

W-LAN + Bluetooth Combo Module Data Sheet

802.11b/g/n and Bluetooth v4.0 module

Product Part Number: LBEE5ZSTNC-523

Revision History

Revision Code	Date	Description	Comments
С		Updated: Module Features for U.FL connector. Add: Indication for U.FL connector. Updated: Pin description	
В	Oct.21Aug.1 8.2011	Add: Module Features Update: Notice for Murata Wireless Modules Update: Taping and Reel information	
A	Jul.15.2011	Update: Component Height Update: Current Consumption	
-	Apr.28.2011	First Issue	

Notice for Murata Wireless Modules. Please read the specification including the <u>NOTICE</u> (Page29) and the <u>Disclaimer</u> (Page33) in this datasheet before using the Murata Wireless Modules.

Module Features

- Murata LBEE5ZSTNC module integrates WLAN and Bluetooth functions.
- WLAN: IEEE 802.11 b, g, n compliant.
- Bluetooth: Bluetooth version 4.0 with Bluetooth Low Energy (BLE). Power Class 1.5.
- Typical WLAN Transmit Power (typical):
 - +20.0dBm at 11Mbps, CCK (11b)
 - +15.0dBm at 54Mbps, OFDM (11g)
 - +14.5dBm at 65Mbps, OFDM (11n)
- Typical Bluetooth Transmit Power (typical): +8.0dBm BDR
- Typical WLAN Sensitivity (typical):
 - -88.0dBm at 8% PER, 11Mbps
 - -73.0dBm at 10% PER, 54Mbps
 - -70.0dBm at 10% PER, 65Mbps
- Typical Bluetooth Sensitivity (typical):
 - -92.0dBm DH5
 - -85.0dBm EDR
- Module size: 17.0x10.0mm typical.
- Module height: 2.2mm max.
- FCC (USA) and IC (Canada) Certification with mono-pole type antenna. FCC ID: VPYLBTN, IC ID: 772C-LBTN
- U.FL connector for external antenna connection is selectable but additional certification tests are required.
- Integrated Band Pass Filter
- Seamless integration with several Texas Instruments OMAP[™], SITARA[™], DaVinci[™] and Integra[™] processors
- SDIO host interface for WLAN
- UART host interface for Bluetooth, PCM interface for Audio.
- RoHS Compliance

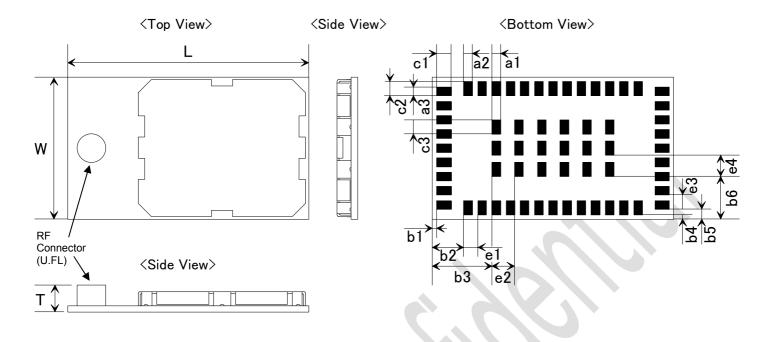
1. Scope

This specification is applied to the IEEE802.11 b/g + Bluetooth ver. 4.0 module.

Host Interface - W-LAN - Bluetooth		: SDIO, : UART, PCM	
IC/ Firmware versior - W-LAN/BT - FEM for WL1	BB/MAC	: Texas Instruments WL1271L : TriQuint TQM679002A (ES2.6	
Reference Clock Sleep Clock Weight MSL		erence Clock is integrated. 68 kHz oscillator is required.	

MSL RoHS Compliance

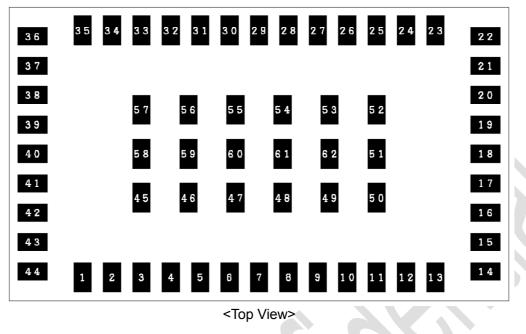
2. Part Number


Part Number	LBEE5ZSTNC-523

3. Block Diagram

			Fast CLK (38.4MHz)	Slow CLK (32.768kHz)
2.4GHz ANT	BPF Connector (U.FL)	(Front End IC)		SDIO I/F PCM I/F UART VIO VBAT

4. Dimensions and Terminal Configurations


Dimensions

					(unit: mm)
Mark	Dimensions	Mark	Dimensions	Mark	Dimensions
L	17.0 +/- 0.2	W	10.0 +/- 0.2	Т	2.2 max.
a1	0.6 +/- 0.1	a2	0.6 +/- 0.1	a3	0.6 +/- 0.1
b1	0.3 +/- 0.2	b2	2.2 +/- 0.2	b3	4.2 +/- 0.2
b4	0.3 +/- 0.2	b5	0.7 +/- 0.2	b6	3.0 +/- 0.2
c1	1.0 +/- 0.1	c2	1.0 +/- 0.1	c3	1.0 +/- 0.1
e1	1.0 +/- 0.1	e2	1.6 +/- 0.1	e3	1.0 +/- 0.1
e4	1.5 +/- 0.1	-	-	-	-

