Features

- True dual-ported memory cells, which allow simultaneous reads of the same memory location
- 4K × 8 organization
- 0.65 micron CMOS for optimum speed and power
- High speed access: 15 ns
- Low operating power: ICC = 180 mA (max)
- Fully asynchronous operation
- Automatic power down
- Available in 52-pin plastic leaded chip carrier (PLCC)
- Pb-free packages available

Functional Description

The CY7C135 is a high speed CMOS 4K × 8 dual-port static RAMs. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

Each port has independent control pins: chip enable (CE), read or write enable (R/W), and output enable (OE). The CY7C135 is suited for those systems that do not require on-chip arbitration or are intolerant of wait states. Therefore, the user must be aware that simultaneous access to a location is possible. An automatic power down feature is controlled independently on each port by a chip enable (CE) pin.

The CY7C135 is available in 52-pin PLCC.

For a complete list of related documentation, click here.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Guide</td>
<td>3</td>
</tr>
<tr>
<td>Pin Configurations</td>
<td>3</td>
</tr>
<tr>
<td>Pin Definitions</td>
<td>3</td>
</tr>
<tr>
<td>Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Functional Description</td>
<td>4</td>
</tr>
<tr>
<td>Write Operation</td>
<td>4</td>
</tr>
<tr>
<td>Read Operation</td>
<td>4</td>
</tr>
<tr>
<td>Maximum Ratings</td>
<td>5</td>
</tr>
<tr>
<td>Operating Range</td>
<td>5</td>
</tr>
<tr>
<td>Electrical Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>Capacitance</td>
<td>6</td>
</tr>
<tr>
<td>AC Test Loads and Waveforms</td>
<td>6</td>
</tr>
<tr>
<td>Switching Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>Switching Waveforms</td>
<td>8</td>
</tr>
<tr>
<td>Typical DC and AC Characteristics</td>
<td>10</td>
</tr>
<tr>
<td>Ordering Information</td>
<td>11</td>
</tr>
<tr>
<td>4K x 8 Dual-Port SRAM</td>
<td>11</td>
</tr>
<tr>
<td>Ordering Code Definitions</td>
<td>11</td>
</tr>
<tr>
<td>Package Diagram</td>
<td>12</td>
</tr>
<tr>
<td>Acronyms</td>
<td>13</td>
</tr>
<tr>
<td>Document Conventions</td>
<td>13</td>
</tr>
<tr>
<td>Units of Measure</td>
<td>13</td>
</tr>
<tr>
<td>Document History Page</td>
<td>14</td>
</tr>
<tr>
<td>Sales, Solutions, and Legal Information</td>
<td>16</td>
</tr>
<tr>
<td>Worldwide Sales and Design Support</td>
<td>16</td>
</tr>
<tr>
<td>Products</td>
<td>16</td>
</tr>
<tr>
<td>PSoC® Solutions</td>
<td>16</td>
</tr>
<tr>
<td>Cypress Developer Community</td>
<td>16</td>
</tr>
<tr>
<td>Technical Support</td>
<td>16</td>
</tr>
</tbody>
</table>
Selection Guide

<table>
<thead>
<tr>
<th>Parameter</th>
<th>7C135-15</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum access time</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Maximum operating current</td>
<td>Commercial</td>
<td>220</td>
</tr>
<tr>
<td>Maximum standby current for I_{SB1}</td>
<td>Commercial</td>
<td>60</td>
</tr>
</tbody>
</table>

Pin Configurations

![Figure 1. 52-pin PLCC pinout (Top View)](image)

Pin Definitions

<table>
<thead>
<tr>
<th>Left Port</th>
<th>Right Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0L–11L</td>
<td>A0R–11R</td>
<td>Address lines</td>
</tr>
<tr>
<td>CE_L</td>
<td>CE_R</td>
<td>Chip Enable</td>
</tr>
<tr>
<td>OE_L</td>
<td>OE_R</td>
<td>Output Enable</td>
</tr>
<tr>
<td>R/W_L</td>
<td>R/W_R</td>
<td>Read/Write Enable</td>
</tr>
</tbody>
</table>
Architecture

The CY7C135 consists of an array of 4K words of 8 bits each of dual-port RAM cells, I/O and address lines, and control signals (CE, OE, R/W).

