (Pulse Width Modulation) is used to adjust the average voltage and thereby the average current, inducing the speed. For example, the PWM frequency selected is the range from 10kHz to 200kHz according to the application (commutation losses, audible frequency...).

Figure 6. PWM scheme

Commutation creates a rotating field.

For instance at Step 5, Phase U is connected to the positive DC bus voltage through T1 and Phase V is connected to ground through T4, Phase W is unpowered. Two flux vectors are generated by phase U and phase V The sum of the two vectors creates the stator flux vector. Then the rotor tries to follow this stator flux.

As soon as the rotor reaches the given position, the hall sensors state changes its value from "101" to "001" a new voltage pattern is selected and applied to the BLDC

motor. Then Phase U is unpowered and Phase W is connected to the positive DC bus, resulting in a new stator flux vector 'Step 4'.

Following the commutation schematic Figure 5 and Table 1-1, we get six different stator flux vectors corresponding to the six commutation steps. These six steps provide one electrical revolution.

3 ATxmega128A1 microcontroller

Based on the high performance AVR 8-bit RISC architecture, the ATxmega128A1 integrates all of the basic peripherals necessary to satisfy the needs of complex algorithms.

The ATxmega128A1 has all necessary resources to provide an integrated solution to control BLDC motors in their system environments.

3.1 Timer/Counters

ATxmega128A1 provides 16-bit timers/counters with :

Four Compare or Capture (CC) Channels in Timer/Counter 0 Two Compare or Capture (CC) Channels in Timer/Counter 1

To generate PWM frequency, this Application Note uses three compare channels (A,B,C) of Timer0 and the Advanced Waveform Extension (AWEX) additional feature to Timer 0. AWEX function is available for ports C and E (Port C is used in this Application Note).

The benefits of AWEX features for motor control are :

- Complementary outputs from each Capture channel
- Four Dead Time Insertion (DTI) which avoid cross conduction
- Separate High and Low Side Dead-Time Setting
- Double Buffered Dead-Time
- Event Controlled Fault Protection
- Single Channel Multiple Output Operation
- Double Buffered Pattern Generation

The output pairs go through a Dead-Time Insertion (DTI) unit that enables generation of the non-inverted Low Side (LS) and inverted High Side (HS) of the WG output with dead time insertion between LS and HS switching. The DTI output will override the normal port value according to the port override setting.

The Fault Protection unit is connected to the Event System. This enables any event to trigger a fault condition that will disable the AWEX output. Several event channels can be used to trigger fault on several different conditions.

3.2 Analog features

ATxmaga128A1 integrates also analog blocks like :

• Two Eight-channel, 12-bit, 2 Msps Analog to Digital Converters, with programmable gain options.

The inputs per ADC are :

o 8 single ended inputs

6 AVR1607

AVR1607

- o 8x4 differential inputs with selectable 1/2/4/8/16/32/64x gain
- Four Analog Comparators with Window compare function, with selectable comparison levels, and interrupts on pin change I/Os.

The ATxmega128A1 includes independent positive and negative comparator inputs available for over-current detection. The Input selection can be achieved from pins :

- Pins 0, 1, 2, 3, 4, 5, 6 for positive input

- Pins 0, 1, 3, 5, 7 for negative input

Its reference (comparison level) can be fixed via the DAC output or any external reference voltage :

- Output from 12-bit DAC
- 64-level scaler of the VCC, available on negative analog comparator input
- Bandgap voltage reference

Refer to the ATxmega128A1 Data sheet for the complete description of the ATxmega128A1 microcontroller.

4 Hardware description

This application has been developed with ATAVRMC300 and ATAVRMC303 boards which are the two parts of the ATAVRMC323 Starter kit.

The ATAVRMC300 board is the power board which embeds the power bridge is connected (see below) to the ATAVRMC303 which is the processor board built around the ATxmega128A1 processor.

Figure 7. MC303 and MC300

Please refer to the ATAVRMC300 and ATAVRMC303 Application Notes :

- AVR430: MC300 Hardware User Guide
- AVR1014: MC303 Hardware User Guide

which also provide boards schematics.