Terminal configuration

Preliminary Specification Number: SP-ZSTN-C P. 7/34

<Top View>

	<top view=""></top>									
	No. Terminal Name Turne Develop Custom Connection to Description									
No.	Terminal Name	Туре	Power	System		IC Terminal	Description			
1	GND	-	-	-	-	-	Ground			
2,3	VBAT	Ρ	-	-	1271/ LDO	PMS VBAT, DCDC Converter	Power supply input			
4	GND	-		-	-	-	Ground			
5	UART_DBG	I/O	-	WLAN	1271	WL_UART_DBG	WL_UART_DBG Should be connected to TP on board for software debug.			
6	WLAN_EN	-	-	WLAN	1271	WL_EN	WL_RST			
7	RS232_RX	I/O	-	WLAN	1271	WL_RS232_Rx	RS232_Rx or I2C_M_SCL			
8	RS232_TX	I/O	-	WLAN	1271	WL_RS232_Tx	RS232_Tx or I2C_M_SDA			
9	WLAN_IRQ	0	-	WLAN	1271	WLAN_IRQ	WLAN interrupt request			
10	BT_EN			BT	1271	BT_EN	BT_RST			
11	NC	10		BT	1271	BT_FUNC1	NC			
12	VIO	Р	5	-	1271	VDDS1 VDDS2 VDDS3 VDDS4	Power supply input			
13	GND		-	-	-	-	Ground			
14	SDIO_D2	I/O	-	WLAN	1271	SDIO_D2	SDIO mode: DATA 2			
15	SDIO_CMD	1/0	-	WLAN	1271	SPI_DIN	SDIO mode: CMD			
16	SDIO_CLK	I	-	WLAN	1271	SPI_CLK	SDIO mode: CLK			
17	SDIO_D0	I/O	-	WLAN	1271	SPI_DOUT	SDIO mode: DATA 0			
18	SDIO_D1	I/O	-	WLAN	1271	SDIO_D1	SDIO mode: DATA 1			
19	SDIO_D3	I/O	-	WLAN	1271	SPI_CSX	SDIO mode :DATA 3			
20	GND	-	-	-	-	-	Ground			
21	SLEEP_CLK	I	-	-	1271	SLOWCLK	SLEEP_CLK input			
22	GND	-	-	-	-	-	Ground			
23	AUD_IN	I		BT	1271	AUD_IN	PCM I/F			
24	AUD_OUT	0		BT	1271	AUD_OUT	PCM I/F			
25	AUD_FSYNC	I/O	-	BT	1271	AUD_FSYNC	PCM I/F			
26	AUD_CLK	I/O	-	BT	1271	AUD_CLK	PCM I/F			

)			ņ		
Ī	Ĭ	Ī	Ĩ	I	I	l	Ľ	1	I	Ľ	1	4

Preliminary	Specification	Number:	SP-ZSTN-C
			D 8/3/

							P. 8/34
27	UART_RTS	I/O	-	BT	1271	HCI_RTS	BT UART I/F
28	UART_CTS	I/O	-	BT	1271	HCI_CTS	BT UART I/F
29	UART TX	I/O	-	BT	1271	HCI_TX	BT UART I/F
30	UART_RX	I/O	-	BT	1271	HCI RX	BT UART I/F
31	GND	-	-	-	-	-	Ground
							BT_TX_DBG
32	BT_TX_DBG	I/O	-	BT	1271	BT_FUNC4	Should be connected to TP f
						—	software debug.
33	NC	10	-	BT	1271	BT_FUNC6	NC
34	NC	I/O	-	BT	1271	BT_FUNC5	NC
35	GND	-	-	-	-	-	Ground
36	GND	-	-	-	-	-	Ground
37	GND	-	-	-	-	-	Ground
38	GND	-	-	-	-	-	Ground
39	GND	-	-	-	-	-	Ground
		1/0		BT/WL			RF transmitter output and F
40	2.4G_ANT	I/O	-	AN	-	-	receiver input
41	GND	-	-	-	-	-	Ground
42	GND	-	-	-	-	-	Ground
43	GND	-	-	-	-	-	Ground
44	GND	_	_	-	-		Ground
45	GND	_	_	-	-	-	Ground
46	GND	_	_	-	-		Ground
47	GND	_	_	_		-	Ground
48	GND	_	_				Ground
49	GND	_		-	-		Ground
50	GND	-		-			Ground
51	GND	-		-			Ground
52	GND			-	-		Ground
52	GND	-			-		Ground
53 54	GND	-				-	
54 55		-		-	-	-	Ground
	GND	-	-	-	-	-	Ground
56	GND	-	-	-	-	-	Ground
57	GND	-	-	-	-	-	Ground
58	GND	-	-	-	-	-	Ground
59	GND	-		-	-	-	Ground
60	GND	-		-	-	-	Ground
61	GND	-		-	-	-	Ground
62	GND		-		-	-	Ground

5. Absolute Maximum Rating

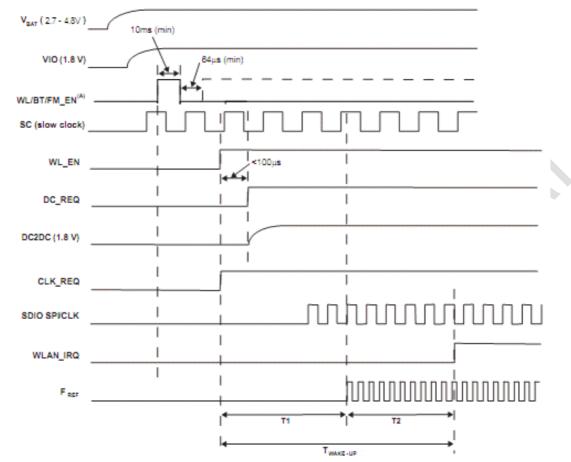
Parame	min.	max	unit	
Storage Tem	-40	85	deg.C	
Supply Voltage	VBAT	-0.5	4.8	V
	VIO	-0.5	2.1	V

6. Operating Condition

Parame	min.	typ.	max	unit	
Operating Ter	-30	25	70	deg.C	
Supply Voltage	VBAT	2.7	3.6	4.8	V
	VIO	1.65	1.8	1.92	V

