

Voltage Detector IC Series

Standard CMOS Voltage Detector IC

BD48xxx series BD49xxx series

General Description

ROHM's BD48xxx and BD49xxx series are highly accurate, low current consumption reset IC series. The line up includes BD48xxx devices with N channel open drain output and BD49xxx devices with CMOS output. The devices are available for specific detection voltages ranging from 2.3V to 6.0V in increments of 0.1V.

Features

- High accuracy detection
- Ultra-low current consumption
- Two output types (Nch open drain and CMOS output)
- Wide Operating temperature range
- Very small and low height package
- Package SSOP5 is similar to SOT-23-5 (JEDEC)
- Package SSOP3 is similar to SOT-23-3 (JEDEC)

Key Specifications

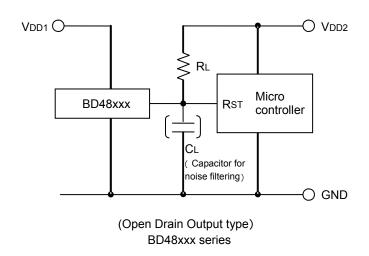
■ Detection voltage: 2.3V to 6.0V (Typ.), 0.1V steps

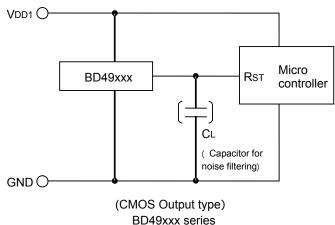
■ High accuracy detection voltage: ±1.0%■ Ultra-low current consumption: 0.9µA (Typ.)

■ Operating temperature range: -40°C to +105°C

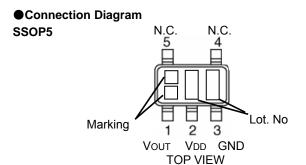
Package

 SSOP5:
 2.90mm x 2.80mm x 1.15mm

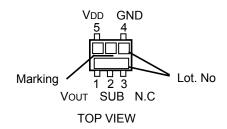

 SSOP3:
 2.90mm x 2.80mm x 1.15mm


 VSOF5:
 1.60 mm x 1.60mm x 0.60mm

Applications

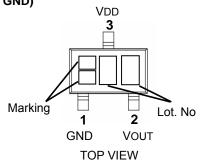

Circuits using microcontrollers or logic circuits that require a reset.

● Typical Application Circuit


OProduct structure: Silicon monolithic integrated circuit OThis product is not designed protection against radioactive rays.

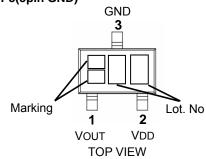
Pin Descriptions

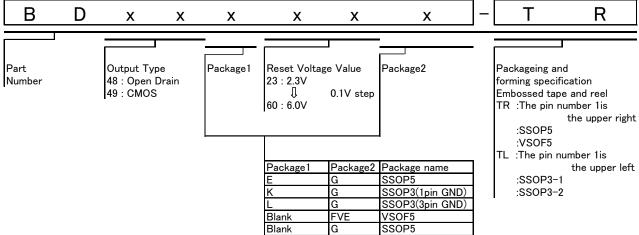
	SSOP5						
PIN No.	Symbol	Function					
1	Vout	Reset Output					
2	VDD	Power Supply Voltage					
3	GND	GND					
4	N.C.	Unconnected Terminal					
5	N.C.	Unconnected Terminal					


VSOF5

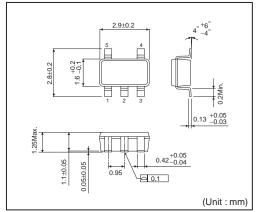
VSOF5						
PIN No.	Symbol	Function				
1	Vout	Reset Output				
2	SUB	Substrate*				
3	N.C.	Unconnected Terminal				
4	GND	GND				
5	Vdd	Power Supply Voltage				

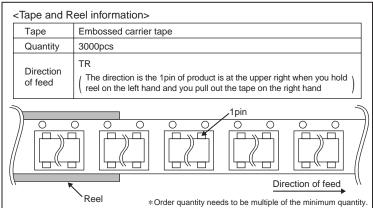
^{*}Connect the substrate to GND.

