NTE Series
Isolated 1W Single Output SM DC/DC Converters

SELECTION GUIDE

<table>
<thead>
<tr>
<th>Order Code1</th>
<th>Nominal Input Voltage</th>
<th>Output Voltage</th>
<th>Output Current</th>
<th>Input Current at Rated Load</th>
<th>Efficiency</th>
<th>Isolation Capacitance</th>
<th>MTTF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTE0303MC</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td>303 mA</td>
<td>410 mA</td>
<td>73 %</td>
<td>30 pF</td>
<td>5348 kHrs</td>
</tr>
<tr>
<td>NTE0305MC</td>
<td>3.3 V</td>
<td>5 V</td>
<td>200 mA</td>
<td>390 mA</td>
<td>78 %</td>
<td>31 pF</td>
<td>3134 kHrs</td>
</tr>
<tr>
<td>NTE0309MC</td>
<td>3.3 V</td>
<td>9 V</td>
<td>111 mA</td>
<td>400 mA</td>
<td>77 %</td>
<td>29 pF</td>
<td>3134 kHrs</td>
</tr>
<tr>
<td>NTE0312MC</td>
<td>3.3 V</td>
<td>12 V</td>
<td>83 mA</td>
<td>400 mA</td>
<td>77 %</td>
<td>26 pF</td>
<td>2473 kHrs</td>
</tr>
<tr>
<td>NTE0503MC</td>
<td>5 V</td>
<td>3.3 V</td>
<td>303 mA</td>
<td>270 mA</td>
<td>74 %</td>
<td>40 pF</td>
<td>5515 kHrs</td>
</tr>
<tr>
<td>NTE0505MC</td>
<td>5 V</td>
<td>5 V</td>
<td>200 mA</td>
<td>294 mA</td>
<td>68 %</td>
<td>35 pF</td>
<td>6857 kHrs</td>
</tr>
<tr>
<td>NTE0505MEC</td>
<td>5 V</td>
<td>5 V</td>
<td>200 mA</td>
<td>260 mA</td>
<td>77 %</td>
<td>39 pF</td>
<td>5933 kHrs</td>
</tr>
<tr>
<td>NTE0509MC</td>
<td>5 V</td>
<td>9 V</td>
<td>111 mA</td>
<td>267 mA</td>
<td>75 %</td>
<td>43 pF</td>
<td>5510 kHrs</td>
</tr>
<tr>
<td>NTE0512MC</td>
<td>5 V</td>
<td>12 V</td>
<td>83 mA</td>
<td>260 mA</td>
<td>77 %</td>
<td>42 pF</td>
<td>3957 kHrs</td>
</tr>
<tr>
<td>NTE0515MC</td>
<td>5 V</td>
<td>15 V</td>
<td>66 mA</td>
<td>256 mA</td>
<td>78 %</td>
<td>44 pF</td>
<td>2747 kHrs</td>
</tr>
<tr>
<td>NTE1205MC</td>
<td>12 V</td>
<td>5 V</td>
<td>200 mA</td>
<td>124 mA</td>
<td>67 %</td>
<td>47 pF</td>
<td>4683 kHrs</td>
</tr>
<tr>
<td>NTE1209MC</td>
<td>12 V</td>
<td>9 V</td>
<td>111 mA</td>
<td>114 mA</td>
<td>73 %</td>
<td>77 pF</td>
<td>4008 kHrs</td>
</tr>
<tr>
<td>NTE1212MC</td>
<td>12 V</td>
<td>12 V</td>
<td>83 mA</td>
<td>113 mA</td>
<td>74 %</td>
<td>88 pF</td>
<td>3121 kHrs</td>
</tr>
<tr>
<td>NTE1215MC</td>
<td>12 V</td>
<td>15 V</td>
<td>66 mA</td>
<td>111 mA</td>
<td>75 %</td>
<td>95 pF</td>
<td>2316 kHrs</td>
</tr>
</tbody>
</table>

INPUT CHARACTERISTICS

- **Parameter**: Voltage range
 - **Conditions**: Continuous operation, 3.3V input types
 - **Min.**: 2.97 V
 - **Typ.**: 3.3 V
 - **Max.**: 3.63 V

- **Parameter**: Reflected ripple current
 - **Conditions**: Continuous operation, 5V input types
 - **Min.**: 4.5 mA
 - **Typ.**: 5.0 mA
 - **Max.**: 5.5 mA

- **Parameter**: Reflected ripple current
 - **Conditions**: Continuous operation, 12V input types
 - **Min.**: 10.8 mA
 - **Typ.**: 12.0 mA
 - **Max.**: 13.2 mA

ISOLATION CHARACTERISTICS

- **Parameter**: Isolation voltage
 - **Conditions**: Flash tested for 1 second
 - **Min.**: 1000 VDC
 - **Typ.**: 1000 VDC
 - **Max.**: 1000 VDC

GENERAL CHARACTERISTICS

- **Parameter**: Switching frequency
 - **Conditions**: All output types
 - **Min.**: 110 kHz
 - **Typ.**: 110 kHz
 - **Max.**: 110 kHz

ABSOLUTE MAXIMUM RATINGS

- **Internal power dissipation**: 600mW
- **Input voltage Vin, NTE03 types**: 5.5V
- **Input voltage Vin, NTE05 types**: 7V
- **Input voltage Vin, NTE12 types**: 15V

1. If components are required in tape and reel format suffix order code with -R, e.g. NTE0505MC-R.
2. Calculated using MIL-HDBK-217 FN2 calculation model with nominal input voltage at full load.