7. Input/Output Terminal Characteristic

	Condition	min.	max	unit
VIH : High-level input voltage(VDD_IO = IO supply for ring)	Default	0.7 x VIO	VIO	V
VIL:Low-level input voltage	Default	0	0.35 x VIO	V
	4mA	VIO - 0.45	VIO	V
Voн:High-level output voltage	1mA	VIO - 0.112	VIO	V
	0.3mA	VIO-0.033	VIO	V
	4mA	0	0.45	V
VoL: Low-level output voltage	1mA	0	0.112	V
	0.09mA	0	0.01	V


8. External Slow Clock specification

Characteristics(*)	Condition	min.	Тур.	max	unit
Input slow clock frequency			32.768		kHz
Input slow clock accuracy	WLAN, BT,			±150	ppm
Input transition time Tr/Tf -10% to 90%	Tr/Tf			100	ns
Frequency input duty cycle		30	50	70	%
Input voltage limits	Square wave,	0.65×VIO		VIO	V
input voltage innits	DC-coupled	0		0.35×VIO	V
Input impedance		1			MΩ
Input capacitance				5	pF
Rise and fall time				100	ns
Phase noise				-125	dBc/Hz

muRata

9. WLAN Power Up/Down Sequence

9.1 Power Up Sequence

A. After this sequence is completed, the device is in the low VIO-leakage state while in shutdown.

The following sequence describes device power up from shutdown. Only the WLAN Core is enabled; the BT and FM cores are disabled.

1. No signals are allowed on the IO pins if no IO power supplied, because the IOs are not 'fail safe'. Exceptions are SLEEP_CLK and AUD_xxx, which are failsafe and can tolerate external voltages with no VIO and DC2DC.

2. VBAT, VIO and SLEEP_CLK must be available before WLAN_EN.

3. Twakeup = T1 + T2

The duration of T1 is defined as the time from WLAN_EN=high until Fref is valid for the WL1271 SoC T1 \sim 55ms

The duration of T2 depends on:

- Operating system
- Host enumeration for the SDIO
- PLL configuration
- Firmware download
- Releasing the core from reset
- Firmware initialization

muRata

I I 1 V_{BAT} (2.7 - 4.8∨) I I VIO (1.8 V) I I I SLOWCLK I 1 I I I WL_EN Ī DC_REQ I I 1 DC2DC (1.8 V) I I Т 1 CLK_REQ I SDIO / SPI CLK I I WLAN_IRQ I

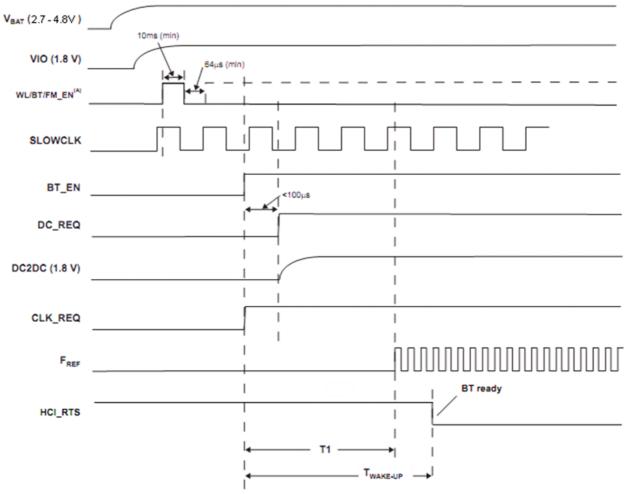
9.2 Power Down Sequence

1. DC_REQ of WL1271 will go low only if WLAN is the only core working. otherwise if another core is working (e.g BT) it will stay high.

2. If WLAN is the only core that is operating, WLAN_EN must remain de-asserted for at least 64msec before it is re-asserted.

10. BT Power Up/Down Sequence

10.1 Power Up Sequence


The following sequence describes device powerup from shutdown. Only the BT core is enabled; the WLAN and FM cores are disabled.

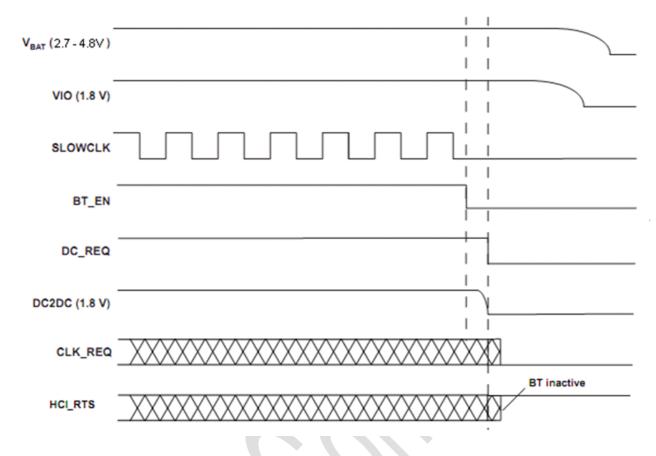
Power up requirements:

1. No signals are allowed on the IO pins if no IO power supplied, because the IOs are not 'failsafe'. Exceptions are SLEEP_CLK and AUD_xxx, which are failsafe and can tolerate external voltages with no VIO and DC2DC.

2. VIO and SLEEP_CLK must be stable before releasing BT_EN.

3. Fast clock must be stable maximum 55ms after BT_EN goes HIGH.

A. After this sequence is completed, the device is in the low VIO-leakage state while in shutdown.


1. The duration of T1 is defined as the time from BT_EN=high until Fref is valid for the WL1271.

2. T1≒55ms

3. The duration of $T_{WAKE-UP}$ is defined as the time from BT_EN rising edge to HCI_RTS falling edge, <70ms.

10.2 Power Down Sequence

The WL1271 indicates completion of BT power up sequence by asserting RTS low. This occurs up to 100ms after BT_EN goes high.