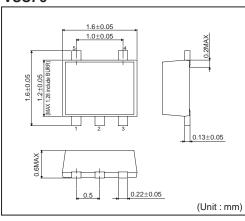

SSOP3(1pin GND)


	SSOP3-1							
PIN No.	Symbol	Function						
1	GND	GND						
2	Vout	Reset Output						
3	3 VDD Power Supply Voltage							

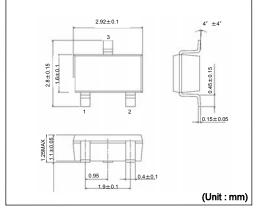
SSOP3(3pin GND)

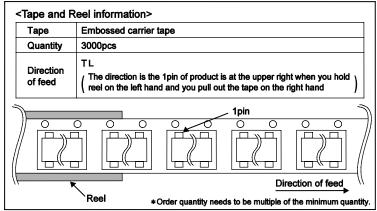

SSOP3-2							
PIN No.	Symbol Function						
1	Vout	Reset Output					
2	Vdd	Power Supply Voltage					
3	GND	GND					


Ordering Information


note) Please be new and, in hope of SSOP5, choose the package 1 by "E" and package 2" G."

SSOP5





VSOF5

SSOP3

●Lineup

Marking	Detection	Part									
Marking	Voltage	Number									
EW	6.0V	BD4860	EB	4.1V	BD4841	GW	6.0V	BD4960	GB	4.1V	BD4941
EV	5.9V	BD4859	EA	4.0V	BD4840	GV	5.9V	BD4959	GA	4.0V	BD4940
EU	5.8V	BD4858	DV	3.9V	BD4839	GU	5.8V	BD4958	FV	3.9V	BD4939
ET	5.7V	BD4857	DU	3.8V	BD4838	GT	5.7V	BD4957	FU	3.8V	BD4938
ES	5.6V	BD4856	DT	3.7V	BD4837	GS	5.6V	BD4956	FT	3.7V	BD4937
ER	5.5V	BD4855	DS	3.6V	BD4836	GR	5.5V	BD4955	FS	3.6V	BD4936
EQ	5.4V	BD4854	DR	3.5V	BD4835	GQ	5.4V	BD4954	FR	3.5V	BD4935
EP	5.3V	BD4853	DQ	3.4V	BD4834	GP	5.3V	BD4953	FQ	3.4V	BD4934
EN	5.2V	BD4852	DP	3.3V	BD4833	GN	5.2V	BD4952	FP	3.3V	BD4933
EM	5.1V	BD4851	DN	3.2V	BD4832	GM	5.1V	BD4951	FN	3.2V	BD4932
EL	5.0V	BD4850	DM	3.1V	BD4831	GL	5.0V	BD4950	FM	3.1V	BD4931
EK	4.9V	BD4849	DL	3.0V	BD4830	GK	4.9V	BD4949	FL	3.0V	BD4930
EJ	4.8V	BD4848	DK	2.9V	BD4829	GJ	4.8V	BD4948	FK	2.9V	BD4929
EH	4.7V	BD4847	DJ	2.8V	BD4828	GH	4.7V	BD4947	FJ	2.8V	BD4928
EG	4.6V	BD4846	DH	2.7V	BD4827	GG	4.6V	BD4946	FH	2.7V	BD4927
EF	4.5V	BD4845	DG	2.6V	BD4826	GF	4.5V	BD4945	FG	2.6V	BD4926
EE	4.4V	BD4844	DF	2.5V	BD4825	GE	4.4V	BD4944	FF	2.5V	BD4925
ED	4.3V	BD4843	DE	2.4V	BD4824	GD	4.3V	BD4943	FE	2.4V	BD4924
EC	4.2V	BD4842	DD	2.3V	BD4823	GC	4.2V	BD4942	FD	2.3V	BD4923