4.1 Hardware implementation

The block diagram of the sensor closed loop is following :

Figure 8. System block diagram

MC303 SENSORL CONTROL

The outputs UH, UL, VH, VL, WH & WL of AVR303 are used to control the power bridge (see Table 1-2). As previously seen, they depend on the Timer0 and AWEX which generates PWM signals.

An external comparator on MC303 board provides a fault signal (Fault_overcurrent) connected to PE4 input.:

The compared inputs are the shunt_pos and AVCC/ 34. Shunt_pos is the voltage monitored across the 0.05 ohm resistor, and equals the motor current divided per 20. So the comparator output will toggle as soon as motor current Im will be :

Im /20 > AVCC / 34 So limit is : Im > 2.94 A

Table 1-2. Microcontroller I/O ports use (TQFP100 package)

PORT A			
PA0	95	U_cond_neg	U Reference for zero-crossing (Not used)
PA1	96	V_cond_neg	V Reference for zero-crossing (Not used)
PA2	97	U_conditioned	= U / 6 (Not used)

8 AVR1607

PA3	98	V_conditioned	= V / 6 (Not used)
PA4	99	W_conditioned	= W / 6 (Not used)
PA5	100	Vn_conditioned	Neutral voltage / 34 (Not used)
PA6	1	Vm	(Not used)
PA7	2	W_cond_neg	W Reference for zero-crossing (Not used)
PORTB			
PB0	5	Speed_ref	Speed Potentiometer (MC303)
PB1	6		
PB2	7	Current_reference	= AVCC / 34
PB3	8	Shunt_pos	0.05 ohm shunt voltage (= motor current / 20)
PB4	9	Shunt_neg	GND of Vmotor
PB5	10	Shunt_U	= Shunt_pos (not used)
PB6	11	Shunt_V	= Shunt_pos (not used)
PB7	12	Shunt_W	= Shunt_pos (not used)
PORTC			
PC0	15	UL	Drives T1 power transistor of MC300
PC1	16	UH	Drives T2 power transistor of MC300
PC2	17	VL	Drives T3 power transistor of MC300
PC3	18	VH	Drives T4 power transistor of MC300
PC4	19	WL	Drives T5 power transistor of MC300
PC5	20	WH	Drives T6 power transistor of MC300
PORT E			
PE0		H1	Hall sensor 1 signal
PE1		H2	Hall sensor 2 signal
PE2		H3	Hall sensor 3 signal
PE4		Fault_overcurrent	External comparator (MC303)output
PE5		Fault_IPM	(Not used)
PORT H			
РНО		ZC_U	Zero crossing external comparator output : sensorless mode (Not used)
PH1		ZC_V	Zero crossing external comparator output : sensorless mode (Not used)
PH2		ZC_W	Zero crossing external comparator output : sensorless mode (Not used)

4.2 MC300 configuration and use

The power board must be supplied with a 12V, 2A, DC Power Supply.

Table 1-3. ATAVRMC300 jumper settings

Jumper	Position	Comment
J1(VHa)	Pin1 & 2 shorted	VHa = +5V
J2(VCC)	Open	Vcc = +5V

4.3 MC303 configuration and use

The jumpers configuration of the MC303 processor board is following :

Jumper	Position	Comment
J15	Open	Shunt_neg (Jumpers to be removed to enable JTAG Programming)
J16	Open	Shunt_U (Jumpers to be removed to enable JTAG Programming)
J17	Open	Shunt_V (Jumpers to be removed to enable JTAG Programming)
J18	Open	Shunt_W (Jumpers to be removed to enable JTAG Programming)

Table 1-4. ATAVRMC303 jumper settings

4.4 Power-supply

This firmware example has been configured according to a power-supply Vm=12V. This power-supply must be able to provide up to 4A output current.

4.5 Motor

The BLDC motor provided inside MC323 and MC300 Motor Control Kit has the following characteristics:

Manufacturer : TECMOTION Number of phases : 3 Number of poles : 8 (4 pairs) Rated voltage : 24V Rated speed : 4000 rpm Rated torque : 62.5 Nm Torque constant : 35 Nm/A = k_tau Line to Line Resistance : 1.8 ohm = R Back EMF : 3.66 V/Krpm = k_e Peak current : 5.4A Maximum speed is 6900 rpm.

