
International Rectifier

121NQ045PbF

SCHOTTKY RECTIFIER

120Amp

Major Ratings and Characteristics

Cha	racteristics	Values	Units
I _{F(AV)}	Rectangular waveform	120	А
V _{RRM}		45	V
I _{FSM}	@tp=5µssine	16000	Α
V _F	@120Apk,T _J =125°C	0.6	V
T _J	range	-55to 175	°C

Description/Features

The 121NQ.. high current Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, free-wheeling diodes, welding, and reverse battery protection.

- 175 °CT operation
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free

Case Styles

HALF-PAK (D-67)

121NQ045PbF

Bulletin PD-21154 rev. A 11/06

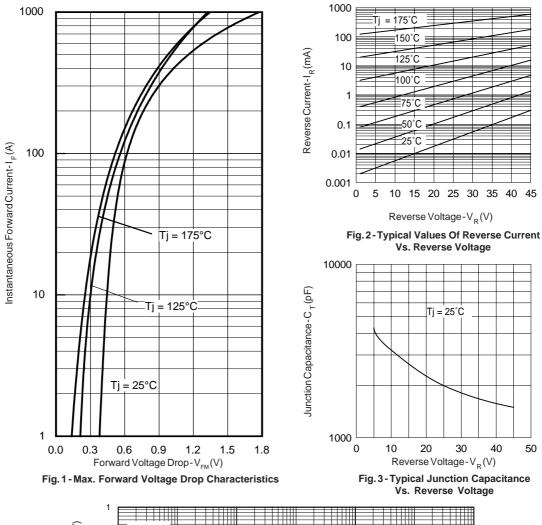
Voltage Ratings

Partnumber	121NQ045PbF	
V _R Max. DC Reverse Voltage (V)	45	
V _{RWM} Max. Working Peak Reverse Voltage (V)	1	

Absolute Maximum Ratings

Parameters		121NQ	Units	Conditions		
I _{F(AV)} Max.AverageForwardCurrent		120	Α	50% duty cycle @ T _C = 137°C, rectangular wave form		
. (,	*See Fig. 5			-		
I _{FSM}	Max.PeakOneCycleNon-Repetitive	16000	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with	
	Surge Current *See Fig. 7	2000	A	10msSineor6msRect.pulse	rated V _{RRM} applied	
E _{AS} Non-RepetitiveAvalancheEnergy		81	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 13 \text{Amps}, L = 1 \text{mH}$		
I _{AR} RepetitiveAvalancheCurrent		13 A		Current decaying linearly to zero in 1 µsec		
				Frequency limited by T_J max.	V _A =1.5xV _R typical	

Electrical Specifications


Parameters		121NQ	Units	Conditions	
V_{FM}	Max. Forward Voltage Drop	0.65	V	@ 120A	T ₁ = 25 °C
'''	* See Fig. 1 (1)	0.82	V	@ 240A	1 _J = 25 G
		0.6	V	@ 120A	T - 425 °C
		0.76	V	@ 240A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	10	mA	T _J = 25 °C	\/ = rated \/
	* See Fig. 2	90	mA	T _J = 125 °C	$V_R = \text{rated } V_R$
C _T	Max. Junction Capacitance	5200	pF	V _R = 5V _{DC} (test signal range 100Khz to 1Mhz) 25°C	
L _S	Typical Series Inductance	7.0	nΗ	From top of terminal hole to mounting plane	
dv/dt		10000	V/ µs		

(1) Pulse Width = 500µs

Thermal-Mechanical Specifications

	Parameters		121NQ	Units	Conditions
T _J	Max.JunctionTemperatureRange		-55 to 175	°C	
T _{stg}	Max.StorageTemperatureRange		-55 to 175	°C	
R _{thJC}	Max.ThermalResistanceJunction toCase		0.38	°C/W	DCoperation *See Fig. 4
R _{thCS}	TypicalThermalResistance,Caseto Heatsink		0.05	°C/W	Mounting surface, smooth and greased
wt	ApproximateWeight		30 (1.06)	g(oz.)	
Т	MountingTorque	Min.	3(26.5)		Non-lubricated threads
		Max.	4(35.4)	Nm	
	TerminalTorque	Min.	3.4(30)	(lbf-in)	
		Max.	5(44.2)		
	Case Style	rle HALF			dule

www.vishay.com 2 Document Number: 94127

Thermal Impedance Z_{thJC} (°C/W) $D = 0.50 \, \text{I}$ D = 0.330.1 D = 0.25= 0.20 Single Pulse 0.01 (Thermal Resistance) 0.001 1E-05 1E-04 1E-02 1E+00 1E+01 t₁,RectangularPulseDuration(Seconds)

Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics

Document Number: 94127 www.vishay.com

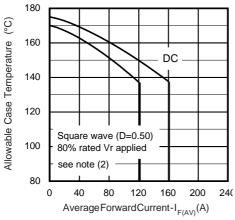


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

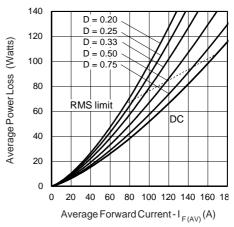
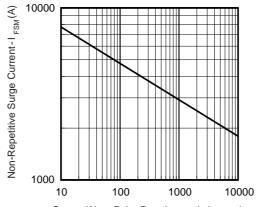
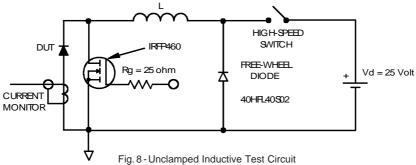




Fig. 6-Forward Power Loss Characteristics

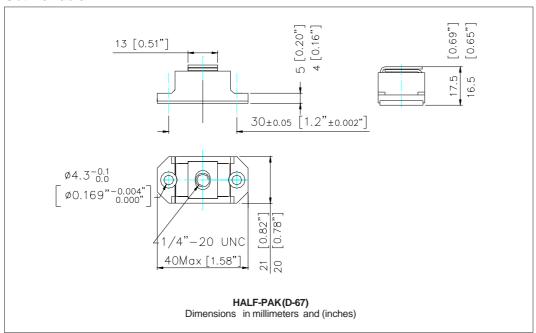
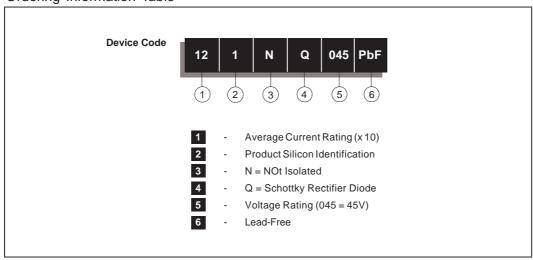

Square Wave Pulse Duration - t $_{\rm p}$ (microsec)

Fig. 7 - Max. Non-Repetitive Surge Current



(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\begin{aligned} & \text{Pd=ForwardPowerLoss=I}_{F(AV)} \times \text{V}_{FM} @ \left(\text{I}_{F(AV)} \middle/ \text{D} \right) \text{ (see Fig. 6)}; \\ & \text{Pd}_{REV} \text{=Inverse PowerLoss=V}_{R1} \times \text{I}_{R} (1 \text{--D}); \text{I}_{R} @ \text{V}_{R1} \text{=} \text{rated V}_{R} \end{aligned}$

Outline Table

Ordering Information Table

121NQ045PbF Bulletin PD-21154 rev. A 11/06

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

11/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1