Marking	Detection Voltage	Part Number									
Cm	6.0V	BD48E60	Be	4.1V	BD48E41	Ff	6.0V	BD49E60	Ea	4.1V	BD49E41
Ck	5.9V	BD48E59	Bd	4.0V	BD48E40	Fe	5.9V	BD49E59	Dy	4.0V	BD49E40
Ch	5.8V	BD48E58	Вс	3.9V	BD48E39	Fd	5.8V	BD49E58	Dr	3.9V	BD49E39
Cg	5.7V	BD48E57	Bb	3.8V	BD48E38	Fc	5.7V	BD49E57	Dp	3.8V	BD49E38
Cf	5.6V	BD48E56	Ва	3.7V	BD48E37	Fb	5.6V	BD49E56	Dn	3.7V	BD49E37
Ce	5.5V	BD48E55	Ay	3.6V	BD48E36	Fa	5.5V	BD49E55	Dm	3.6V	BD49E36
Cd	5.4V	BD48E54	Ar	3.5V	BD48E35	Ey	5.4V	BD49E54	Dk	3.5V	BD49E35
Сс	5.3V	BD48E53	Ар	3.4V	BD48E34	Er	5.3V	BD49E53	Dh	3.4V	BD49E34
Cb	5.2V	BD48E52	An	3.3V	BD48E33	Ep	5.2V	BD49E52	Dg	3.3V	BD49E33
Ca	5.1V	BD48E51	Am	3.2V	BD48E32	En	5.1V	BD49E51	Df	3.2V	BD49E32
Ву	5.0V	BD48E50	Ak	3.1V	BD48E31	Em	5.0V	BD49E50	De	3.1V	BD49E31
Br	4.9V	BD48E49	Ah	3.0V	BD48E30	Ek	4.9V	BD49E49	Dd	3.0V	BD49E30
Вр	4.8V	BD48E48	Ag	2.9V	BD48E29	Eh	4.8V	BD49E48	Dc	2.9V	BD49E29
Bn	4.7V	BD48E47	Af	2.8V	BD48E28	Eg	4.7V	BD49E47	Db	2.8V	BD49E28
Bm	4.6V	BD48E46	Ae	2.7V	BD48E27	Ef	4.6V	BD49E46	Da	2.7V	BD49E27
Bk	4.5V	BD48E45	Ad	2.6V	BD48E26	Ee	4.5V	BD49E45	Су	2.6V	BD49E26
Bh	4.4V	BD48E44	Ac	2.5V	BD48E25	Ed	4.4V	BD49E44	Cr	2.5V	BD49E25
Bg	4.3V	BD48E43	Ab	2.4V	BD48E24	Ec	4.3V	BD49E43	Ср	2.4V	BD49E24
Bf	4.2V	BD48E42	Aa	2.3V	BD48E23	Eb	4.2V	BD49E42	Cn	2.3V	BD49E23

Marking	Detection	Part Number	Marking	Detection	Part Number	Marking	Detection	Part	Marking	Detection	Part
	Voltage		ŭ	Voltage		Ŭ	Voltage	Number	, ,	Voltage	Number
Cm	6.0V	BD48K60	Be	4.1V	BD48K41	Ff	6.0V	BD49K60	Ea	4.1V	BD49K41
Ck	5.9V	BD48K59	Bd	4.0V	BD48K40	Fe	5.9V	BD49K59	Dy	4.0V	BD49K40
Ch	5.8V	BD48K58	Вс	3.9V	BD48K39	Fd	5.8V	BD49K58	Dr	3.9V	BD49K39
Cg	5.7V	BD48K57	Bb	3.8V	BD48K38	Fc	5.7V	BD49K57	Dp	3.8V	BD49K38
Cf	5.6V	BD48K56	Ва	3.7V	BD48K37	Fb	5.6V	BD49K56	Dn	3.7V	BD49K37
Ce	5.5V	BD48K55	Ay	3.6V	BD48K36	Fa	5.5V	BD49K55	Dm	3.6V	BD49K36
Cd	5.4V	BD48K54	Ar	3.5V	BD48K35	Ey	5.4V	BD49K54	Dk	3.5V	BD49K35
Сс	5.3V	BD48K53	Ap	3.4V	BD48K34	Er	5.3V	BD49K53	Dh	3.4V	BD49K34
Cb	5.2V	BD48K52	An	3.3V	BD48K33	Ep	5.2V	BD49K52	Dg	3.3V	BD49K33
Ca	5.1V	BD48K51	Am	3.2V	BD48K32	En	5.1V	BD49K51	Df	3.2V	BD49K32
Ву	5.0V	BD48K50	Ak	3.1V	BD48K31	Em	5.0V	BD49K50	De	3.1V	BD49K31
Br	4.9V	BD48K49	Ah	3.0V	BD48K30	Ek	4.9V	BD49K49	Dd	3.0V	BD49K30
Вр	4.8V	BD48K48	Ag	2.9V	BD48K29	Eh	4.8V	BD49K48	Dc	2.9V	BD49K29
Bn	4.7V	BD48K47	Af	2.8V	BD48K28	Eg	4.7V	BD49K47	Db	2.8V	BD49K28
Bm	4.6V	BD48K46	Ae	2.7V	BD48K27	Ef	4.6V	BD49K46	Da	2.7V	BD49K27
Bk	4.5V	BD48K45	Ad	2.6V	BD48K26	Ee	4.5V	BD49K45	Су	2.6V	BD49K26
Bh	4.4V	BD48K44	Ac	2.5V	BD48K25	Ed	4.4V	BD49K44	Cr	2.5V	BD49K25
Bg	4.3V	BD48K43	Ab	2.4V	BD48K24	Ec	4.3V	BD49K43	Ср	2.4V	BD49K24
Bf	4.2V	BD48K42	Aa	2.3V	BD48K23	Eb	4.2V	BD49K42	Cn	2.3V	BD49K23