Functional Description

Write Operation

Data must be set up for a duration of t_{SD} before the rising edge of R/W to guarantee a valid write. Because there is no on-chip arbitration, the user must be sure that a specific location is not accessed simultaneously by both ports or erroneous data could result. A write operation is controlled by either the OE pin (see Figure 6 on page 9) or the R/W pin (see Figure 7 on page 9). Data can be written t_{HZOE} after the OE is deasserted or t_{HZWE} after the falling edge of R/W. Required inputs for write operations are summarized in Table 1.

If a location is being written to by one port and the opposite port attempts to read the same location, a port-to-port flowthrough delay is met before the data is valid on the output. Data is valid on the port wishing to read the location t_{DDD} after the data is presented on the writing port.

Read Operation

When reading the device, the user must assert both the OE and CE pins. Data is available t_{ACE} after CE or t_{DOE} after OE are asserted. Required inputs for read operations are summarized in Table 1.

Table 1. Non-Contending Read/Write

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>R/W</td>
<td>OE</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>X</td>
</tr>
</tbody>
</table>
Maximum Ratings

Exceeding maximum ratings \([1]\) may shorten the useful life of the device. User guidelines are not tested.

- **Storage temperature**: \(-65^\circ\text{C} to +150^\circ\text{C}\)
- **Ambient temperature with power applied**: \(-55^\circ\text{C} to +125^\circ\text{C}\)
- **Supply voltage to ground potential (Pin 48 to Pin 24)**: \(-0.5\text{ V} to +7.0\text{ V}\)
- **DC voltage applied to outputs in High Z state**: \(-0.5\text{ V} to +7.0\text{ V}\)

Electrical Characteristics

Over the Operating Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Conditions</th>
<th>7C135-15</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output HIGH voltage</td>
<td>(V_{CC} = \text{Min}, I_{OH} = -4.0\text{ mA})</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output LOW voltage</td>
<td>(V_{CC} = \text{Min}, I_{OL} = 4.0\text{ mA})</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input HIGH voltage</td>
<td></td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input LOW voltage</td>
<td></td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IX})</td>
<td>Input load current</td>
<td>(GND \leq V_{I} \leq V_{CC})</td>
<td>-10</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{IOZ})</td>
<td>Output leakage current</td>
<td>Outputs disabled, (GND \leq V_{O} \leq V_{CC})</td>
<td>-10</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Operating current</td>
<td>(V_{CC} = \text{Max}, I_{OUT} = 0\text{ mA})</td>
<td>Commercial</td>
<td>220</td>
</tr>
<tr>
<td>(I_{SB1})</td>
<td>Standby current (Both ports TTL levels)</td>
<td>(\overline{CE}L \text{ and } \overline{CE}R \geq V{IH}, f = f{\text{MAX}}[3])</td>
<td>Commercial</td>
<td>60</td>
</tr>
<tr>
<td>(I_{SB2})</td>
<td>Standby current (One port TTL level)</td>
<td>(\overline{CE}L \text{ and } \overline{CE}R \geq V{IH}, f = f{\text{MAX}}[3])</td>
<td>Commercial</td>
<td>130</td>
</tr>
<tr>
<td>(I_{SB3})</td>
<td>Standby current (Both ports CMOS levels)</td>
<td>Both ports (\overline{CE}L \text{ and } \overline{CE}R \geq V{CC} - 0.2\text{ V, } V{IN} \geq V_{CC} - 0.2\text{ V or } V_{IN} \leq 0.2\text{ V, } f = 0 [3])</td>
<td>Commercial</td>
<td>15</td>
</tr>
<tr>
<td>(I_{SB4})</td>
<td>Standby current (One port CMOS level)</td>
<td>One port (\overline{CE}L \text{ or } \overline{CE}R \geq V{CC} - 0.2\text{ V, } V{IN} \geq V_{CC} - 0.2\text{ V or } V_{IN} \leq 0.2\text{ V, Active port outputs, } f = f_{\text{MAX}}[3])</td>
<td>Commercial</td>
<td>125</td>
</tr>
</tbody>
</table>

