Features
• Very Low Dropout Voltage
• 800mA Output Current
• High Output Voltage Accuracy
• Standard or Custom Output Voltages
• Over Current and Over Temperature Protection

Applications
• Battery Operated Systems
• Portable Computers
• Medical Instruments
• Instrumentation
• Cellular/GSM/PHS Phones
• Linear Post-Regulators for SMPS
• Pagers

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Junction Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1264-xxVDB</td>
<td>3-Pin SOT-223</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>TC1264-xxVAB</td>
<td>3-Pin TO-220</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>TC1264-xxVEB</td>
<td>3-Pin DDPAK</td>
<td>-40°C to +125°C</td>
</tr>
</tbody>
</table>

NOTE: xx indicates output voltages.
Available Output Voltages: 1.8, 2.5, 3.0, 3.3.
Other output voltages are available. Please contact Microchip Technology Inc. for details.

General Description
The TC1264 is a fixed output, high accuracy (typically ±0.5%) CMOS low dropout regulator. Designed specifically for battery-operated systems, the TC1264’s CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 80µA at full load (20 to 60 times lower than in bipolar regulators).

TC1264 key features include ultra low noise operation, very low dropout voltage (typically 450mV at full load), and fast response to step changes in load.

The TC1264 incorporates both over temperature and over current protection. The TC1264 is stable with an output capacitor of only 1µF and has a maximum output current of 800mA. It is available in 3-Pin SOT-223, 3-Pin TO-220 and 3-Pin DDPAK packages.

Typical Application
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage ...6.5V
Output Voltage ..(VSS – 0.3V) to (VIN + 0.3V)
Power Dissipation ...Internally Limited (Note 8)
Maximum Voltage on Any PinVIN +0.3V to -0.3V
Operating Temperature Range...... -40°C < TJ < 125°C
Storage Temperature-65°C to +150°C

*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1264 ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Operating Voltage</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>Note 2</td>
</tr>
<tr>
<td>IOUTMAX</td>
<td>Maximum Output Current</td>
<td>800</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>VR – 2%</td>
<td>VR + 0.5%</td>
<td>VR + 2.5%</td>
<td>V</td>
<td>V R ≥ 2.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VR – 2%</td>
<td>VR + 0.5%</td>
<td>VR + 3%</td>
<td>V</td>
<td>VR = 1.8V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VR – 7%</td>
<td>—</td>
<td>VR + 3%</td>
<td>V</td>
<td>I L = 0.1mA to 800mA (Note 3)</td>
</tr>
<tr>
<td>ΔVOUT/ΔT</td>
<td>VOUT Temperature Coefficient</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>Note 4</td>
</tr>
<tr>
<td>ΔVOUT/ΔVIN</td>
<td>Line Regulation</td>
<td>—</td>
<td>0.007</td>
<td>0.35</td>
<td>%</td>
<td>(VR + 1V) ≤ VIN ≤ 6V</td>
</tr>
<tr>
<td>ΔVOUT/VOUT</td>
<td>Load Regulation</td>
<td>-0.01</td>
<td>0.002</td>
<td>0</td>
<td>%/mA</td>
<td>I L = 0.1mA to IOUTMAX (Note 5)</td>
</tr>
<tr>
<td>V IN – V OUT</td>
<td>Dropout Voltage</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>mV</td>
<td>VR ≥ 2.5V, I L = 100μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>50</td>
<td>160</td>
<td>mA</td>
<td>I L = 100mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>150</td>
<td>480</td>
<td>mA</td>
<td>I L = 300mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>260</td>
<td>800</td>
<td>mA</td>
<td>I L = 500mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>450</td>
<td>1300</td>
<td>mA</td>
<td>I L = 800mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>700</td>
<td>1000</td>
<td>mA</td>
<td>VR = 1.8V, I L = 500mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>890</td>
<td>1400</td>
<td>mA</td>
<td>I L = 800mA</td>
</tr>
<tr>
<td>IDD</td>
<td>Supply Current</td>
<td>—</td>
<td>80</td>
<td>130</td>
<td>μA</td>
<td>I L = 0</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>dB</td>
<td>F ≤ 1kHz</td>
</tr>
<tr>
<td>IOUTSC</td>
<td>Output Short Circuit Current</td>
<td>—</td>
<td>1200</td>
<td>—</td>
<td>mA</td>
<td>VOUT = 0V</td>
</tr>
<tr>
<td>ΔVOUT/ΔPD</td>
<td>Thermal Regulation</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>V/W</td>
<td>Note 7</td>
</tr>
<tr>
<td>eN</td>
<td>Output Noise</td>
<td>—</td>
<td>260</td>
<td>—</td>
<td>nV/√Hz</td>
<td>I L = IOUTMAX, F = 10kHz</td>
</tr>
</tbody>
</table>