Marking	Detection	Part Number	Marking	Detection	Part Number	Marking	Detection	Part	Marking	Detection	Part
Marking	Voltage	T art Number	Warking	Voltage	1 art Number	Marking	Voltage	Number	Marking	Voltage	Number
Kb	6.0V	BD48L60	Gn	4.1V	BD48L41	Np	6.0V	BD49L60	Mg	4.1V	BD49L41
Ka	5.9V	BD48L59	Gm	4.0V	BD48L40	Nn	5.9V	BD49L59	Mf	4.0V	BD49L40
Ну	5.8V	BD48L58	Gk	3.9V	BD48L39	Nm	5.8V	BD49L58	Me	3.9V	BD49L39
Hr	5.7V	BD48L57	Gh	3.8V	BD48L38	Nk	5.7V	BD49L57	Md	3.8V	BD49L38
Нр	5.6V	BD48L56	Gg	3.7V	BD48L37	Nh	5.6V	BD49L56	Мс	3.7V	BD49L37
Hn	5.5V	BD48L55	Gf	3.6V	BD48L36	Ng	5.5V	BD49L55	Mb	3.6V	BD49L36
Hm	5.4V	BD48L54	Ge	3.5V	BD48L35	Nf	5.4V	BD49L54	Ma	3.5V	BD49L35
Hk	5.3V	BD48L53	Gd	3.4V	BD48L34	Ne	5.3V	BD49L53	Ky	3.4V	BD49L34
Hh	5.2V	BD48L52	Gc	3.3V	BD48L33	Nd	5.2V	BD49L52	Kr	3.3V	BD49L33
Hg	5.1V	BD48L51	Gb	3.2V	BD48L32	Nc	5.1V	BD49L51	Кр	3.2V	BD49L32
Hf	5.0V	BD48L50	Ga	3.1V	BD48L31	Nb	5.0V	BD49L50	Kn	3.1V	BD49L31
He	4.9V	BD48L49	Fy	3.0V	BD48L30	Na	4.9V	BD49L49	Km	3.0V	BD49L30
Hd	4.8V	BD48L48	Fr	2.9V	BD48L29	My	4.8V	BD49L48	Kk	2.9V	BD49L29
Hc	4.7V	BD48L47	Fp	2.8V	BD48L28	Mr	4.7V	BD49L47	Kh	2.8V	BD49L28
Hb	4.6V	BD48L46	Fn	2.7V	BD48L27	Мр	4.6V	BD49L46	Kg	2.7V	BD49L27
На	4.5V	BD48L45	Fm	2.6V	BD48L26	Mn	4.5V	BD49L45	Kf	2.6V	BD49L26
Gy	4.4V	BD48L44	Fk	2.5V	BD48L25	Mm	4.4V	BD49L44	Ke	2.5V	BD49L25
Gr	4.3V	BD48L43	Fh	2.4V	BD48L24	Mk	4.3V	BD49L43	Kd	2.4V	BD49L24
Gp	4.2V	BD48L42	Fg	2.3V	BD48L23	Mh	4.2V	BD49L42	Kc	2.3V	BD49L23