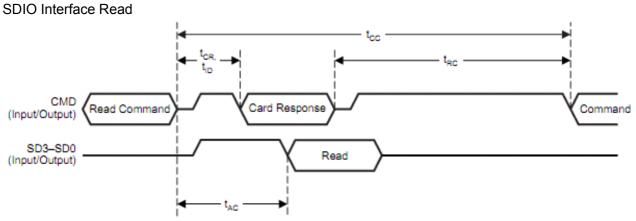
11. HOST Interface

11.1 Host interface Combination

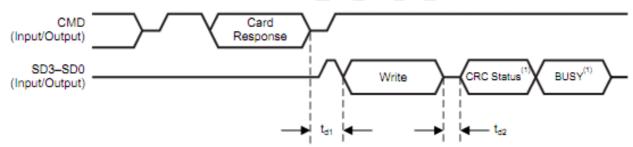
WLAN	BT	Remarks
SDIO	UART	

11.2 SDIO Interface

11.2.1 SDIO Clock Switching Characteristics


Note: all timing parameter are indicated for the maximum Host interface clock frequency.

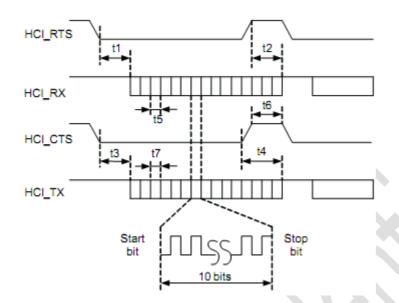
	PARAMETER		MIN	MAX	UNIT
Fclock	Clock frequency,CLK	CL ≦30pF	0	25	MHz
DC	Low/High duty cycle	CL ≦30pF	40	60	%
tTLH	Rise time, CLK	CL ≦30pF		4.3	ns
tTHL	Fall time, CLK	CL ≦30pF		3.5	ns
tISU	Setup time, input calid before CLK↑	CL ≦30pF	4		ns
tIH	Hold time, input valid after CLK↑	CL ≦30pF	5		ns
tODLY	Delay time, CLK↓ to output valid	CL ≦30pF	2	12	ns


11.2.2 SDIO Data Switching Characteristics

T0137-01

	Parame	ter	MIN	MAX	Unit
tCR	Delay time, assign relative address or data transfer mode	Read-command CMD invalid to card-response CMD valid	2	64	Clock Cycle
tCC	Delay time,CMD command invalid to CMD comman	d valid	58		Clock Cycle
tRC	Delay time,CMD response invalid to CMD command	d valid	8		Clock Cycle
tAC	Access time,CMD command invalid to SD3-SD0 rea	ad data valid	2		Clock Cycle

SDIO Interface Write



NOTE: CRC status and busy waveforms are only for data line 0. Data lines 1–3 are N/A. The busy waveform is optional, and may not be present.

	Parameter	MIN	MAX	Unit
Td1	Delay time, CMD card response invalid to SD3-SD0 write data valid	2		Clock Cycle
Td2	Delay time, SD3-SD0 wirte data invalid end to CRC status valid	2	2	Clock Cycle

11.3 UART Interface timing

Symbol	Characteristics	Condition	MIN	Тур	MAX	Unit
	Baud rate	Most rates	37.5		4000	kbps
t5,t7	Baud rate accuract	Receive/Transmit	-2.5		1.5	%
t3	CTS low to TX_DATA		0	2		us
t4	CTS high to TX_DATA	Hardware flow control			1	byte
t6	CTS-high pulse width		1			bit
t1	RTS low to RX_DATA on		0	2		us
t2	RTS high to RX_DATA off	Interrupt set to 1/4 FIFO			16	byte

12. Electrical Characteristics

12.1 DC/RF Characteristics for IEEE802.11b

11Mbps mode unless otherwise specified. 25deg.C, VBAT=3.6V, VDDIO=1.8V

Items		Contents	6	
Specification		IEEE802.1	1b	
Mode		DSSS / CO	CK	
Frequency		2400 - 2483.	5MHz	
Data rate		1, 2, 5.5, 11N	/lbps	
- DC Characteristics -	min.	typ.	max.	unit
1. DC current				
1) Tx mode at VBAT	-	250		mA
2) Rx mode at VBAT	-	90		mA
3) Sleep mode at VBAT	-	90		uA
- Tx Characteristics -	min.	typ.	max.	unit
2. Power Levels		19.5		dBm
3. Spectrum Mask				
1) 1st side lobes		-	-30	dBr
2) 2nd side lobes	-		-50	dBr
4. Power-on and Power-down ramp	-	-	2	µsec
5. RF Carrier Suppression	15		-	dB
6. Modulation Accuracy (EVM)	-		35	%
- Rx Characteristics -	min.	typ.	max.	unit
8. Minimum Input Level Sensitivity				
1) 11Mbps (FER <u>≤</u> 8%)	-	-	-76	dBm

12.2 DC/RF Characteristics for IEEE802.11g 54Mbps mode unless otherwise specified. 25deg.C, VBAT=3.6V, VDDIO=1.8V

Items		Conten	ts	
Specification		IEEE802.	11g	
Mode		OFDM		
Frequency		2400 - 2483	.5MHz	
Data rate	6,	9, 12, 18, 24, 36	, 48, 54Mbps	
- DC Characteristics -	min.	typ.	max.	unit
1. DC current				
1) Tx mode at VBAT	-	175	-	mA
2) Rx mode at VBAT	-	90	-	mA
Sleep mode at VBAT	-	90	-	uA
- Tx Characteristics -	min.	typ.	max.	unit
2. Power Levels		14.0		dBm
3. Spectrum Mask				
1) at fc +/- 11MHz	-		-20	dBr
1) at fc +/- 20MHz	-		-28	dBr
1) at fc +/- 30MHz	-		-40	dBr
4. Spurious Emissions				
- Rx Characteristics -	min.	typ.	max.	unit
6. Minimum Input Level Sensitivity				
1) 54Mbps (PER <u>≤</u> 10%)	-		-65	dBm

