

October 2010

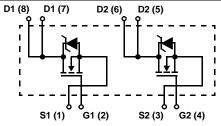
HUFA76413DK8T_F085

N-Channel Logic Level UltraFET[®] Power MOSFET 60V, 4.8A, $56m\Omega$

General Description

These N-Channel power MOSFETs are manufactured using the innovative UltraFET® process. This advanced process technology achieves the lowest possible onresistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching convertors, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Applications


- Motor and Load Control
- · Powertrain Management

Features

- 150°C Maximum Junction Temperature
- UIS Capability (Single Pulse and Repetitive Pulse)
- Ultra-Low On-Resistance $r_{DS(ON)} = 0.049\Omega$, $V_{GS} = 10V$
- Ultra-Low On-Resistance $r_{DS(ON)} = 0.056\Omega$, $V_{GS} = 5V$
- Qualified to AEC Q101
- RoHS Compliant

SO-8

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain to Source Voltage	60	V
V_{GS}	Gate to Source Voltage	±16	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	5.1	Α
I_D	Continuous (T _C = 25°C, V _{GS} = 5V)	4.8	Α
	Continuous ($T_C = 125^{\circ}$ C, $V_{GS} = 5$ V, $R_{\theta JA} = 228^{\circ}$ C/W)	1	Α
	Pulsed	Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)	260	mJ
	Power dissipation	2.5	W
P_{D}	Derate above 25°C	0.02	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 2)	50	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 3)	191	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 4)	228	°C/W

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.

All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Package Marking and Ordering Information

Device Marking	Device Marking Device		Reel Size	Tape Width	Quantity
76413DK8	HUFA76413DK8T_F085	SO-8	330mm	12mm	2500 units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

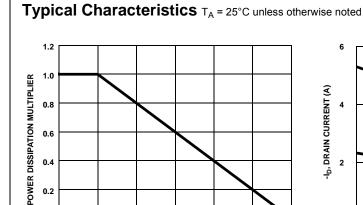
Symbol	Parameter Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60	-	-	V
1	Zoro Coto Valtago Drain Current	V _{DS} = 50V	-	-	1	
I _{DSS} Zero	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_A = 150^{\circ}C$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±16V	-	-	±100	nA

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	-	3	V
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 5.1A, V_{GS} = 10V$	-	0.041	0.049	
		$I_D = 4.8A, V_{GS} = 5V$	-	0.048	0.056	Ω
		$I_D = 4.8A, V_{GS} = 5V$ $T_A = 150^{\circ}C$	-	0.091	0.106	

Dynamic Characteristics

C _{ISS}	Input Capacitance	\\ - 25\\ \\ - 0\\	-	620	-	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1MHz	-	180	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 - 1101112	-	30	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V		18	23	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 30^{\circ}$	/ -	10	13	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$ $I_{D} = 4.8A$	-	0.6	0.8	nC
Q_{gs}	Gate to Source Gate Charge	I _g = 1.0m/	٠ -	1.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	5	-	nC


Switching Characteristics ($V_{GS} = 5V$)

t_{ON}	Turn-On Time		-	-	44	ns
t _{d(ON)}	Turn-On Delay Time		-	10	-	ns
t _r	Rise Time	V _{DD} = 30V, I _D = 1A	-	19	-	ns
t _{d(OFF)}	Turn-Off Delay Time	V_{GS} = 5V, R_{GS} = 16 Ω	-	45	-	ns
t _f	Fall Time		-	27	-	ns
t _{OFF}	Turn-Off Time		_	-	108	ns

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 4.8A	ı	-	1.25	>
	Source to Drain Diode Voltage	I _{SD} = 2.4A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 4.8A$, $dI_{SD}/dt = 100A/\mu s$	-	-	43	ns
Q_{RR}	Reverse Recovered Charge	$I_{SD} = 4.8A$, $dI_{SD}/dt = 100A/\mu s$	-	-	55	nC

- Notes: 1: Starting T_J = 25°C, L = 20mH, I_{AS} = 5.1A 2: $R_{\theta JA}$ is 50 °C/W when mounted on a 0.5 in² copper pad on FR-4 at 1 second. 3: $R_{\theta JA}$ is 191 °C/W when mounted on a 0.027 in² copper pad on FR-4 at 1000 seconds. 4: $R_{\theta JA}$ is 228 °C/W when mounted on a 0.006 in² copper pad on FR-4 at 1000 seconds.

