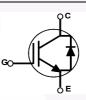

May 2014

FGH40T65SHDF 650 V, 40 A Field Stop Trench IGBT

Features

- Maximum Junction Temperature : T_J = 175^oC
- Positive Temperaure Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.45 V (Typ.) @ I_C = 40 A
- + 100% of the Parts tested for $I_{LM}(1)$
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- RoHS Compliant



General Description

Using novel field stop IGBT technology, Fairchild's new series of field stop 3rd generation IGBTs offer superior conduction and switching performance and easy parallel operation. This device is well suited for the resonant or soft switching application such as induction heating and MWO.

Applications

Induction Heating, MWO

Absolute Maximum Ratings

Symbol	Description		FGH40T65SHDF_F155	5 Unit
V _{CES}	Collector to Emitter Voltage		650	V
V _{GES}	Gate to Emitter Voltage		± 20	V
	Transient Gate to Emitter Voltage	± 30	V	
I _C	Collector Current	@ T _C = 25 ^o C	80	A
10	Collector Current	@ T _C = 100°C	40	A
I _{LM} (1)	Pulsed Collector Current	@ T _C = 25°C	120	A
I _{CM} (2)	Pulsed Collector Current		120	A
I _F	Diode Forward Current	@ T _C = 25°C	40	A
	Diode Forward Current	@ T _C = 100°C	20	A
I _{FM}	Pulsed Diode Maximum Forward Current		60	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	268	W
. D	Maximum Power Dissipation	@ T _C = 100°C	134	W
TJ	Operating Junction Temperature		-55 to +175	°C
T _{stg}	Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes:

1. V_{CC} = 400 V, V_{GE} = 15 V, I_C = 120 A, R_G = 30 Ω , Inductive Load 2. Repetitive rating: Pulse width limited by max. junction temperature

FGH40T65SHDF
T
650
,<
40
⋗
Field
Stop
V, 40 A Field Stop Trench IGBT
IGBT

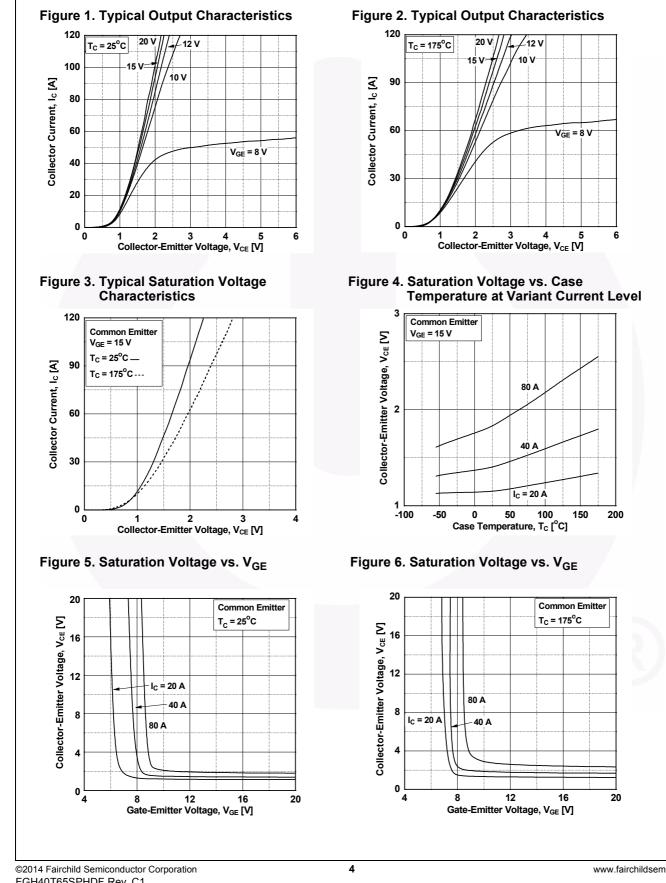
Symbol	Parameter	FGH40T65SHDF_F155	Unit
R _{θJC} (IGBT)	Thermal Resistance, Junction to Case, Max.	0.56	°C/W
R _{θJC} (Diode)	Thermal Resistance, Junction to Case, Max.	1.75	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Qty per Tube
FGH40T65SHDF	FGH40T65SHDF_F155	TO-247 G03	-	-	30