Note 1: VR is the regulator output voltage setting.
2: The minimum VIN has to justify the conditions: VIN ≥ VR + VDROP and VIN ≥ 2.7V for I L = 0.1mA to IOUTMAX.
3: This accuracy represents the worst case over the entire output current and temperature range.
4: TC VOUT = VOUTMAX – VOUTMIN × 106
5: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1.5V differential.
7: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 msec.
8: The maximum allowed power dissipation is a function of ambient temperature, the maximum allowed junction temperature and the thermal resistance from junction-to-air (i.e., TA, TJ, RJA). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 4.0 Thermal Considerations for more details.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

<table>
<thead>
<tr>
<th>Pin No. (3-Pin SOT-223) (3-Pin TO-220) (3-Pin DDPAK)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V₈ᵢ₅</td>
<td>Unregulated supply input.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground terminal.</td>
</tr>
<tr>
<td>3</td>
<td>V₈ₒᵤ₅</td>
<td>Regulated voltage output.</td>
</tr>
</tbody>
</table>

3.0 DETAILED DESCRIPTION

The TC1264 is a precision, fixed output LDO. Unlike bipolar regulators, the TC1264's supply current does not increase with load current. In addition, V₈ₒᵤ₅ remains stable and within regulation over the entire 0mA to I₈ₒᵤ₅ₐ₅₉ load current range (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 3-1 shows a typical application circuit.

3.1 Output Capacitor

A 1μF (min) capacitor from V₈ₒᵤ₅ to ground is required. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5Ω. A 1μF capacitor should be connected from V₈ᵢ₅ to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

![Typical Application Circuit](image)
4.0 THERMAL CONSIDERATIONS

4.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

4.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case actual power dissipation:

EQUATION 4-1:

\[
P_D \approx (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}}
\]

Where:

- \(P_D\) = Worst case actual power dissipation
- \(V_{IN\text{MAX}}\) = Maximum voltage on \(V_i\)
- \(V_{OUT\text{MIN}}\) = Minimum regulator output voltage
- \(I_{LOAD\text{MAX}}\) = Maximum output (load) current

The maximum allowable power dissipation (Equation 4-2) is a function of the maximum ambient temperature (\(T_{AMAX}\)), the maximum allowable die temperature (\(T_{JMAX}\)) and the thermal resistance from junction-to-air (\(\theta_{JA}\)).

EQUATION 4-2:

\[
P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
\]

Where all terms are previously defined.

Table 4-1 and Table 4-2 show various values of \(\theta_{JA}\) for the TC1264 packages.