All specifications typical at Ta=25°C, nominal input voltage and rated output current unless otherwise specified.

FEATURES

- RoHS compliant
- Lead frame technology
- Single isolated output
- 1kVDC Isolation
- Efficiency up to 78%
- Power density 1.8W/cm³
- Wide temperature performance at full 1 Watt load, –40°C to 85°C
- UL 94V-0 Package material
- Footprint over pins 1.37cm²
- 3.3V, 5V & 12V Input
- 3.3V, 5V, 9V, 12V & 15V output
- No heatsink required
- Internal SMD construction
- Toroidal magnetics
- MTTF up to 6.8 million hours
- Custom solutions available
- Multi-layer ceramic capacitors

PRODUCT OVERVIEW

The NTE series of miniature surface mounted DC/DC Converters employ leadframe technology and transfer moulding techniques to bring all of the benefits of IC style packaging to hybrid circuitry. The co-planarity of the pin positions is based upon IEC 191-6:1990. The devices are suitable for all applications where high volume production is envisaged.

For full details go to www.murata-ps.com/rohs

www.murata-ps.com/support
OUTPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>$T_A=-40°C$ to $85°C$</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Voltage set point accuracy</td>
<td>See tolerance envelope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>High V_{IN} to low V_{IN}</td>
<td>10.2</td>
<td>14.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load regulation</td>
<td>10% load to rated load, 0300MC, 0503MC, 0505MEC</td>
<td>10</td>
<td>14</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0505MC & 1205MC</td>
<td>12.8</td>
<td>15</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0506MC</td>
<td>9.2</td>
<td>10</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0509MC & 1209MC</td>
<td>8.3</td>
<td>9.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0512MC & 1212MC</td>
<td>6.8</td>
<td>7.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0515MC & 1215MC</td>
<td>6.3</td>
<td>7.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0509MC & 1209MC</td>
<td>12.8</td>
<td>15</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0512MC & 1212MC</td>
<td>9.2</td>
<td>10</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0515MC & 1215MC</td>
<td>6.8</td>
<td>7.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>10% load to rated load, 0515MC & 1215MC</td>
<td>6.3</td>
<td>7.0</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

TEMPERATURE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>All output types</td>
<td>-40</td>
<td>85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td>-55</td>
<td>125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Case temperature rise above ambient</td>
<td>0305MC, 0309MC, 0315MC</td>
<td>25</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>0303MC, 0312MC, 0503MC, 0505MC, 0509MC, 0512MC, 0515MC</td>
<td>30</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>0506MC, 1205MC</td>
<td>43</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>1209MC, 1212MC, 1215MC</td>
<td>40</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Cooling</td>
<td>Free air convection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL NOTES

ISOLATION VOLTAGE

‘Hi Pot Test’, ‘Flash Tested’, ‘Withstand Voltage’, ‘Proof Voltage’, ‘Dielectric Withstand Voltage’ & ‘Isolation Test Voltage’ are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NTE series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second.

A question commonly asked is, “What is the continuous voltage that can be applied across the part in normal operation?”

For a part holding no specific agency approvals, such as the NTE series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier, but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NTE series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

TEMPERATURE DERATING GRAPH

1. 12V input types have typically 3% less load regulation change.

www.murata-ps.com/support
APPLICATION NOTES

Minimum load
The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive loading and start up
Typical start up times for this series, with a typical input voltage rise time of 2.2μs and output capacitance of 10μF, are shown in the table below. The product series will start into a capacitance of 47μF with an increased start time, however, the maximum recommended output capacitance is 10μF.

<table>
<thead>
<tr>
<th>Start-up time</th>
<th>Start-up time</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTE0303MC</td>
<td>437</td>
</tr>
<tr>
<td>NTE0305MC</td>
<td>1359</td>
</tr>
<tr>
<td>NTE0309MC</td>
<td>3435</td>
</tr>
<tr>
<td>NTE0312MC</td>
<td>6590</td>
</tr>
<tr>
<td>NTE0315MC</td>
<td>7625</td>
</tr>
<tr>
<td>NTE0503MC</td>
<td>533</td>
</tr>
<tr>
<td>NTE0505MC</td>
<td>1368</td>
</tr>
<tr>
<td>NTE0505MEC</td>
<td>721</td>
</tr>
<tr>
<td>NTE0506MC</td>
<td>7200</td>
</tr>
<tr>
<td>NTE0509MC</td>
<td>3146</td>
</tr>
<tr>
<td>NTE0512MC</td>
<td>4960</td>
</tr>
<tr>
<td>NTE0515MC</td>
<td>7740</td>
</tr>
<tr>
<td>NTE1205MC</td>
<td>895</td>
</tr>
<tr>
<td>NTE1209MC</td>
<td>2150</td>
</tr>
<tr>
<td>NTE1212MC</td>
<td>3640</td>
</tr>
<tr>
<td>NTE1215MC</td>
<td>7180</td>
</tr>
</tbody>
</table>

TOLERANCE ENVELOPES

3.3V output types. All other types.