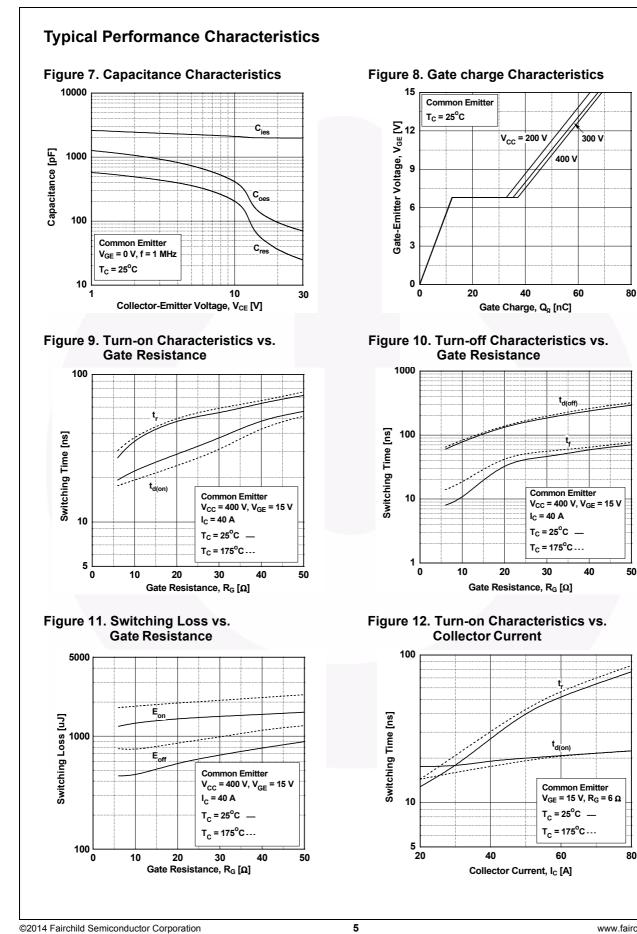
Electrical Characteristics of the IGBT T_c = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	-	0.6	-	V/ºC
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μΑ
I _{GES}	G-E Leakage Current	V_{GE} = V_{GES} , V_{CE} = 0 V	-	-	± 400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 40 mA, V _{CE} = V _{GE}	3.5	5.5	7.5	V
()		I _C = 40 A, V _{GE} = 15 V	-	1.45	1.81	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 175^{\circ}\text{C}$	-	1.8	-	V
Dynamic C	Characteristics					
C _{ies}	Input Capacitance		-	1982	-	pF
C _{oes}	Output Capacitance	V _{CE} = 30 V, V _{GE} = 0 V,	-	70	-	pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz	-	25	-	pF
Switching	Characteristics					
T _{d(on)}	Turn-On Delay Time		-	18	-	ns
T _r	Rise Time		-	27	-	ns
T _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 40 A,	-	64	-	ns
T _f	Fall Time	$R_{G} = 6 \Omega, V_{GE} = 15 V,$	-	3	-	ns
Eon	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	1.22		mJ
E _{off}	Turn-Off Switching Loss		-	0.44	-	mJ
E _{ts}	Total Switching Loss		-	1.66	-	mJ
T _{d(on)}	Turn-On Delay Time		-	18	-	ns
T _r	Rise Time		-	31	-	ns
T _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 40 A,	-	70	-	ns
T _f	Fall Time	R _G = 6 Ω, V _{GE} = 15 V,	-	56	-	ns
Eon	Turn-On Switching Loss	Inductive Load, T _C = 175 ^o C	-	1.78	-	mJ
-011		=	-	1	-	
E _{off}	Turn-Off Switching Loss		-	0.78	-	mJ


Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	-	68	-	nC
Q _{ge}	Gate to Emitter Charge		-	12	-	nC
Q _{gc}	Gate to Collector Charge		-	25	-	nC

Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted


Symbol	Parameter		Test Condition	ns	Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I_ =	20 A	T _C = 25 ^o C	-	1.5	1.95	V
- FINI		1F - 20 A		T _C = 175 ^o C	-	1.37	-	
E _{rec}	Reverse Recovery Energy			T _C = 175 ^o C	-	153	-	μJ
T _{rr}	Diode Reverse Recovery Time	I- =	20 A, dI _F /dt = 200 A/µs	T _C = 25 ^o C		101	-	ns
· II		η <u>-</u>	F = 20 Λ, αιρ/αι = 200 Λ/μ3	T _C = 175 ^o C	-	238	-	
Q _{rr}	Diode Reverse Recovery Charge			T _C = 25 ^o C	-	343	-	nC
	2.000 Hororor (000 vory charge			T _C = 175 ^o C	-	1493	-	

FGH40T65SHDF — 650 V, 40 A Field Stop Trench IGBT

Typical Performance Characteristics

www.fairchildsemi.com

FGH40T65SPHDF Rev. C1

www.fairchildsemi.com

FGH40T65SHDF — 650 V, 40 A Field Stop Trench IGBT

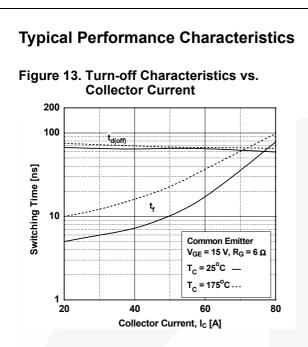


Figure 15. Load Current Vs. Frequency

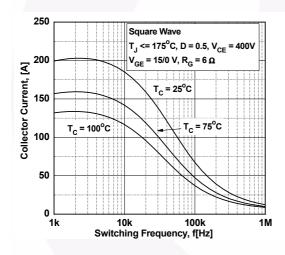
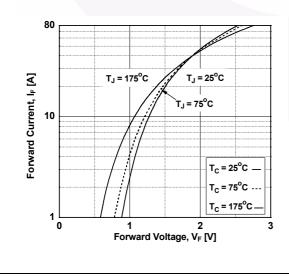