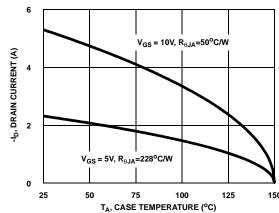


Figure 1. Normalized Power Dissipation vs Ambient Temperature

75

T_A, AMBIENT TEMPERATURE (°C)

100

125

150

50

0

0

25

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

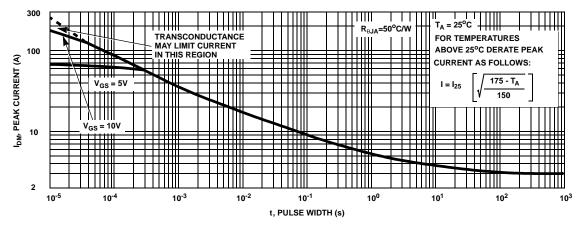


Figure 4. Peak Current Capability

Typical Characteristics $T_A = 25$ °C unless otherwise noted

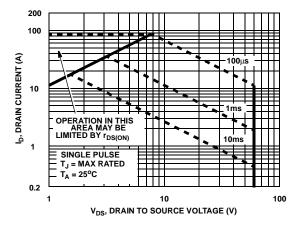


Figure 5. Forward Bias Safe Operating Area

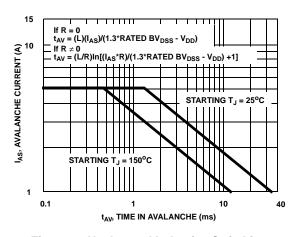


Figure 6. Unclamped Inductive Switching Capability

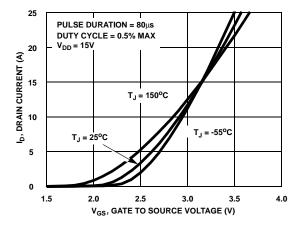


Figure 7. Transfer Characteristics

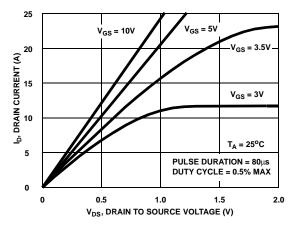


Figure 8. Saturation Characteristics

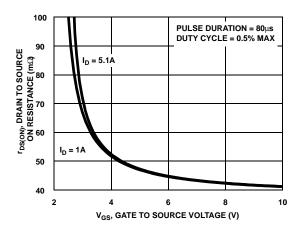


Figure 9. Drain to Source On Resistance vs Gate
Voltage and Drain Current

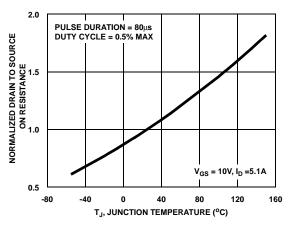


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics T_A = 25°C unless otherwise noted

