DESCRIPTION

The MPQ9361 is a high performance, regulated charge pump converter. Its input voltage ranges from 2.8V to Vout. The output voltage is regulated to a fixed 5V. No external inductor is required for simplicity and compactness. Internal soft-start circuit effectively reduces the in-rush current both while start-up and mode change.

The MPQ9361 is available in a compact TSOT23-6 package.

FEATURES

- Guaranteed Industrial Temp Range Limits
- Input Voltage Range: 2.8V to 5V
- Internal Soft-Start
- Output Maximum Current up to 110mA
- Fixed 5V Output Voltage with 30mV Ripple
- 2X Charge Pump
- Fixed 1.35MHz Switching Frequency
- Over Current Protection
- Short Circuit Protection
- In-rush Current limit
- TSOT23-6 package and Lead (pb)-Free

APPLICATIONS

- Cell phone, Smart phone, LED backlight
- PDA or hand Held Computer
- Camera Flash White LED
- LCD Display Supply
- TV-Remote Control

MPS and “The Future of Analog IC Technology” are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

![TYPICAL APPLICATION Diagram](image-url)
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Top Marking</th>
<th>Free Air Temperature (T_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPQ9361DJ</td>
<td>TSOT23-6</td>
<td>U2</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix –Z (e.g. MP MPQ9361DJ–Z);
For RoHS compliant packaging, add suffix –LF (e.g. MPQ9361DJ–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)
Supply Input Voltage....................-0.3V to +6.0V
All Other Pins...............................-0.3V to +6.0V
Storage Temperature.............-65°C to +150°C
Continuous Power Dissipation (T_A = +25°C) (2)
... 0.64W
Junction Temperature.....................+150°C
Lead Temperature.............................+260°C

Recommended Operating Conditions (3)
Supply Voltage V_IN..........................2.8V to 5.0V
Output Voltage V_OUT.......................... 5.0V
Operating Junct. Temp (T_J)...........-40°C to +125°C

Thermal Resistance (4) θ_JA θ_JC
TSOT23-6.................................195...... 25... °C/W

Notes:
1) Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_JA, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_JA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) The device is not guaranteed to function outside of its operating conditions.
4) Measured on JESD51-7 4-layer board.
ELECTRICAL CHARACTERISTICS

\(V_{\text{IN}} = 3.7 \text{V} \), \(C_{\text{IN}} = C_{\text{OUT}} = 2.2 \mu\text{F} \), \(C_{p} = 0.22 \mu\text{F} \), \(T_A = -40^\circ\text{C} \) to \(+85^\circ\text{C}\). Typical values are at \(T_A = 25^\circ\text{C} \), unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Supply Voltage</td>
<td>(V_{\text{IN}})</td>
<td></td>
<td>2.8</td>
<td>5</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{\text{OUT}})</td>
<td>(V_{\text{IN}} > 3.2 \text{V}, I_{\text{OUT}} < 110 \text{mA}), (T_A = 25^\circ\text{C})</td>
<td>4.8</td>
<td>5</td>
<td>5.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-40^\circ\text{C} \leq T_A \leq +85^\circ\text{C})</td>
<td>4.6</td>
<td>5</td>
<td>5.2</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_Q)</td>
<td>(I_{\text{OUT}} = 0)</td>
<td>2</td>
<td>4</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>(I_O)</td>
<td>(V_{\text{IN}} > 3.2 \text{V})</td>
<td>110</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Over Current Protection</td>
<td>(I_{\text{OCP}})</td>
<td>(V_{\text{OUT}} = 5 \text{V})</td>
<td>250</td>
<td>350</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Short Circuit Protection</td>
<td>(I_{\text{SHORT}})</td>
<td>(T_A = 25^\circ\text{C})</td>
<td>60</td>
<td>90</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-40^\circ\text{C} \leq T_A \leq +85^\circ\text{C})</td>
<td>60</td>
<td>150</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Ripple</td>
<td>(I_{\text{SHORT}})</td>
<td>(I_{\text{OUT}} = 60 \text{mA})</td>
<td>30</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Shut Down Current</td>
<td>(I_{\text{SHDN}})</td>
<td>(V_{\text{IN}} = 4.5 \text{V}, V_{\text{EN}} < 0.4 \text{V})</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>Operation Frequency</td>
<td>(F_{\text{OSC}})</td>
<td></td>
<td>1.1</td>
<td>1.35</td>
<td>1.6</td>
<td>MHz</td>
</tr>
<tr>
<td>Enable Voltage, High</td>
<td>(V_{\text{EN}}) (HIGH)</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Enable Voltage, Low</td>
<td>(V_{\text{EN}}) (LOW)</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Enable Pin Leakage</td>
<td>(I_{\text{EN}})</td>
<td>(V_{\text{EN}} = 5 \text{V})</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
</tbody>
</table>
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT</td>
<td>Output Voltage. Decoupled with a 2.2µF ceramic capacitor for a load current less than 60mA. For a load current greater than 60mA, use 10µF decoupling capacitor.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>Device Enable: A logic high input (V_{EN}>1.5V) turns on the regulator. A logic low input (V_{EN}>0.4V)</td>
</tr>
<tr>
<td>4</td>
<td>CN</td>
<td>Flying Capacitor Negative Terminal.</td>
</tr>
<tr>
<td>5</td>
<td>IN</td>
<td>Input.</td>
</tr>
<tr>
<td>6</td>
<td>CP</td>
<td>Flying Capacitor Positive Terminal.</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