TABLE 4-1: THERMAL RESISTANCE GUIDELINES FOR TC1264 IN SOT-223 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance ((\theta_{JA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>225 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>53°C/W</td>
</tr>
<tr>
<td>100 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>59°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>52°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>0 sq mm</td>
<td>1000 sq mm</td>
<td>55°C/W</td>
</tr>
</tbody>
</table>

*Tab of device attached to topside copper

TABLE 4-2: THERMAL RESISTANCE GUIDELINES FOR TC1264 IN 3-PIN DDPAK/TO-220 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance ((\theta_{JA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>25°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>27°C/W</td>
</tr>
<tr>
<td>125 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>35°C/W</td>
</tr>
</tbody>
</table>

*Tab of device attached to topside copper

Equation 4-1 can be used in conjunction with Equation 4-2 to ensure regulator thermal operation is within limits. For example:

Given:

- \(V_{IN\text{MAX}}\) = 3.3V ± 10%
- \(V_{OUT\text{MIN}}\) = 2.7V ± 0.5%
- \(I_{LOAD\text{MAX}}\) = 275mA
- \(T_{JMAX}\) = 125°C
- \(T_{AMAX}\) = 95°C
- \(\theta_{JA}\) = 59°C/W (SOT-223)

Find:
1. Actual power dissipation
2. Maximum allowable dissipation

Actual power dissipation:

\[
P_D \approx (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}}
\]

\[
= [(3.3 \times 1.1) - (2.7 \times 0.995)]275 \times 10^{-3}
\]

\[= 260mW\]

Maximum allowable power dissipation:

\[
P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
\]

\[= (125 - 95) \div 59\]

\[= 508mW\]

In this example, the TC1264 dissipates a maximum of 260mW; below the allowable limit of 508mW. In a similar manner, Equation 4-1 and Equation 4-2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable \(V_{IN}\), is found by substituting the maximum allowable power dissipation of 508mW into Equation 4-1, from which \(V_{IN\text{MAX}} = 4.6V\).
5.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Package marking data not available at this time.

6.2 Taping Form

Component Taping Orientation for 3-Pin SOT-223 Devices

![Diagram of 3-Pin SOT-223 Taping Orientation]

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Pin SOT-223</td>
<td>12 mm</td>
<td>8 mm</td>
<td>4000</td>
<td>13 in</td>
</tr>
</tbody>
</table>

Component Taping Orientation for 3-Pin DDPAK Devices

![Diagram of 3-Pin DDPAK Taping Orientation]

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Pin DDPAK</td>
<td>24 mm</td>
<td>16 mm</td>
<td>750</td>
<td>13 in</td>
</tr>
</tbody>
</table>
6.3 Package Dimensions

3-Pin SOT-223

Dimensions: inches (mm)

3-Pin TO-220

Dimensions: inches (mm)
6.3 Package Dimensions (Continued)

3-Pin DDPAK

Dimensions: inches (mm)
SALES AND SUPPORT

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademark
The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7924 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-438-7955 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping, NSW 2121, Australia
Tel: 61-2-9886-6733 Fax: 61-2-9886-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd.
Beijing Liaison Office
Unit 915
Beihai Taiji Bldg.
No. 6 Chaoyangmen Beidaie
Beijing 100027, China
Tel: 86-10-85828100 Fax: 86-10-85828104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd.
Chengdu Liaison Office
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd.
Fuzhou Liaison Office
101 Fuzhou Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-5705305 Fax: 86-591-5705321

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd.
Shenzhen Liaison Office
Rm. 1301, 13/F, Shenzhen Kerry Centre
317 Xian Xia Road
Shenzhen, 518001, China
Tel: 86-755-2366086 Fax: 86-755-2366086

China - Hong Kong SAR
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyasarie Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-554-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Laurup høj 1-3
Ballup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d'Activite du Moulin de Massy
4 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-6275-5700 Fax: 49-89-6275-5060

Greece
Microchip Technology SRL
Divyasarie Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Italy
Microchip Technology SRL
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

© 2002 Microchip Technology Inc.
Microchip:
TC1264-2.5VAB TC1264-3.3VAB TC1264-1.8VEBTR TC1264-3.0VEBTR TC1264-3.0VAB TC1264-1.8VAB
TC1264-2.5VEBTR TC1264-1.8VDBTR TC1264-3.3VDBTR TC1264-3.0VDBTR TC1264-3.3VEBTR TC1264-2.5VDBTR