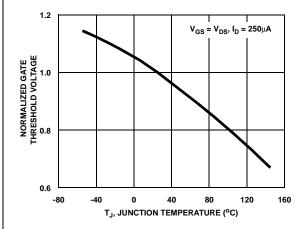


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

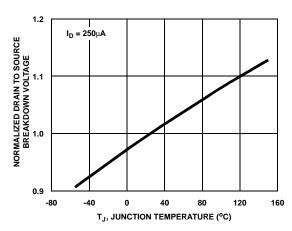


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

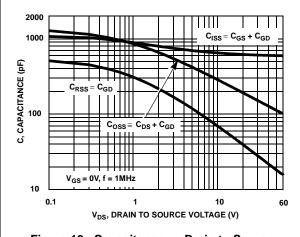


Figure 13. Capacitance vs Drain to Source Voltage

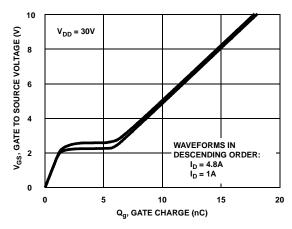


Figure 14. Gate Charge Waveforms for Constant Gate Currents

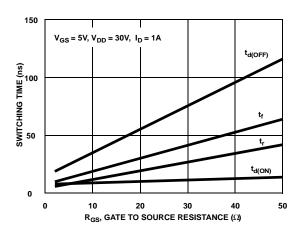


Figure 15. Switching Time vs Gate Resistance

Test Circuits and Waveforms

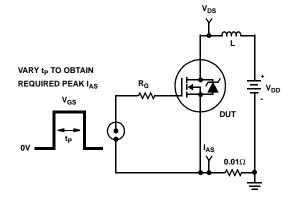


Figure 16. Unclamped Energy Test Circuit

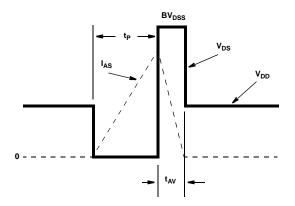


Figure 17. Unclamped Energy Waveforms



Figure 18. Gate Charge Test Circuit

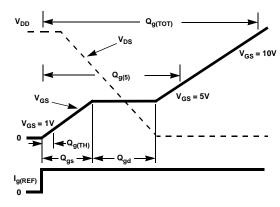


Figure 19. Gate Charge Waveforms

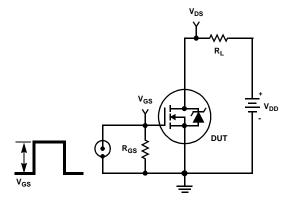


Figure 20. Switching Time Test Circuit

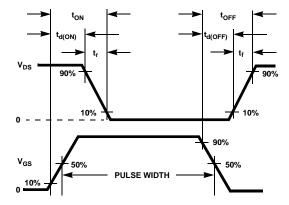


Figure 21. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the SO-8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4 The use of thermal vias
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 22 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 22 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\Theta IA} = 103.2 - 24.3 \ln(Area)$$
 (EQ. 2)

The dual die SO-8 package introduces an additional thermal coupling resistance, $R_{\theta \rm B}$. Equation 3 describes $R_{\theta \rm B}$ as a function of the top copper mouting pad area.

$$R_{\Theta B} = 46.4 - 21.7 \ln(Area)$$
 (EQ. 3)

The thermal coupling resistance vs. copper area is also graphically depicted in Figure 22.

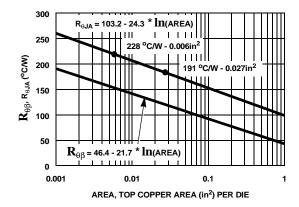
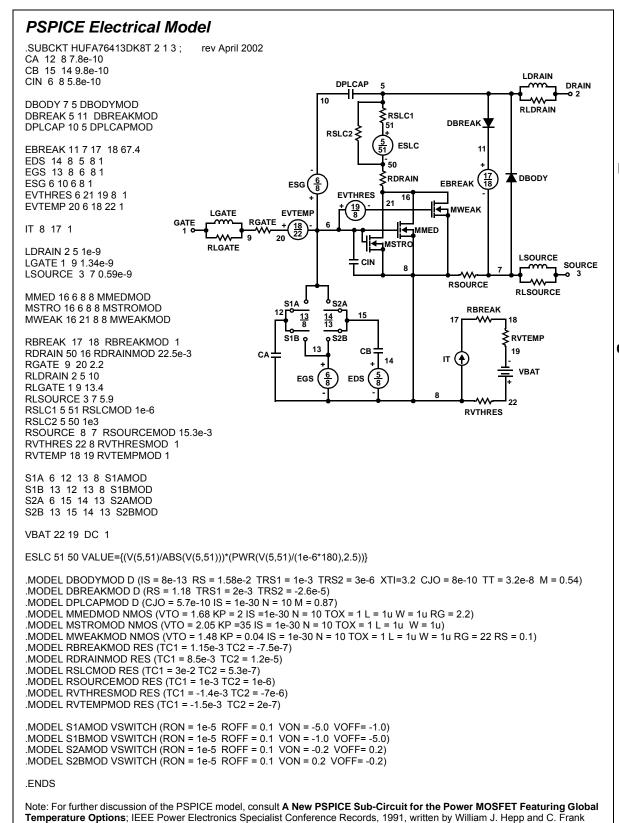
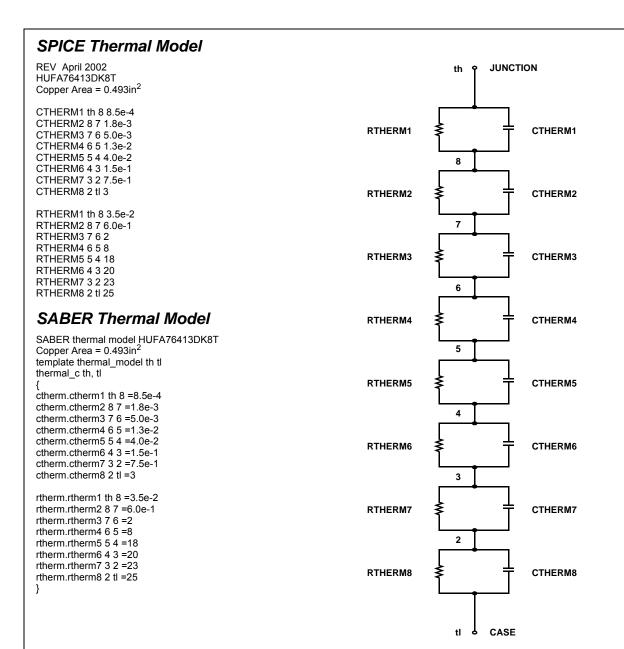




