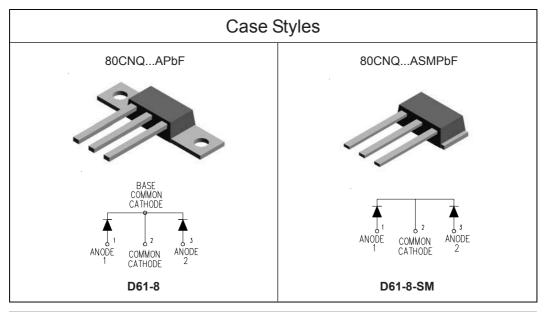
International **TOR* Rectifier

80CNQ...APbF 80CNQ...ASMPbF

SCHOTTKY RECTIFIER New GenIII D-61 Package

80 Amp


Major Ratings and Characteristics

Characteristics		Values	Units
I _{F(AV)}	Rectangular waveform	80	А
V _{RRM} range		35 to 45	V
I _{FSM}	@ tp = 5 µs sine	5800	А
V _F	@40 Apk, T _J = 125°C (per leg)	0.47	V
Т	range	- 55 to 150	°C

Description/Features

The center tap Schottky rectifier module series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T_J operation
- Center tap module
- Very low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- New fully transfer-mould low profile, small footprint, high current package
- Through-hole versions are currently available for use in Lead-Free applications ("PbF" suffix)

Document Number: 95255

www.vishay.com

80CNQ...APbF, 80CNQ...ASMPbF Series

Bulletin PD-21002 01/05

International IOR Rectifier

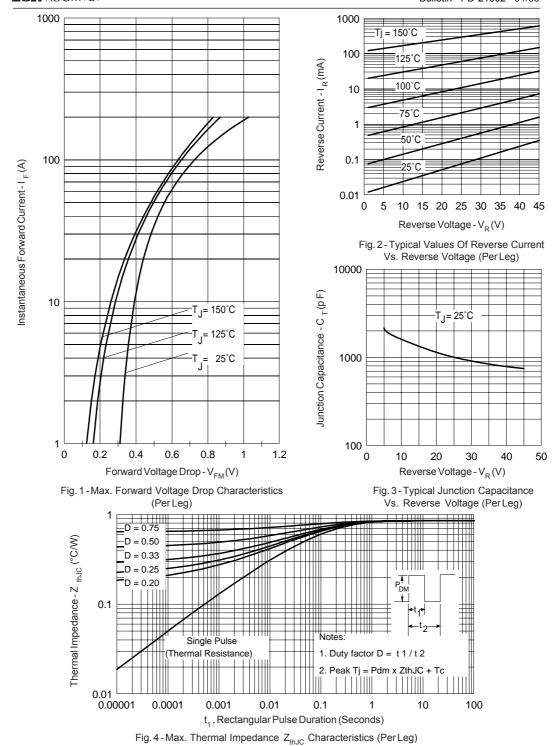
Voltage Ratings

Part number	80CNQ035A	80CNQ040A	80CNQ045A
V _R Max. DC Reverse Voltage (V)	0.5	40	4.5
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	40	45

Absolute Maximum Ratings

	Parameters	80CNQ	Units	Conditions	
I _{E(AV)}	Max. Average Forward (Per Leg)	40	Α	50% duty cycle @ T _C = 114 °C, rectangular wav	e form
	Current *See Fig. 5 (Per Device)	80			
I _{FSM}	Max. Peak One Cycle Non-Repetitive	5800	A	5μs Sine or 3μs Rect. pulse Following any ra load condition as	ted
	Surge Current (Per Leg) * See Fig. 7	750	^	10ms Sine or 6ms Rect. pulse rated V _{RRM} applie	ed
E _{AS}	Non-Repetitive Avalanche Energy	54	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 8 \text{Amps}, L = 1.7 \text{mH}$	
	(Per Leg)				
I _{AR}	Repetitive Avalanche Current	8	Α	Current decaying linearly to zero in 1 µsec	
	(Per Leg)			Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typic	al

Electrical Specifications


Parameters		80CNQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop	0.52	V	@ 40A	T,= 25 °C
'	(Per Leg) * See Fig. 1 (1)	0.66	V	@ 80A	1, = 25 0
		0.47	V	@ 40A	T - 405 °C
		0.61	V	@ 80A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	5	mA	T _J = 25 °C	\/ - reted \/
	(Per Leg) * See Fig. 2 (1)	250	mA	T _J = 125 °C	V _R = rated V _R
V _{F(TO)}	Threshold Voltage	0.26	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	3.93	mΩ		
C _T	Max. Junction Capacitance (Per Leg)	2600	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _s	L _S Typical Series Inductance (Per Leg)		nH	Measured lead to lead 5mm from package body	
dv/dt		10000	V/ µs		