● Absolute Maximum Ratings (Ta=25°C)

F	Parameter	Symbol	Limits	Unit
Power Supply Volta	age	V_{DD} -GND	-0.3 to +10	V
Output Valtage	Nch Open Drain Output	V_{OUT}	GND-0.3 to +10	V
Output voltage	Output Voltage CMOS Output		GND-0.3 to V_{DD} +0.3	V
Power	SSOP5 *1*3	5	540	10/4
Dissipation	VSOF5 *2*3	Pd	210	mW
Operating Tempera	iture	Topr	-40 to +105	Ç
Ambient Storage Te	emperature	Tstg	-55 to +125	°C

^{*1} Use above Ta=25°C results in a 5.4mW loss per degree.

● Electrical Characteristics (Unless Otherwise Specified Ta=-40 to 105°C)

• Electrical Characteristics		•	•		Limit		
Parameter	Symbol	Cor	Min.	Тур.	Max.	Unit	
Detection Voltage	V _{DET}	RL=470kΩ, VDD=H→	·L *1	V _{DET} (T) ×0.99	V _{DET} (T)	V _{DET} (T) ×1.01	V
Output Delay Time "L→H"	tplH	CL=100pF R L=100k Vout=GND→50%	Ω *2	-	-	100	μs
			V _{DET} =2.3-3.1V	-	0.51	1.53	
Circuit Current when ON	Icc1	VDD=V _{DET} -0.2V *1	V _{DET} =3.2-4.2V	-	0.56	1.68	
Circuit Current when ON	ICC I	VDD-VDET-U.ZV	V _{DET} =4.3-5.2V	-	0.60	1.80	μA
			V _{DET} =5.3-6.0V	-	0.66	1.98	
			V _{DET} =2.3-3.1V	-	0.75	2.25	
Circuit Current when OFF	Icc2	V _{DD} =V _{DET} +2.0V *1	V_{DET} =3.2-4.2V	-	0.80	2.40	μA
Circuit Current when OFF	ICC2		V _{DET} =4.3-5.2V	-	0.85	2.55	
			V _{DET} =5.3-6.0V	-	0.90	2.70	
Operating Voltage Dange	Vopl	VoL≤0.4V, Ta=25 to	105°C, RL=470kΩ	0.95	-	-	V
Operating Voltage Range	VOPL	VoL≤0.4V, Ta=-40 to	25°C, RL=470kΩ	1.20	-	-	V
(Lave) Overhaust Overhaust (Nlah)	lou	VDS=0.5V, VDD=1.5V	', V _{DET} =2.3-6.0V	0.4	1.0	-	A
'Low'Output Current (Nch)	lol	VDS=0.5V, VDD=2.4V	', V _{DET} =2.7-6.0V	2.0	4.0	-	mA
(Link)Outout Ourset (Dale)		VDS=0.5V, VDD=4.8V	, V _{DET} =2.3-4.2V	0.7	1.4	-	
'High'Output Current (Pch)	Іон	VDS=0.5V, VDD=6.0V	, V _{DET} =4.3-5.2V	0.9	1.8	-	mA
(BD49xxx Series)		VDS=0.5V, VDD=8.0V	, V _{DET} =5.3-6.0V	1.1	2.2	-	
Leak Current when OFF (BD48xxx Series)	I _{leak}	VDD=VDS=10V	*1	-	-	0.1	μA
Detection Voltage Temperature coefficient	V _{DET} /ΔT	Ta=-40°C to 105°C (Designed Guarantee	e)	-	±100	±360	ppm/°C
Hysteresis Voltage	ΔV_{DET}	VDD=L→H→L		V _{DET} ×0.03	V _{DET} ×0.05	$V_{\text{DET}}{\times}0.08$	V

^{*2} Use above Ta=25°C results in a 2.1mW loss per degree.