Notes

1. The voltage on any input or I/O pin cannot exceed the power pin during power up.
2. Pulse width < 20 ns.
3. \(f_{\text{MAX}} = 1/f_{\text{RC}}\) = All inputs cycling at \(f = 1/f_{\text{RC}}\) (except output enable). \(f = 0\) means no address or control lines change. This applies only to inputs at CMOS level standby \(I_{SB3}\).
Capacitance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{IN}</td>
<td>Input capacitance</td>
<td>T\textsubscript{A} = 25 °C, f = 1 MHz, V\textsubscript{CC} = 5.0 V</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>C\textsubscript{OUT}</td>
<td>Output capacitance</td>
<td></td>
<td>10</td>
<td>pF</td>
</tr>
</tbody>
</table>

AC Test Loads and Waveforms

![AC Test Loads and Waveforms](image)

Figure 2. AC Test Loads and Waveforms

(a) Normal Load (Load 1)
(b) Thévenin Equivalent (Load 1)
(c) Three-State Delay (Load 3)

Note
4. Tested initially and after any design or process changes that may affect these parameters.
Switching Characteristics
Over the Operating Range

<table>
<thead>
<tr>
<th>Parameter [5]</th>
<th>Description</th>
<th>7C135-15 Unit</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRC</td>
<td>Read cycle time</td>
<td>15 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tAA</td>
<td>Address to data valid</td>
<td>– 15 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tOHA</td>
<td>Output hold from address change</td>
<td>3 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tACE</td>
<td>CE LOW to data valid</td>
<td>– 15 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tDOE</td>
<td>OE LOW to data valid</td>
<td>– 10 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tLZOE [6, 7, 8]</td>
<td>OE Low to Low Z</td>
<td>3 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tHZOE [6, 7, 8]</td>
<td>OE HIGH to High Z</td>
<td>– 10 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tLZCE [6, 7, 8]</td>
<td>CE LOW to Low Z</td>
<td>3 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tHZCE [6, 7, 8]</td>
<td>CE HIGH to High Z</td>
<td>– 10 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPU [8]</td>
<td>CE LOW to Power-up</td>
<td>0 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPD [8]</td>
<td>CE HIGH to Power-down</td>
<td>– 15 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tWC</td>
<td>Write cycle time</td>
<td>15 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSCE</td>
<td>CE LOW to Write End</td>
<td>12 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tAW</td>
<td>Address setup to Write End</td>
<td>12 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tHA</td>
<td>Address hold from Write End</td>
<td>2 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSA</td>
<td>Address setup to Write Start</td>
<td>0 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPWE</td>
<td>Write pulse width</td>
<td>12 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSD</td>
<td>Data setup to Write End</td>
<td>10 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tHD</td>
<td>Data hold from Write End</td>
<td>0 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tHZWE [7, 8]</td>
<td>R/W LOW to High Z</td>
<td>– 10 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tLZWE [7, 8]</td>
<td>R/W HIGH to Low Z</td>
<td>3 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tWDD [9]</td>
<td>Write pulse to data delay</td>
<td>– 30 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tDDD [9]</td>
<td>Write data valid to read data valid</td>
<td>– 25 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified IOL/IOH and 30 pF load capacitance.
6. At any given temperature and voltage condition for any given device, tHZCE is less than tLZCE and tHZOE is less than tLZOE.
7. Test conditions used are Load 3.
8. This parameter is guaranteed but not tested.
9. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Figure 5 on page 8.
Switching Waveforms

Figure 3. Read Cycle No. 1[10, 11]

Either Port Address Access

![diagram](attachment:read_cycle_no_1.png)

Figure 4. Read Cycle No. 2[10, 12]

Either Port CE/OE Access

![diagram](attachment:read_cycle_no_2.png)

