1.1 GHz Dual Modulus Prescaler

Description

The MC12026A is a high frequency, low voltage dual modulus prescaler used in phase-locked loop (PLL) applications.

The MC12026A can be used with CMOS synthesizers requiring positive edges to trigger internal counters in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

A Divide Ratio Control (SW) permits selection of an 8/9 or 16/17 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

Features

- 1.1 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Power 4.0 mA Typical
- Operating Temperature Range of -40 to 85°C
- The MC12026 is Pin Compatible with the MC12022
- Short Setup Time (t_{set}) 6.0 ns Typical @ 1.1 GHz
- Modulus Control Input Level is Compatible with Standard CMOS and TTL
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

Table 1. FUNCTIONAL TABLE

SW	МС	Divide Ratio
Н	Н	8
Н	L	9
L	Н	16
L	L	17

SW: H = V_{CC}, L = Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.

Table 2. MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V _{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T _A	-40 to 85	°C
Storage Temperature Range	T _{stg}	-65 to 150	°C
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc
Maximum Output Current, Pin 4	I _O	10.0	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

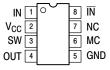
NOTE: ESD data available upon request.

ON Semiconductor[™]

www.onsemi.com

SOIC-8 NB D SUFFIX CASE 751-07

MARKING DIAGRAM*



A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC12026ADG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC12026ADR2G	SOIC-8 NB (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{2.} MC: H = 2.0 V to V_{CC} , L = GND to 0.8 V.

^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>.

Table 3. ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5 \text{ to } 5.5$; $T_A = -40 \text{ to } 85^{\circ}\text{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Toggle Frequency (Sin Wave)	f _t	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2)	I _{CC}	-	4.0	5.3	mA
Modulus Control Input High (MC)	V _{IH1}	2.0	=	V _{CC}	V
Modulus Control Input Low (MC)	V _{IL1}	GND	=	0.8	V
Divide Ratio Control Input High (SW)	V _{IH2}	V _{CC} – 0.5 V	V_{CC}	V _{CC} + 0.5 V	V
Divide Ratio Control Input Low (SW)	V_{IL2}	OPEN	OPEN	OPEN	-
Output Voltage Swing (R _L = 560 Ω ; I _O = 5.5 mA) (Note 1) (R _L = 1.1 k Ω ; I _O = 2.9 mA) (Note 2)	V _{out}	1.0	1.6	-	V _{pp}
Modulus Setup Time MC to Out (Note 3)	t _{SET}	-	6.0	9.0	ns
Input Voltage Sensitivity 100-250 MHz 250-1100 MHz	V _{in}	400 100	- -	1000 1000	mVpp

- 1. Divide Ratio of $\div 8/9$ at 1.1 GHz, $C_L=8.0$ pF. 2. Divide Ratio of $\div 16/17$ at 1.1 GHz, $C_L=8.0$ pF. 3. Assuming $R_L=560~\Omega$ at 1.1 GHz.

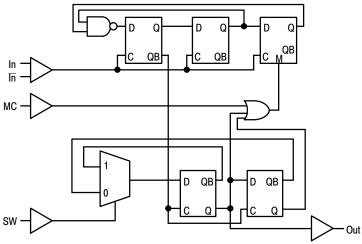



Figure 1. Logic Diagram (MC12026A)