^{*3} When a ROHM standard circuit board (70mm×70mm×1.6mm glass epoxy board) is mounted.

V_{DET}(T): Standard Detection Voltage(2.3V to 6.0V, 0.1V step)
R_L: Pull-up resistor to be connected between VouT and power supply.
C_L: Capacitor to be connected between VOUT and GND.

Designed Guarantee. (Outgoing inspection is not done on all products.) *1 Guarantee is Ta=25°C.

^{*2} $\text{tPLH:VDD=}(V_{DET} \text{ typ.-0.5V}) \rightarrow (V_{DET} \text{ typ.+0.5V})$

●Block Diagrams

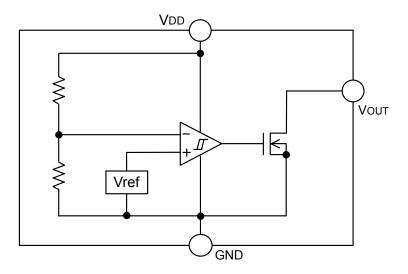


Fig.1 BD48xxx series

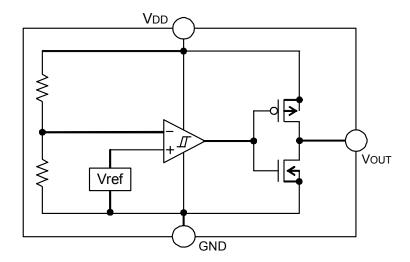


Fig.2 BD49xxx series

●Typical Performance Curves

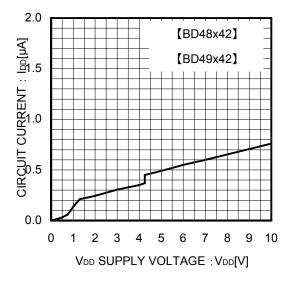


Fig.3 Circuit Current

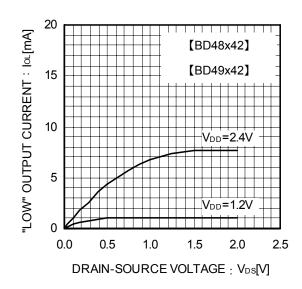


Fig.4 "Low" Output Current

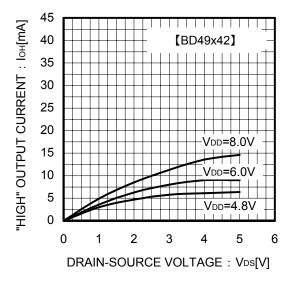


Fig.5 "High" Output Current

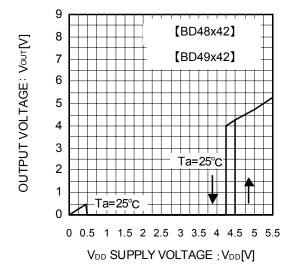
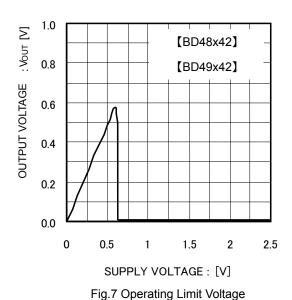
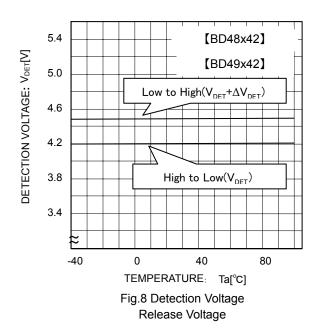
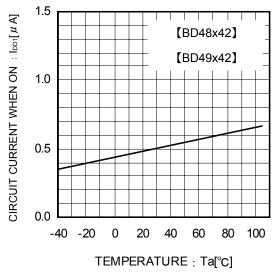