12.3 DC/RF Characteristics for IEEE802.11n-2.4G

65Mbps (MCS7) mode unless otherwise specified. 25deg.C, VBAT=3.6V, VDDIO=1.8V

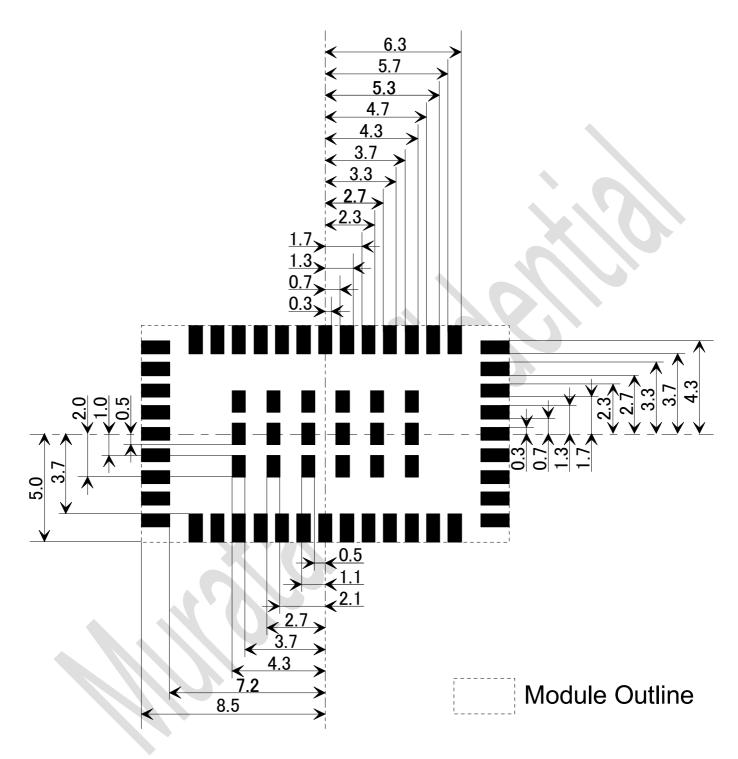
Items		Content	S	
Specification		IEEE802.11n	-2.4G	
Mode		OFDM		
Frequency		2400 - 2483.	5MHz	
Data rate	6.5, 13	8,19.5, 26, 39, 52	2, 58.5, 65Mbps	
- DC Characteristics -	min.	typ.	max.	unit
1. DC current				
1) Tx mode at VBAT	-	175	-	mA
2) Rx mode at VBAT	-	90	-	mA
3) Sleep mode at VBAT	-	90	-	uA
- Tx Characteristics -	min.	typ.	max.	unit
2. Power Levels		14.0		dBm
3. Spectrum Mask			XII	
1) at fc +/- 11MHz	-		-20	dBr
1) at fc +/- 20MHz	-		-28	dBr
1) at fc +/- 30MHz	-		-45	dBr
- Rx Characteristics -	min.	typ.	max.	unit
6. Minimum Input Level Sensitivity				
1) 65Mbps (PER <u>≤</u> 10%)			-64	dBm