Figure 17. Forward Characteristics

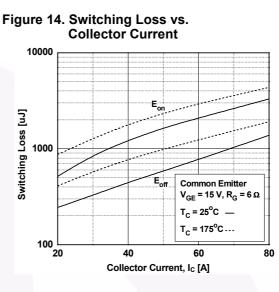
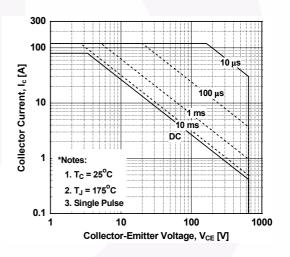
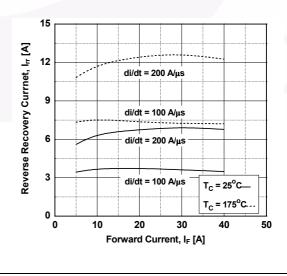
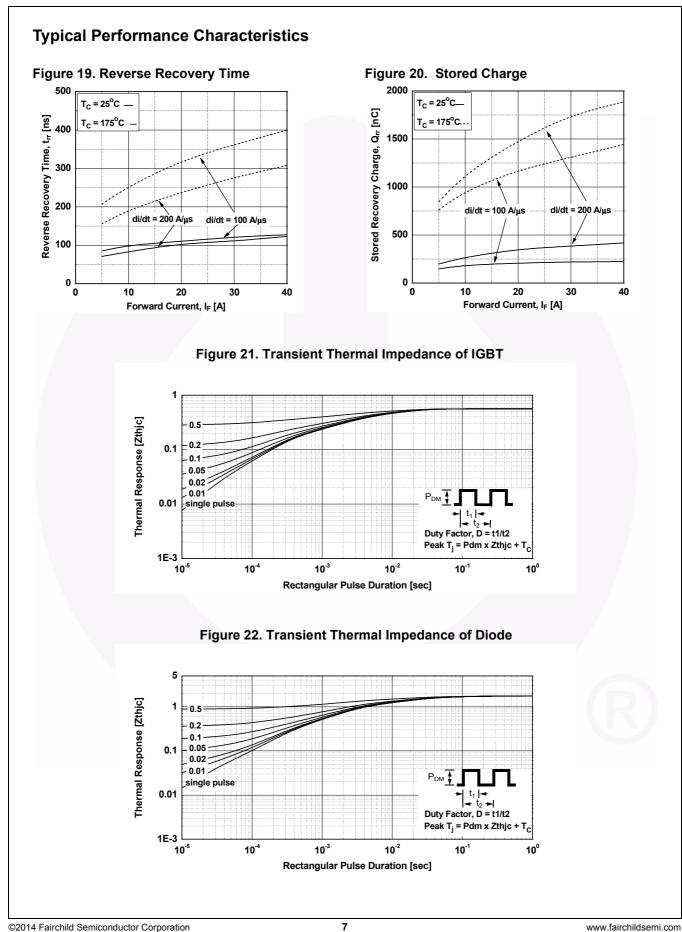
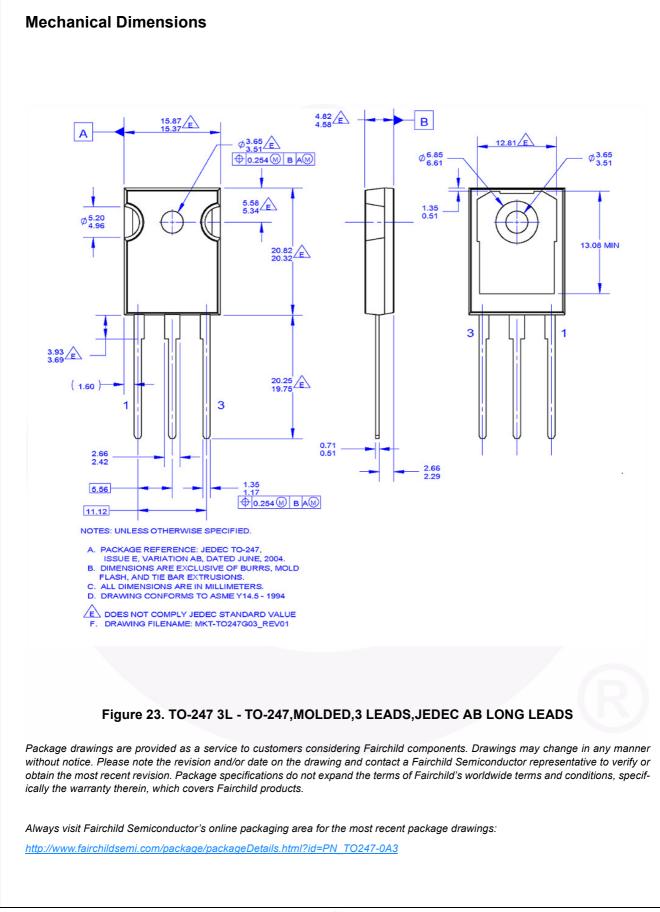


Figure 16. SOA Characteristics


Figure 18. Reverse Recovery Current

FGH40T65SPHDF Rev. C1

FGH40T65SHDF — 650 V, 40 A Field Stop Trench IGBT

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP [®] *
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic ^T
DEUXPEED®
Dual Cool™
EcoSPARK [®]
EfficentMax™
ESBC™

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FETBench[™] FPS[™] FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better[™] MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® **OPTOPLANAR[®]**

F-PFS™

PowerTrench® PowerXS™ Programmable Active Droop™ QFĚT QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

ESYSTEM ®* TinyBoost® TinyBuck® TinyCalc™ TinyCojc® TINYOPTO™ TinyPower™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGH40T65SHDF_F155