$V_{in}=3.7V$, $V_{out}=5V$, $C1=C2=2.2\mu F$, $C3=0.47\mu F$. $T_A=25^\circ C$, unless otherwise noted.

Efficiency vs. Load Current

- $V_{in}=2.8V$
- $V_{in}=3.6V$
- $V_{in}=4.2V$

Efficiency vs. Input Voltage

- $I_{out}=50mA$
- $I_{out}=20mA$

Load regulation

- $V_{in}=4.2V$
- $V_{in}=3.6V$
- $V_{in}=2.8V$

Line Regulation

- $I_{out}=0mA$
- $I_{out}=60mA$

Quiescent Current vs. Temperature

- $V_{in}=5V$
- $V_{in}=3.7V$
- $V_{in}=2.8V$

Output Voltage vs. Temperature

- $I_{out}=0mA$
- $I_{out}=110mA$

Frequency vs. Temperature

- $I_{out}=0mA$

Line Regulation vs. Temperature

- $25^\circ C$
- $85^\circ C$
- $40^\circ C$

Shut Down Current vs. Temperature

- $I_{shut}=0mA$

Efficiency vs. Load Current

- $V_{out}=5V$
- $C1=C2=2.2\mu F$, $C3=0.47\mu F$. $T_A=25^\circ C$, unless otherwise noted.
TYPICAL PERFORMANCE CHARACTERISTICS

$V_{IN}=3.7V$, $V_{OUT}=5V$, $C1=C2=2.2\mu F$, $C3=0.47\mu F$, $T_A=25^\circ C$, unless otherwise noted. (continued)

Inrush Current

$V_{EN}=2.8V$, $I_{OUT}=64mA$

with resistor load

Inrush Current

$V_{EN}=3.6V$, $I_{OUT}=64mA$

with resistor load

Load PWM Dimming Operation

$V_{EN}=V_{IN}=2.8V$, $F_{PWM}=100HZ$

Load PWM Dimming Operation

$V_{EN}=V_{IN}=2.8V$, $F_{PWM}=2KHZ$

Normal Load Ripple

$V_{EN}=V_{IN}=2.8V$, $I_{OUT}=60mA$

Normal Load Ripple

$V_{EN}=V_{IN}=4V$, $I_{OUT}=60mA$

Inrush Current

$V_{IN}=2.8V$, $I_{OUT}=64mA$

with resistor load

Normal Load Ripple

$V_{EN}=V_{IN}=2.8V$, $I_{OUT}=60mA$

MPQ9361 Rev. 0.91

www.MonolithicPower.com

MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.

© 2010 MPS. All Rights Reserved.
The MPQ9361 uses a switched capacitor charge pump to boost an input voltage to a regulated output voltage. Regulation is achieved by sensing the charge pump output voltage through an internal resistor divider network. A switched doubling circuit is enabled when the divided output drops below a preset trip point controlled by an internal comparator. The switching signal, which drives the charge pump, is created by an integrated oscillator within the control circuit block. The fixed charge pump switching frequency is approximately 1.35MHz.

The MPQ9361 has complete output short-circuit and thermal protection to safeguard the device under extreme operating conditions. An internal thermal protection circuit senses die temperature and will shut down the device if the internal junction temperature exceeds approximately 145°C. The charge pump will remain disabled until the fault condition is relieved.
PACKAGE INFORMATION

TSOT23-6

BOTTOM VIEW

RECOMMENDED LAND PATTERN

NOTE:
1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASHER PROTRUSION OR GATE BURR.
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLANGE PROTRUSION.
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION M.
6) DRAWING IS NOT TO SCALE.
7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.
Monolithic Power Systems (MPS):
MPQ9361DJ-LF-P MPQ9361DJ-LF-Z