Fig.6 I/O Characteristics

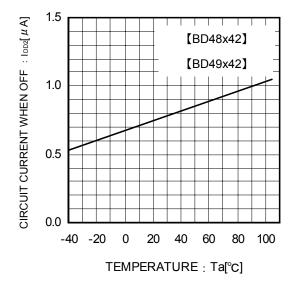


Fig.10 Circuit Current when OFF

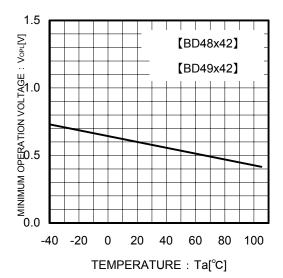


Fig.11 Operating Limit Voltage

Application Information

Explanation of Operation

For both the open drain type (Fig.12) and the CMOS output type (Fig.13), the detection and release voltages are used as threshold voltages. When the voltage applied to the V_{DD} pins reaches the applicable threshold voltage, the V_{OUT} terminal voltage switches from either "High" to "Low" or from "Low" to "High". Please refer to the Timing Waveform and Electrical Characteristics for information on hysteresis.

Because the BD48xxx series uses an open drain output type, it is possible to connect a pull-up resistor to V_{DD} or another power supply [The output "High" voltage (V_{OUT}) in this case becomes V_{DD} or the voltage of the other power supply].

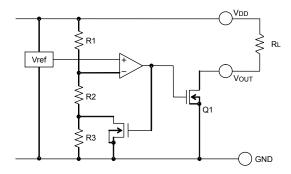


Fig.12 (BD48xxx series Internal Block Diagram)

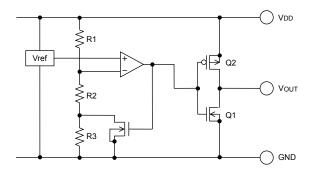


Fig.13 (BD49xxx series Internal Block Diagram)

Reference Data

Examples of Leading (t_{PLH}) and Falling (t_{PHL}) Output

Part Number	t _{PLH} (µs)	t _{РНL} (µs)
BD48x45	39.5	87.8
BD49x45	32.4	52.4

 V_{DD} =4.3V \rightarrow 5.1V V_{DD} =5.1V \rightarrow 4.3V

The figures will vary with the application, so please confirm actual operating conditions before use.

Timing Waveform

Example: the following shows the relationship between the input voltages V_{DD} and the output voltage V_{OUT} when the input power supply voltage V_{DD} is made to sweep up and sweep down (the circuits are those in Fig.12 and 13).

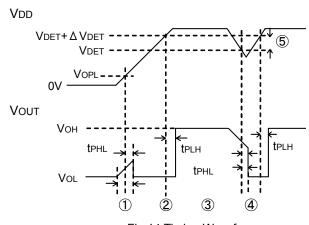


Fig.14 Timing Waveform

- ① When the power supply is turned on, the output is unsettled from after over the operating limit voltage (V_{OPL}) until t_{PHL} . Therefore it is possible that the reset signal is not valid when the rise time of V_{DD} is faster than t_{PHL} .
- When V_{DD} is greater than V_{OPL} but less than the reset release voltage ($V_{DET} + \Delta V_{DET}$), the output voltages will switch to Low.
- $^{(3)}$ If V_{DD} exceeds the reset release voltage (V_{DET} + ΔV_{DET}), then V_{OUT} switches from L to H.
- If V_{DD} drops below the detection voltage (V_{DET}) when the power supply is powered down or when there is a power supply fluctuation, V_{OUT} switches to L (with a delay of t_{PHL}).
- $^{(5)}$ The potential difference between the detection voltage and the release voltage is known as the hysteresis width (ΔV_{DET}). The system is designed such that the output does not flip-flop with power supply fluctuations within this hysteresis width, preventing malfunctions due to noise.

^{*}This data is for reference only.

Circuit Applications

Examples of a common power supply detection reset circuit.

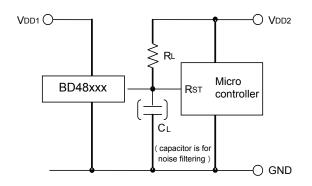


Fig.15 Open Drain Output Type

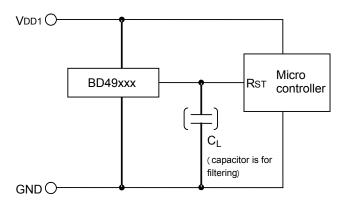


Fig.16 CMOS Output Type

Application examples of BD48xxx series (Open Drain output type) and BD49xxx series (CMOS output type) are shown below.