12.4 DC/RF Characteristics for Bluetooth

25deg.C, VBAT=3.6V, VDDIO=VDDHOST=1.8V

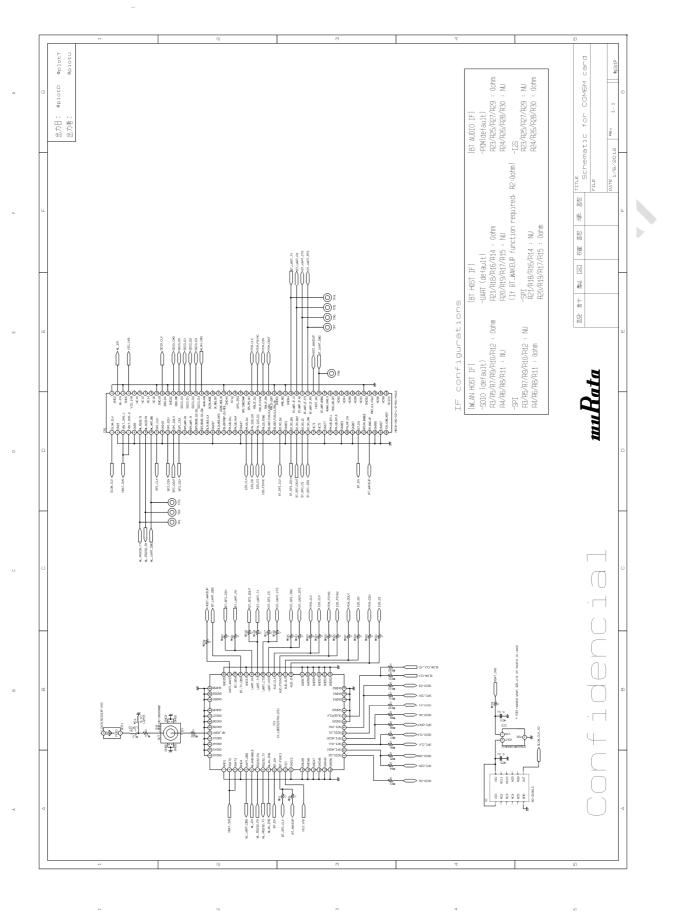
Items		Cont	onto	
		Conte Ver.		
Bluetooth specification				
Channel spacing		1MF		
Number of RF channel		<u>79</u> 1)	
Power class	Time e diviei	1	v sithan t	
Operation mode (Rx/Tx)		on multiple: quency hop		
Items	min.	typ.	max.	unit
1. DC Current		-		
1) DH1 Packet 50% Rx/Tx slot duty cycle	-	31	-	mA
DH3 Packet 50% Rx/Tx slot duty cycle	-	40		mA
 DH5 Packet 50% Rx/Tx slot duty cycle 	-	41	-	mA
- TX characteristics -	min.	typ.	max.	unit
2. Output Power		9.5		dBm
3. Frequency range (Rx/Tx)	2	400 - 2483.5		MHz
420dB bandwidth	-		1	MHz
5. Adjacent Channel Power *1				
5.1 [M-N] = 2	-		-20	dBm
5.2 [M-N] <u>></u> 3	-		-40	dBm
6. ICFT (Initial Carrier Frequency Tolerance)	-75		+75	kHz
7. Modulation characteristics				
7.1 Modulation of1avg	140		175	kHz
7.2 Modulation of 2max	115		-	kHz
7.3 Modulation δf2avg/δf1avg	0.8		-	-
8. Carrier Frequency Drift	0.0	þ.		
8.1 1slot	-25	-	+25	kHz
8.2 3slot	-40	_	+40	kHz
8.3 5slot	-40		+40	kHz
8.4 Maximum drift rate	-20	_	+20	kHz/50µs
9. EDR Relative Power	20		.20	Ki 12/00µ3
(Pi/4-DQPSK and 8DPSK)	-4		1	
10. EDR Carrier Frequency Stability and				
Modulation Accuracy				
10.1 ωi (Pi/4-DQPSK and 8DPSK)	-75		75	kHz
10.2 ω (Pi/4-DQPSK and 8DPSK)	-10		10	kHz
			75	
10.3 $\omega i + \omega 0$ (Pi/4-DQPSK and 8DPSK)	-75			kHz
10.4 RMS DEVM (Pi/4-DQPSK)	-		20	%
10.5 99% DEVM (Pi/4-DQPSK)	-		30	%
10.6 Peak DEVM (Pi/4-DQPSK)	-		35	%
10.7 RMS DEVM (8DPSK)	-		13	%
10.8 99% DEVM (8DPSK)	-		20	%
10.9 Peak DEVM (8DPSK)	-		25	%
- RX characteristics -	min	Тур	max	unit
11. Sensitivity (BER <u>≤</u> 0.1%)				
11.1 2402MHz	-		-70	dBm
11.2 2441MHz	-		-70	dBm
11.3 2480MHz	-		-70	dBm
12. C/I Performance (BER $\leq 0.1\%$) ^{*2}				
12.1 co-channel ratio (-60dBm input)	-		11	dB
12.2 1MHz ratio (-60dBm input)	-		0	dB
12.3 2MHz ratio (-60dBm input)	-		-30	dB
12.4 3MHz ratio (-67dBm input)	-		-40	dB

muRata


Preliminary Specification Number: SP-ZSTN-C P 22/34

			. 22/37
12.5 image +/- 1MHz ratio (-67dBm input)	-	-20	dB
13. Blocking performance (BER $\leq 0.1\%$) * ³			
13.1 30MHz-2000MHz	-10		dBm
13.2 2000MHz-2400MHz	-27	-	dBm
13.3 2500MHz-3000MHz	-27	-	dBm
13.4 3000MHz-12750MHz	-10	-	dBm
 14. Intermodulation performance (BER ≤ 0.1%, -64dBm input) 	-39	-	dBm
15. Maximum Input Level	-20	-	dBm
16. EDR Sensitivity (at 0.01% BER)			
16.1 Pi/4-DQPSK	-	-70	dBm
16.2 8DPSK	-	-70	dBm

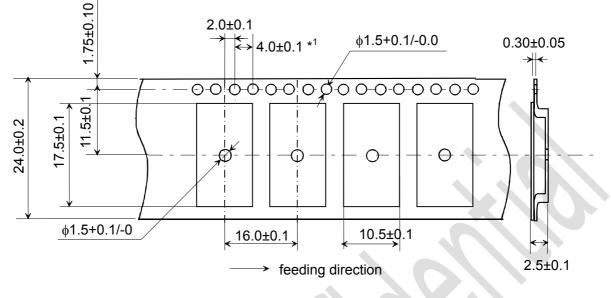
^{*1} Up to three spurious responses within Bluetooth limits are allowed.
 ^{*2} Up to five spurious responses within Bluetooth limits are allowed.
 ^{*3} Up to twenty-four spurious responses within Bluetooth limits are allowed.