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 2. Modulus Setup Time

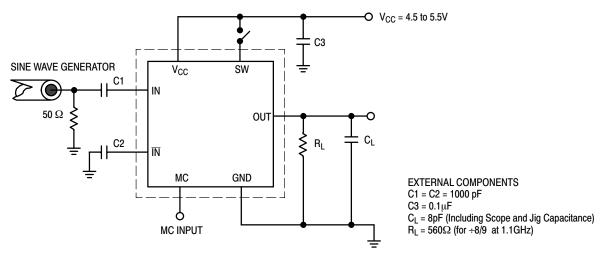


Figure 3. AC Test Circuit

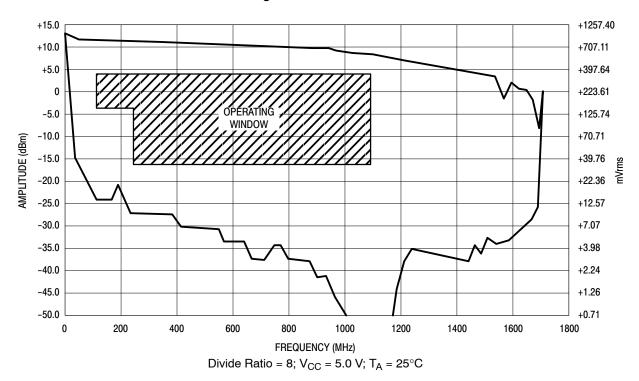


Figure 4. Input Signal Amplitude Versus Input Frequency

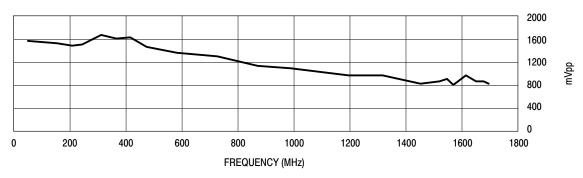
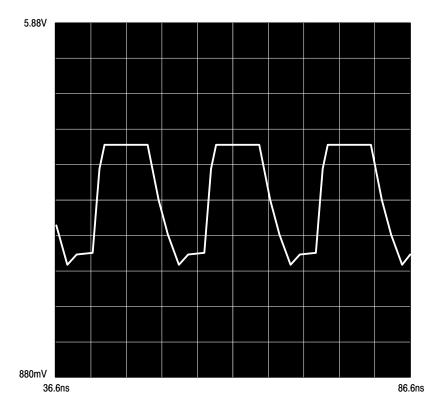



Figure 5. Output Amplitude Versus Input Frequency

 $(\div 8,\, 1.1 \text{ GHz Input Frequency},\, V_{CC} = 5.0,\, T_A = 25^{\circ}C,\, Output\, Loaded\,\, With\,\, 8.0 pF)$

Figure 6. Typical Output Waveform

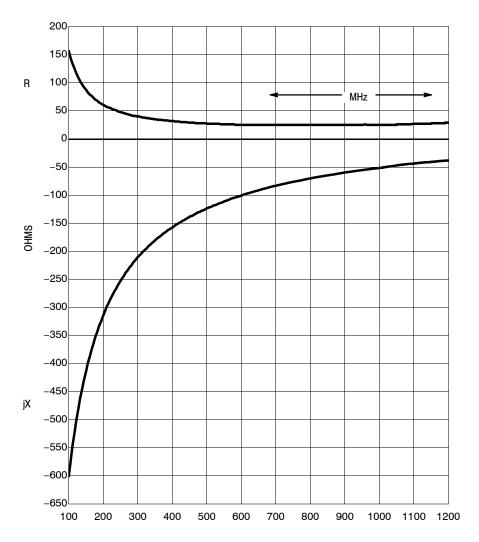
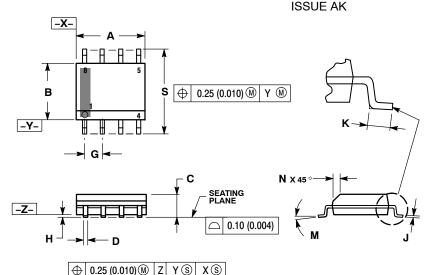
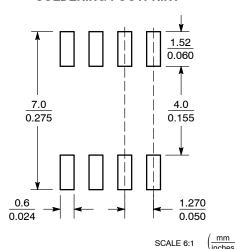



Figure 7. Typical Input Impedance Versus Input Frequency

PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		0.050 BSC		
Η	0.10	0.25	0.004	0.010		
7	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. coverage may be accessed at www.onsem.com/site/par/#atent-warking.pg/. On Semiconductor reserves the right to make changes withrout further notice to any products nerein. On Semiconductor and products nerein any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC12026ADG MC12026ADR2G