CASE1: the power supply of the microcontroller (V_{DD2}) differs from the power supply of the reset detection (V_{DD1}). Use an open drain output type (BD48xxx) device with a load resistance R_L attached as shown in figure 15.

CASE2: the power supply of the microcontroller (V_{DD1}) is same as the power supply of the reset detection (V_{DD1}). Use a CMOS output type (BD49xxx) device or an open drain device with a pull up resistor between output and VDD1.

When a capacitance C_L for noise filtering is connected to the V_{OUT} pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (V_{OUT}).

The Electrical characteristics were measured using R_L = 470 $k\Omega$ and C_L = 100pF.

Operational Notes

1 . Absolute maximum range

Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed. We cannot be defined the failure mode, such as short mode or open mode. Therefore a physical security countermeasure, like fuse, is to be given when a specific mode to be beyond absolute maximum ratings is considered.

2 . GND potential

GND terminal should be a lowest voltage potential every state.

Please make sure all pins, which are over ground even if, include transient feature.

3 . Electrical Characteristics

Be sure to check the electrical characteristics that are one the tentative specification will be changed by temperature, supply voltage, and external circuit.

4 . Bypass Capacitor for Noise Rejection

Please put into the capacitor of $1\mu F$ or more between V_{DD} pin and GND, and the capacitor of about 1000pF between V_{OUT} pin and GND, to reject noise. If extremely big capacitor is used, transient response might be late. Please confirm sufficiently for the point.

5 . Short Circuit between Terminal and Soldering

Don't short-circuit between Output pin and V_{DD} pin, Output pin and GND pin, or V_{DD} pin and GND pin. When soldering the IC on circuit board, please be unusually cautious about the orientation and the position of the IC. When the orientation is mistaken the IC may be destroyed.

6 . Electromagnetic Field

Mal-function may happen when the device is used in the strong electromagnetic field.

- 7. The V_{DD} line inpedance might cause oscillation because of the detection current.
- 8 . A V_{DD} -GND capacitor (as close connection as possible) should be used in high V_{DD} line impedance condition.
- 9 . Lower than the mininum input voltage makes the VouT high impedance, and it must be VDD in pull up (VDD) condition.
- 10. This IC has extremely high impedance terminals. Small leak current due to the uncleanness of PCB surface might cause unexpected operations. Application values in these conditions should be selected carefully. If the leakage is assumed between the V_{OUT} terminal and the GND terminal, the pull-up resistor should be less than 1/10 of the assumed leakage resistance.

11. External parameters

The recommended parameter range for R_L is $10k\Omega$ to $1M\Omega$. There are many factors (board layout, etc) that can affect characteristics. Please verify and confirm using practical applications.

12. Power on reset operation

Please note that the power on reset output varies with the V_{DD} rise up time. Please verify the actual operation.

13. Precautions for board inspection

Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be certain to use proper discharge procedure before each process of the test operation.

To prevent electrostatic accumulation and discharge in the assembly process, thoroughly ground yourself and any equipment that could sustain ESD damage, and continue observing ESD-prevention procedures in all handing, transfer and storage operations. Before attempting to connect components to the test setup, make certain that the power supply is OFF. Likewise, be sure the power supply is OFF before removing any component connected to the test setup.

14. When the power supply, is turned on because of in certain cases, momentary Rash-current flow into the IC at the logic unsettled, the couple capacitance, GND pattern of width and leading line must be considered.

Status of this document

The Japanese version of this document is formal specification. A customer may use this translation version only for a reference to help reading the formal version.

If there are any differences in translation version of this document formal version takes priority.

Notice

General Precaution

- 1) Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2) All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.

Precaution on using ROHM Products

- Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
- 2) ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3) Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - If Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4) The Products are not subject to radiation-proof design.
- 5) Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6) In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse) is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8) Confirm that operation temperature is within the specified range described in the product specification.
- 9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2) In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2) You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2) Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3) Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

●Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

● Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1) The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.
- 2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 4) In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 5) The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