4.6 Technical Advices

4.6.1 Disconnecting the BLDC Motor

The BLDC motor must not be disconnected while it is running or while its coils carry current. It is allowed to disconnect a BLDC motor if the PWM duty cycle is 0% and the rotor is at rest so that no current is driven through the coils. Be careful, when stopping the power supply or PWM, a BLDC motor with a high moment of inertia is able to run for a relatively long time.

4.6.2 Ground and Power Wirings

One design its own board has to take care of the ground wiring and power wiring. The power supply of the processor and additional signal conditioning components (e.g. additional fast comparators, operational amplifiers) has to be decoupled from the motor power supply. The ground connection has to be of low resistance and low inductance to prevent against voltage drop and noise due to high currents. A ground plane within a multi layer PCB is recommended for proper operation.

5 Firmware

The source file directory embeds an html documentation which can be opened through the readme.html file.

The application to ATxmega128A1 is detailed in following sections.

5.1 Main Flow chart

The firmware flowchart is described below :

The tasks are scheduled thanks to the g_tick produced each 1.024ms with Timer1.

¹² AVR1607

5.2 INIT : Initialisation functions

	The initialization functions are following
5.2.1 clock_init()	
	 Oscillator : 32MHz RC oscillator and OSC oscillator PLL : clock source=32MHz and factor =16 Prescalers: PSADIV=1 and PSB and PSCDIV=2 : means clk_PE R4 = 128MHz, clk_PE R2 = 64MHz and clk_PE R= 32MHz
5.2.2 mc_init()	
	 Port C : pins 0 to 5 are in output mode and clear (DIRSET and OUTCLR=1) are the outputs connected to transistor power bridge Port E : The input pull up are activated to connect the Hall sensor signals External Interrupts are defined on Port E Pins0/1/2 (Hall signals) Timer 0 configuration is : Clock prescaler /4 (8MHz)
	PWM_Init (255) configures a PWM frequency = 15686 kHz
	 Timer1 configuration is : No Clock prescaler and period=8000 produces a g_tick each 1.024 ms ADCB configuration is : calibration/offset
	- signed conversion mode and 12 bit resolution.
	 ADC prescaler to a Sample rate of CPUFREQ/16. Allow time for storing data. */ Set reference voltage to VCC-0.6 V Setup channel 0 to have single ended input and gain=1 Set input to the channels in ADC B to be PIN 0
	- Enable ADC B with free running mode
5.3 Regulation functions	
	The main loop functions are following.
5.3.1 mci_set_motor_speed ()	
	This function updates the speed setpoint according to the potentiometer adjustment or the speed command received on serial transmission.
	<pre>mc_get_potentiometer_value() returns mc_potentiometer_value</pre>
5.3.2 mc_regulation_loop() :	
	The duty_cycle variable controls the PWM generator. This variable is the result of following functions :
	in Open loop_mode : <i>duty_cycle = mc_get_motor_speed()</i> in_Speed loop mode : <i>duty_cycle = mc_control_speed(mc_get_motor_speed())</i> in Current loop mode :

duty_cycle = mc_control_current(mc_get_potentiometer_value())

5.4 Commutation

The phase commutation has to be achieved according to the 3 Hall sensors. Commutation between steps is achieved when a rising or falling edge occurs on one of the 3 Hall sensor signals.

Hall sensor signals H1/H2/H3 are connected to PE0/PE1/PE2 which are configured as interrupt sources.

(Another solution could be using internal comparators to generate interrupts.)

Port Interrupt 0 Mask is defined as :

sfrb PORTE_INTOMASK = 0x068A

Are also defined :

#define PORTE_INTOMASK PORTE.INTOMASK

PORTE.INTOMASK = (PIN0_bm | PIN1_bm | PIN2_bm);

This means that PORTE_INT0_vect (HALL-A()) is executed if any of the three Hall senor signal is changing.

This interrupt vector executes :

 The transistor commutation according to the HALL_SENSOR_VALUE : HALL SENSOR VALUE is the value of the 3 Hall sensor bits = PORTE.IN & 0x07

The commutation is achieved by the function :

mc_switch_commutation(HALL_SENSOR_VALUE)

• and estimation of speed on Rising edge of H1 (Hall A) sensor. This means the speed is evaluated one time per electrical cycle.