Figure 22. Thermal Resistance vs Mounting Pad Area

Wheatley

SABER Electrical Model REV April 2002 template HUFA76413DK8T n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl = 8e-13, rs = 1.58e-2, trs1 = 1e-3, trs2 = 3e-6, xti = 3.2, cjo = 8e-10, tt = 3.2e-8, m = 0.54) dp..model dbreakmod = (rs = 1.18, trs1 = 2e-3, trs2 = -2.6e-5) dp..model dplcapmod = (cjo = 5.7e-10, isl =10e-30, nl =10, m = 0.87) m..model mmedmod = $(type=_n, vto = 1.68, kp = 2, is = 1e-30, tox=1)$ m..model mstrongmod = (type=_n, vto = 2.05, kp = 35, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.48, kp = 0.04, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.0, voff = -1.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.0, voff = -5.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.2, voff = 0.2) sw vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.2) LDRAIN DPLCAP DRAIN c.ca n12 n8 = 7.8e-10RLDRAIN c.cb n15 n14 = 9.8e-10RSLC1 c.cin n6 n8 = 5.8e-10 RSLC₂ ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod DBREAK dp.dplcap n10 n5 = model=dplcapmod RDRAIN ESG 11 DBODY i.it n8 n17 = 1 **FVTHRFS** $\binom{19}{8}$ MWEAK **LGATE EVTEMP** I.ldrain n2 n5 = 1e-9 RGATE 18 22 I.lgate n1 n9 = 1.34e-9EBREAK **▼**MMED 20 1.1source n3 n7 = 0.59e-9MSTRO RLGATE **LSOURCE** m.mmed n16 n6 n8 n8 = model=mmedmod, I=1u, w=1u CIN SOURCE m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u RSOURCE m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u RLSOURCE res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = -7.5e-7 RBREAK <u>13</u> 8 <u>14</u> 13 res.rdrain n50 n16 = 22.5e-3, tc1 = 8.5e-3, tc2 = 1.2e-5 res.rgate n9 n20 = 2.2 **≷**RVTEMP S1B S2B res.rldrain n2 n5 = 10 СВ 19 res.rlgate n1 n9 = 13.4CA т (♠ 14 res.rlsource n3 n7 = 5.9 VBAT res.rslc1 n5 n51= 1e-6, tc1 = 3e-2, tc2 =5.3e-7 8 EGS **EDS** res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 15.3e-3. tc1 = 1e-3. tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.5e-3, tc2 = 2e-7 **RVTHRES** res.rvthres n22 n8 = 1, tc1 = -1.4e-3, tc2 = -7e-6spe.ebreak n11 n7 n17 n18 = 67.4 spe.eds n14 n8 n5 n8 = 1 spe.eqs n13 n8 n6 n8 = 1spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl $iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))^*((abs(v(n5,n51)^*1e6/180))^{**}\ 2.5))$

The Power Franchise®

bwer

franchise

TinyBoost™

TinyBuck™ TinyCalc™

TinyLogic[®]

TINYOPTO™

TinyPower™

TinyPWM™

TinyWire™

μSerDes™

TriFault Detect™

TRUECURRENT™*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® Auto-SPM™

Global Power Resource SM Build it Now™ CorePLUS™ Green FPS™

CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ Gmax™

 CTL^TM GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED⁶ ISOPLANAR™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ ESBC™ MicroPak™

MicroPak2™ MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ OptoHiT™ FACT® OPTOLOGIC®

FETBench™ FlashWriter®* **FPSTM**

OPTOPLANAR® FastvCore™ PDP SPM™

Power-SPM™ PowerTrench® PowerXSTM

Programmable Active Droop™

OFFT QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOT™-8 . SupreMOS™ SyncFET™ Sync-Lock™

UHC Ultra FRFET™ UniFET™ **VCX**TM VisualMax™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 148

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: HUFA76413DK8T_F085