The voltage tolerance envelope shows typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading.

RoHS COMPLIANCE, MSL AND PSL INFORMATION

This series is compatible with RoHS soldering systems and is also backward compatible with Sn/Pb soldering systems. The NTE series has a process, moisture, and reflow sensitivity classification of MSL1 PSL R7F as defined in J-STD-020 and J-STD-075. This translates to: MSL1 = unlimited floor life, PSL = Peak reflow temperature 245°C with a limitation on the time above liquidus (217°C) which for this series is 60sec max. The pin termination finish on this product series is Gold with a plating thickness of 0.05 microns minimum.

For further information please visit www.murata-ps.com/rohs
APPLICATION NOTES (continued)

Output Ripple Reduction

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

Component selection

Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.

Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz.

![Diagram of DC/DC Converter](image)

<table>
<thead>
<tr>
<th>Inductor</th>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, μH</td>
<td>SMD Through Hole</td>
</tr>
<tr>
<td>NTE0303MC 10</td>
<td>82103C 11R103C 4.7</td>
</tr>
<tr>
<td>NTE0305MC 47</td>
<td>82473C 11R103C 4.7</td>
</tr>
<tr>
<td>NTE0309MC 22</td>
<td>82233C 11R223C 2.2</td>
</tr>
<tr>
<td>NTE0312MC 10</td>
<td>82103C 11R103C 1</td>
</tr>
<tr>
<td>NTE0315MC 47</td>
<td>82473C 11R473C 1</td>
</tr>
<tr>
<td>NTE0503MC 10</td>
<td>82103C 11R103C 4.7</td>
</tr>
<tr>
<td>NTE0505MC 47</td>
<td>82473C 11R473C 4.7</td>
</tr>
<tr>
<td>NTE0505MEC 47</td>
<td>82473C 11R473C 4.7</td>
</tr>
<tr>
<td>NTE0506MC 10</td>
<td>82103C 11R103C 4.7</td>
</tr>
<tr>
<td>NTE0509MC 22</td>
<td>82233C 11R223C 2.2</td>
</tr>
<tr>
<td>NTE0512MC 47</td>
<td>82473C 11R473C 1</td>
</tr>
<tr>
<td>NTE0515MC 47</td>
<td>82473C 11R473C 1</td>
</tr>
<tr>
<td>NTE1205MC 47</td>
<td>82473C 11R473C 4.7</td>
</tr>
<tr>
<td>NTE1209MC 22</td>
<td>82233C 11R223C 2.2</td>
</tr>
<tr>
<td>NTE1212MC 47</td>
<td>82473C 11R473C 1</td>
</tr>
<tr>
<td>NTE1215MC 47</td>
<td>82473C 11R473C 1</td>
</tr>
</tbody>
</table>
PACKAGE SPECIFICATIONS

MECHANICAL DIMENSIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_IN</td>
</tr>
<tr>
<td>3</td>
<td>+V_IN</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>V_OUT</td>
</tr>
<tr>
<td>8</td>
<td>+V_OUT</td>
</tr>
<tr>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA - Not available for electrical connection.

Weight: 1.21g

All dimensions in mm ±0.25mm (inches ±0.01). All pins on a 2.54 (0.1) pitch and within ± 0.25 (0.01) of true position.

RECOMMENDED FOOTPRINT DETAILS

TUBE OUTLINE DIMENSIONS

Unless otherwise stated all dimensions in mm (inches) ±0.02.

Tube length : 475±2.0 (18.7±0.07).

Tube Quantity : 35
Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
ISO 9001 and 14001 REGISTERED

www.murata-ps.com/support
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

NTE1205MC NTE0505MC NTE0515MC NTE1215MC NTE0303MC-R NTE0305MC-R NTE0309MC
NTE0309MC-R NTE0312MC NTE0312MC-R NTE0315MC NTE0315MC-R NTE0503MC-R NTE0505MC-R
NTE0505MEC NTE0505MEC-R NTE0509MC-R NTE0512MC-R NTE0515MC-R NTE1205MC-R NTE1209MC
NTE1209MC-R NTE1212MC-R NTE1215MC-R NTE0506MC NTE0512MC NTE1212MC NTE0303MC
NTE0305MC NTE0503MC NTE0509MC NTE0506MC-R