13. Land pattern

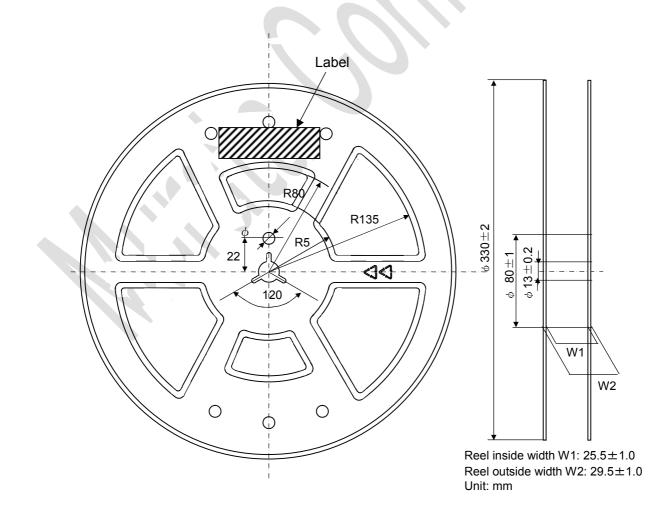
14. Reference Circuit

15. Evaluation board of LBEE5ZSTNC-TEMP

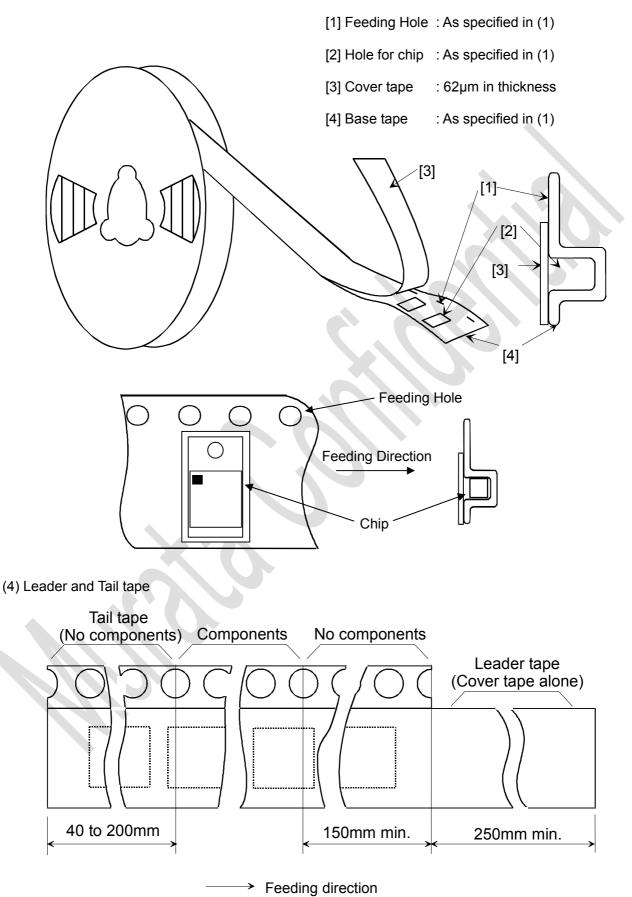

Murata LBEE5ZSTNC-TEMP is compatible to the following evaluation board. Please refer to each operation manual if you would like to get more detail on it.

COM6M Evaluation board (Compatible to TI Platform)

16.Tape and Reel Packing


(1) Dimensions of Tape (Plastic tape)

*1 Cumulative tolerance of max. ± 0.3 every 10 pitches


(unit : mm)

(2) Dimensions of Reel

muRata

(3) Taping Diagrams

- (5) The tape for chips are wound clockwise, the feeding holes to the right side as the tape is pulled toward the user.
- (6) The cover tape and base tape are not adhered at no components area for 250mm min.
- (7) Tear off strength against pulling of cover tape : 5N min.
- (8) Packaging unit : 500pcs./ reel
- (9) material : Base tape : Plastic Real : Plastic Cover tape, cavity tape and reel are made the anti-static processing.
- (10) Peeling of force: 0.7N max. in the direction of peeling as shown below.

	0.7 N max.
165 to 180 °	Cover tape
	Base tape

NOTICE

1. Storage Conditions:

Please use this product within 6 months after receipt.

- The product shall be stored without opening the packing under the ambient temperature from 5 to 35deg.C and humidity from 20 to 70%RH.

(Packing materials, in particular, may be deformed at the temperature over 40deg.C.)

- The product left more than 6months after reception, it needs to be confirmed the solderbility before used.

- The product shall be stored in non corrosive gas (Cl₂, NH₃, SO₂, No_x, etc.).

- Any excess mechanical shock including, but not limited to, sticking the packing materials by sharp object and dropping the product, shall not be applied in order not to damage the packing materials.

This product is applicable to MSL3 (Based on JEDEC Standard J-STD-020)

- After the packing opened, the product shall be stored at \leq 30deg.C / \leq 60%RH and the product shall be used within 168hours.

- When the color of the indicator in the packing changed, the product shall be baked before soldering.

Baking condition : 125+5/-0deg.C, 24hours, 1time

The products shall be baked on the heat-resistant tray because the material (Base Tape, Reel Tape and Cover Tape) are not heat-resistant.

2. Handling Conditions:

Be careful in handling or transporting products because excessive stress or mechanical shock may break products.

Handle with care if products may have cracks or damages on their terminals, the characteristics of products may change. Do not touch products with bear hands that may result in poor solderability.

3. Standard PCB Design (Land Pattern and Dimensions):

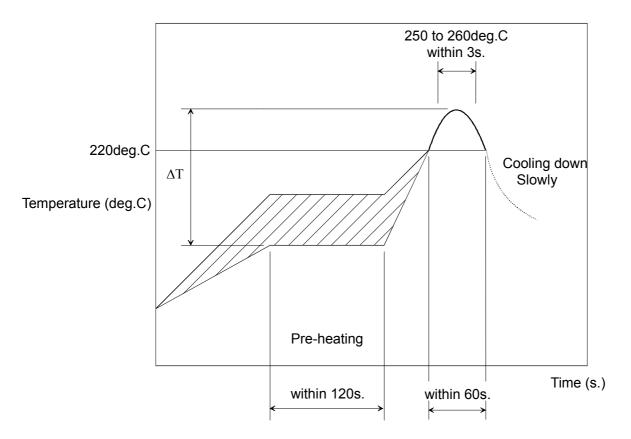
All the ground terminals should be connected to the ground patterns. Furthermore, the ground pattern should be provided between IN and OUT terminals. Please refer to the specifications for the standard land dimensions.

The recommended land pattern and dimensions is as Murata's standard. The characteristics of products may vary depending on the pattern drawing method, grounding method, land dimensions, land forming method of the NC terminals and the PCB material and thickness. Therefore, be sure to verify the characteristics in the actual set. When using non-standard lands, contact Murata beforehand.