Thermal-Mechanical Specifications

(1) Pulse Width < 300µs, Duty Cycle <2%

Parameters		80CNQ	Units	Conditions
T	Max. Junction Temperature Range	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Leg)	0.85	°C/W	DC operation *See Fig. 4
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Package)	0.42	°C/W	DC operation
R _{thCS}	Typical Thermal Resistance, Case to Heatsink (D61-8 Only)	0.30	°C/W	Mounting surface, smooth and greased Device flatness < 5 mils
wt	Approximate Weight	7.8 (0.28)	g (oz.)	
Т	Mounting Torque Min.	40 (35)	Kg -cm	
	(D61-8 Only) Max.	58 (50)	(lbf-in)	

www.vishay.com 2 Document Number: 95255

Bulletin PD-21002 01/05

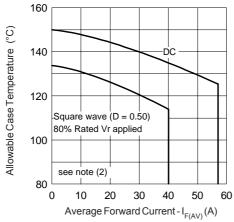


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current (Per Leg)

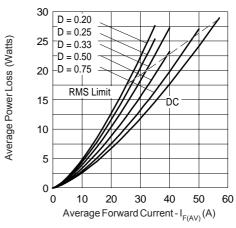


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

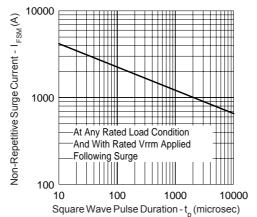
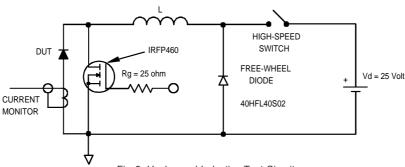
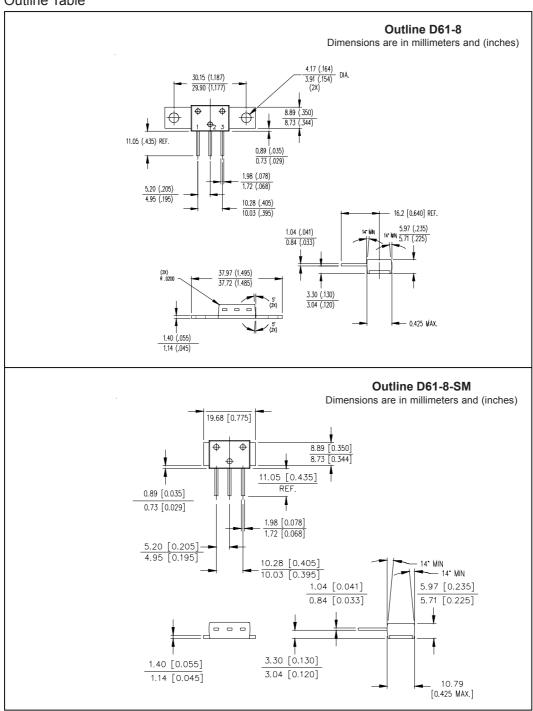
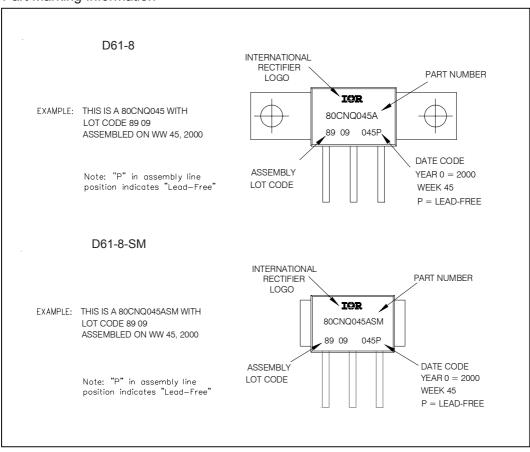
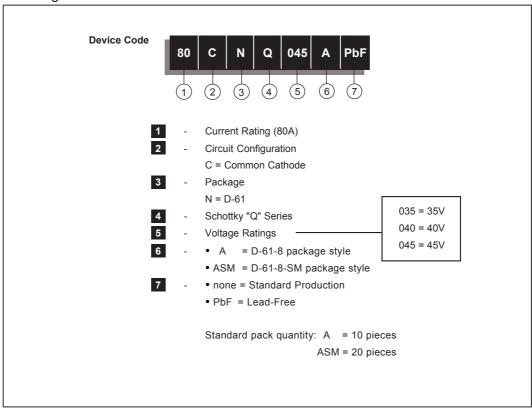


Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)


Fig. 8 - Unclamped Inductive Test Circuit

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV})x$ R_{thJC}; \\ & Pd = Forward Power Loss = $I_{F(AV)}x$ $V_{FM}@(I_{F(AV)}/D)$ (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = $V_{R1}x$ $I_R(1-D)$; $I_R@V_{R1} = 80\%$ rated V_R $I_R(1-D)$; $I_R(1-D)$


Outline Table

Part Marking Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

01/05

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07