Figure 5. Read Timing with Port-to-Port[13]

![diagram](attachment:read_timing_port_to_port.png)

Notes
10. R/W is HIGH for read cycle.
11. Device is continuously selected, CE = V\textsubscript{IL} and OE = V\textsubscript{IL}.
12. Address valid prior to or coincident with CE transition LOW.
13. CE\textsubscript{L} = CE\textsubscript{R} = LOW; N/R\textsubscript{L} = HIGH.
Switching Waveforms (continued)

Figure 6. Write Cycle No. 1: Œ Three-States Data I/Os (Either Port) \(^{[14, 15, 16]}\)

Figure 7. Write Cycle No. 2: R/W Three-States Data I/Os (Either Port) \(^{[15, 17]}\)

Notes

14. The internal write time of the memory is defined by the overlap of CE and R/W LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

15. R/W must be HIGH during all address transactions.

16. If CE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and data to be placed on the bus for the required tSD. If CE is HIGH during a R/W controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified tPWE.

17. Data I/O pins enter high impedance when Œ is held LOW during write.
Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME
Ordering Information

4K x 8 Dual-Port SRAM

<table>
<thead>
<tr>
<th>Speed (ns)</th>
<th>Ordering Code</th>
<th>Package Diagram</th>
<th>Package Type</th>
<th>Operating Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>CY7C135-15JXC</td>
<td>51-85004</td>
<td>52-pin PLCC (Pb-free)</td>
<td>Commercial</td>
</tr>
</tbody>
</table>

Ordering Code Definitions

- **Part Number Identifier**
- **Technology Code**: C = CMOS
- **Marketing Code**: 7 = SRAM
- **Company ID**: CY = Cypress
- **Temperature Range**: C = Commercial
- **Package Type**: J = 52-pin PLCC
- **Speed**: 15 ns
- **Pb-free**
Figure 8. 52-pin PLCC (0.756 × 0.756 Inches) J52 Package Outline, 51-85004
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>PLCC</td>
<td>Plastic Leaded Chip Carrier</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static Random Access Memory</td>
</tr>
<tr>
<td>TQFP</td>
<td>Thin Quad Flat Pack</td>
</tr>
</tbody>
</table>

Document Conventions

Units of Measure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>µA</td>
<td>microampere</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
</tr>
<tr>
<td>ns</td>
<td>nanosecond</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>pF</td>
<td>picofarad</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
</tbody>
</table>
Document History Page (continued)

<table>
<thead>
<tr>
<th>Rev.</th>
<th>ECN No.</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>*I</td>
<td>4264122</td>
<td>SMCH</td>
<td>01/27/2014</td>
<td>Removed 25 ns speed bin related information across the document.</td>
</tr>
<tr>
<td>*J</td>
<td>4580622</td>
<td>SMCH</td>
<td>11/26/2014</td>
<td>Updated Functional Description: Added “For a complete list of related documentation, click here.” at the end.</td>
</tr>
<tr>
<td>*K</td>
<td>5506734</td>
<td>NILE</td>
<td>11/04/2016</td>
<td>Updated Ordering Information: No change in part numbers. Removed column “Package Name”. Added a column “Package Diagram”. Updated to new template. Completing Sunset Review.</td>
</tr>
</tbody>
</table>
Sales, Solutions, and Legal Information

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products
- ARM® Cortex® Microcontrollers: cypress.com/arm
- Automotive: cypress.com/automotive
- Clocks & Buffers: cypress.com/clocks
- Interface: cypress.com/interface
- Internet of Things: cypress.com/iot
- Lighting & Power Control: cypress.com/powerpsoc
- Memory: cypress.com/memory
- PSoC: cypress.com/psoc
- Touch Sensing: cypress.com/touch
- USB Controllers: cypress.com/usb
- Wireless/RF: cypress.com/wireless

PSoC®Solutions
- PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community
- Forums | Projects | Video | Blogs | Training | Components

Technical Support
- cypress.com/support

© Cypress Semiconductor Corporation, 2001-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:
CY7C135-15JXC