5.4.1 mc_switch_commutation()

This function achieves two operations:

First, the update of the duty-cycle, thanks to function
 :mc_duty_cycle(mc_get_Duty_Cycle())

This is achieved with the update of the Output new compare value of the Timer:

TC_SetCompareA(&TCC0, level); which updates CCABUF register with new compare value

TC_SetCompareB(&TCC0, level);

TC_SetCompareC(&TCC0, level);

The dead time insertion is achieved with **ConfigDTI()** function which configures a dead Time both sides equal to 3.

¹⁴ **AVR1607**

• and secondly, a switch of the power bridge according to next expected position and the direction of the rotation.

AWEX feature, described previously is configured on PortC. Port C0 to C5 are the UH/UL/VH/VL/WH/WL outputs.

An example of Hall detection and the resulting actions is described below:

case HS_001: if (direction==CCW) {Set_Q1Q6();}

else {Set_Q5Q2();}

According to Table 1-1, the scheme following the Hall state 001 is T5 and T2 transistors ON (in CW direction)

Set_Q5Q2() instruction executes the AWEX operation :

AWEX_SetOutoutOveride(AWEXC,PIN5_bm | PIN0_bm)

which drives the Pins 0 and 5 connected to gate of T5 and T2 transistors.

6 RS232 Communication with firmware

6.1 Connecting ATAVRMC303 to use the RS232 interface

Connect PC com port to the ATAVRMC303 RS232 connector through a direct cable.

The serial configuration is:

- 38400 bauds,
- 8 bit data bit,
- 1 stop bit,
- no handshake,

6.2 PC applications

User can communicate with firmware through RS232 with usual PC serial communication applications (i.e. Hyperterminal) or the Atmel "Motor Control Center" application which can be downloaded from Atmel web at url : http://www.atmel.com

6.2.1 PC Terminal : RS232 Messages and Commands

At power up the following welcome message is received on terminal :

"ATMEL Motor Control Interface".

The following commands can be sent to the firmware:

Table 1-5. List of commands

Command	Action
ru	Run motor
st	Stop Motor
help	Gives help
fw	Set direction to Forward
bw	Set direction to Backward
SS	Set Speed (followed with speed value)
gi	Get ID
g0	Get Status 0
g1	Get Status 1

6.2.2 Motor Control Center

The User Guide is available in Install directory at URL :C:\Program Files\Atmel\Motor Control Center\help\Overview.htm

First, the communication must be achieved with the MC303 : Select : Settings -> Target communication -> RS232 Then force the COM port number to the one which has been enumerated as cdc (i.e. COM9 in Figure 10)

The AVR1607 Target must then be selected to get the right configuration : to

select, this target, execute the **File > Select Target** command or click the button in the toolbar. The following dialog pops up:

Figure 10. Motor Control Center Interface

🛃 Motor Control Center - BLDC Sensor	less / MC100 Motor		
File Settings Help			
R5232 Settings X Select Port COM9	۵ 🖉	<u>AIMEL</u>	
Select Baudrate 19200 💌			
OK Cancel	09:38:26	40 50 20 RPM x 100 60 10 70 80	
Direction Settings Revolution Settings C Forward ID Run START -1 I -1 I			
Could not open COM9			

¹⁶ AVR1607

7 USB communication

Communication can be achieved from PC to USB connector of MC303 board.

The AVR1014, MC303 Hardware User Guide details the configuration to be achieved.

Communication port becomes a Virtual Com port which must be forced in RS232 Settings window.

Same tools and commands as described in section 6 can be used through this Virtual Com port.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 International

 ion
 Atmel Asia

 arkway
 Unit 1-5 & 1

 i131
 BEA Tower,

 418 Kwun T

 0311
 Kwun Tong,

 2600
 Hong Kong

 Tel: (852) 22

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonesu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site http://www.atmel.com/ Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Request www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, $AVR^{\$}$, $AVR^{\$}$ logo and others, are the registered trademarks, XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Atmel: ATAVRMC323