4. Notice for Chip Placer:

When placing products on the PCB, products may be stressed and broken by uneven forces from a worn-out chucking locating claw or a suction nozzle. To prevent products from damages, be sure to follow the specifications for the maintenance of the chip placer being used. For the positioning of products on the PCB, be aware that mechanical chucking may damage products.

5. Soldering Conditions:


Carefully perform preheating so that the temperature difference (Δ T) between the solder and products surface should be in the following range. After mounting, pay special attention to maintain the temperature difference within 100deg.C. Soldering must be carried out by the above mentioned conditions to prevent products from damage. Contact Murata before use if concerning other soldering conditions.

Soldering method	Temperature
Soldering iron method	∆T <u>≤</u> 130deg.C
Reflow method	

- Soldering iron method conditions are indicated below.

Kind of iron	Ceramics heater
Soldering iron wattage	<u>≤</u> 18W
Temperature of iron-tip	<u><</u> 350deg.C
Iron contact time	within 3s.

- Diameter of iron-tip : Φ3.0mm max.

Reflow soldering standard conditions (Example)

Use rosin type flux or weakly active flux with a chlorine content of 0.2wt% or less.

6. Cleaning:

Since this Product is Moisture Sensitive, any cleaning is not permitted.

7. Operational Environment Conditions:

Products are designed to work for electronic products under normal environmental conditions (ambient temperature, humidity and pressure). Therefore, products have no problems to be used under the similar conditions to the above-mentioned. However, if products are used under the following circumstances, it may damage products and leakage of electricity and abnormal temperature may occur.

- In an atmosphere containing corrosive gas (Cl₂, NH₃, SO_x, NO_x etc.).
- In an atmosphere containing combustible and volatile gases.
- Dusty place.
- Direct sunlight place.
- Water splashing place.
- Humid place where water condenses.
- Freezing place.

If there are possibilities for products to be used under the preceding clause, consult with Murata before actual use.

As it might be a cause of degradation or destruction to apply static electricity to products, do not apply static electricity or excessive voltage while assembling and measuring.

8. Input Power Capacity:

Products shall be used in the input power capacity as specified in this specification. Inform Murata beforehand, in case that the components are used beyond such input power capacity range.

9. Limitation of Applications:

The product is designed and manufactured for consumer application only and is not available for any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property.

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment
- Medical equipment.
- Transportation equipment (vehicles, trains, ships, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Data-processing equipment
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

10. Underfill Condition:

Halfway underfill on components in the module can make unexpected stress on the components and the module has a possibility not to meet the specification.

In order to avoid this, any underfill shall not be into module inside in case of applying underfill on your PCB.

<u>∕</u>Note:

Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

All the items and parameters in this product specification have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment agreed upon between you and us. You are requested not to use our product deviating from such agreement.

We consider it not appropriate to include other terms and conditions for transaction warranty in product specifications, drawings or other technical documents. Therefore, even if your original part of this product specification includes such terms and conditions as warranty clause, product liability clause, or intellectual property infringement liability clause, we are not able to accept such terms and conditions in this product specification unless they are based on the governmental regulation or what we have agreed otherwise in a separate contact. We would like to suggest that you propose to discuss them under negotiation of contract.

• Disclaimer

Please read this notice before using the Murata Wireless Modules.

1. Please note that the only warranty that Murata Manufacturing Co., Ltd. ("Murata") provides regarding the products is its conformance to the specifications provided herein. Accordingly, Murata shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this specification.

MURATA HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

YOU AGREE TO INDEMNIFY AND DEFEND MURATA AND ITS AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF PRODUCTS.

- 2. The product is designed and manufactured for general consumer applications, and not for any particular application, so testing and use of the product shall be conducted at your own risk and responsibility. Specifically, please observe the following:
 - i) Please conduct validation and verification of the products in actual condition of mounting and operating environment before commercial shipment of the equipment.
 - ii) Please pay attention to minimize any mechanical vibration or shock, not to drop the product or a substrate that contains the product during transportation.
 - iii) Since the application of static electricity or overvoltage may cause defect in the product or deterioration of its reliability, caution must be taken against exposure to any static electricity generated by electrified items such as work benches, soldering irons, tools, carrying containers, etc.
 - iv) Caution shall be taken to avoid overstress to the product during and after the soldering process.
 - v) Since the applied soldering method may deteriorate the reliability, thorough evaluation is recommended.
 - vi) In case the product is to be used in equipment or electric circuit that requires high safety or reliability function or performances, sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage. Please provide and appropriate fail-safe function on your product to prevent any damages that may be caused by the abnormal function or the failure of our product.

Notwithstanding the foregoing, the product shall not be used in any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property.

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment
- Medical equipment.
- Transportation equipment (vehicles, trains, ships, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Data-processing equipment
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

3. Murata's warranty as provided in Clause 1 above that the products comply with descriptions expressly specified in the specifications shall be effective for a period of six (6) months from the date of delivery.

Murata shall not be liable for any defects that occur in dry packed products that are installed more than six (6) months after shipment.

Murata's liability under this warranty shall be limited to products that are returned during the warranty period to the address designated by Murata and that are determined by Murata not to conform to such warranty. If Murata elects to repair or replace such products, Murata shall have reasonable time to repair such products or provide replacements. Repaired products shall be warranted for the remainder of the original warranty period. Replaced products shall be warranted for a new full warranty period.

For avoidance of doubt, Murata shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than Murata including improper installation or testing, or for any products that have been altered or modified in any way by an entity other than Murata. Moreover, Murata shall not be liable for any defects that result from your or third party's design, specifications or instructions for such products.

- 4. Testing and other quality control techniques are used to the extent Murata deems necessary. Unless mandated by government requirements, Murata does not necessarily test all parameters of each product.
- 5. EOL

Please note that we may discontinue the manufacture of products, due to reasons such as end of supply of materials and/or components from our suppliers.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata: LBEE5ZSTNC-523