OMRON MOS FET Relays

Smallest Class in market, USOP Package MOS FET Relays (C_{OFF} (typical): 20 pF, R_{ON} (typical): 1 Ω) with Low Output Capacitance and ON Resistance ($C \times R = 20 \text{ pF} \cdot \Omega$) in a 60-V Load Voltage Model.

 \bullet ON resistance of 1 Ω (typical) suppresses output signal attenuation.

Note: The actual product is marked differently from the image shown here.

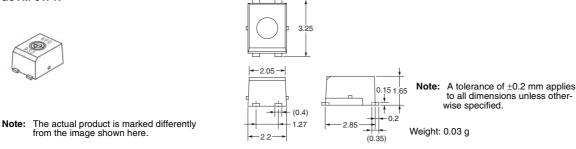
RoHS compliant

■ Application Examples

- Semiconductor inspection tools
- Measurement devices
- Broadband systems
- Data loggers

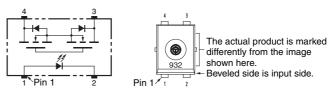
List of Models (Ask your OMRON representative for delivery times.)

Contact form	Terminals	Load voltage (peak value) (See note)	Model	Minimum packaging unit Number per tape
SPST-NO	Surface-mounting	60 V	G3VM-61PR	
	terminals		G3VM-61PR(TR)	1,500


Note: 1. Ask your OMRON representative for orders under 1,500 pcs.

- 2. Tape-cut USOPs are packaged without humidity resistance.
 - Use manual soldering to mount them. Refer to common precautions.
 - 3. The AC peak and DC value is given for the load voltages.

Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-61PR

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-61PR

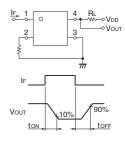
Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-61PR

G3VM-61PR

■ Absolute Maximum Ratings (Ta = 25°C)

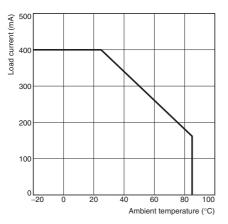
	Item	Symbol	Rating	Unit	Measurement Conditions		
Input	LED forward current	I _F	50	mA			
	LED forward current reduction rate	$\Delta I_{F}^{\circ}C$	-0.5	mA/°C	Ta≥25°C		
	LED reverse voltage	V _R	5	V			
	Connection temperature	Тj	125	°C			
Output	Load voltage (AC peak / DC)	V _{OFF}	60	V			
	Continuous load current (AC peak / DC)	I _O	400	mA			
	ON current reduction rate	$\Delta I_{O}^{\circ}C$	-4.0	mA/°C	Ta≥25°C		
	Connection temperature	Т _ј	125	°C			
	ic strength between input and See note 1.)	V _{I-O}	500	Vrms	AC for 1 min		
Ambien	t operating temperature	T _a	-40 to +85	°C	With no icing or condensation		
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation		
Solderir	ng temperature		260	°C	10 s		


Note:

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μA	V _R = 5 V	
	Capacity between terminals	CT		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		0.5	3	mA	I _O = 100 mA	
Output	Maximum resistance with output ON	R _{ON}		1.0	1.5	Ω	I _F = 5 mA, I _O = 400 mA t < 1 s	
	Current leakage when the relay is open	I _{LEAK}			1	nA	V _{OFF} = 60 V, Ta = 25°C	
	Capacity between terminals	C _{OFF}		20	30	pF	V = 0, f = 1 MHz, t < 1 s	
Capacity between I/O terminals		CI-O		0.3		pF	f = 1 MHz, Vs = 0 V	
Insulation resistance between I/O terminals		R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{I\text{-}O} = 500 \text{ VDC},\\ \text{RoH} \leq 60\% \end{array}$	
Turn-ON time		tON		0.3	0.5	ms	$I_F = 5 \text{ mA}, \text{ R}_L = 200 \Omega,$	
Turn-OFF time		tOFF		0.3	0.5	ms	V _{DD} = 20 V (See note 2.	


■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak / DC)	V _{DD}			48	V
Operating LED forward current	I _F	5	7.5	20	mA
Continuous load current (AC peak / DC)	IO			400	mA
Operating temperature	Τ _a	-20		65	°C

Engineering Data Load Current vs. Ambient Temperature

G3VM-61PR

■ Safety Precautions

Refer to "Common Precautions" for all G3VM models.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron: G3VM-61PR G3VM-61PR(TR)