Contact Mouser (USA)  (800) 346-6873     |     Feedback        
View Cart     |     Change Location  USD
United States United States

Please confirm your currency selection:

US Dollars
Home » Applications & Technologies » Power Supply Technology - Half-Bridge DC/DC Converters Electronics
Applications & Technologies

Half-Bridge DC/DC Converter

A half-bridge converter is a type of DC-DC converter that, like flyback and forward converters, can supply an output voltage either higher or lower than the input voltage and provide electrical isolation via a transformer. Although more complex than a flyback or forward converter, the half-bridge converter design can yield higher output power (potentially up to 500W) and use parts that are smaller and less expensive.

PWM
Control
PWM
Control
VIN
VOUT
Half-Bridge Converter Topology
View Product List

This design is for reference only. The design, as well as the products suggested, has not been tested for compatibility or interoperability.

Capacitors for Half-Bridge Converters

A capacitor is a passive electronic component that stores energy in the form of an electric field. As part of an electrical circuit, capacitors "oppose" changes in voltage by supplying (or drawing) current. An ideal capacitor is characterized simply by its capacitance value, the device's ability to store charge. However, a real-world capacitor has many additional characteristics, such as tolerance rating, working voltage, leakage current, temperature coeffecient, and equivalent series resistance (ESR) – each of which may carry a different level of importance for any given application.

Many types of capacitors exist to perform a variety of functions for a variety of different applications. Decoupling capacitors protect electrical circuits from destructive voltage spikes and transients. Similarly, coupling capacitors serve to block direct current, which can cause damage to certain electronics, while only allowing the AC signal to pass. AC-to-DC power supplies use a reservoir capacitor to smooth the output of a rectifier stage.

» View All Featured Capacitors for Half-Bridge Converters

Featured Suppliers

PWM Control for Half-Bridge Converters

Pulse Width Modulation (PWM) is widely used in switch mode power supplies that use digital control to provide the switching action. PWM itself is a controlled digital output signal. The PWM controller controls the rapid switching in a power supply by sending a pulse to the gate driver that drives a power MOSFET (or other switching device like a bipolar transistor, IGBT, etc.) One advantage of PWM is that the signal is digital. Digital signals are more immune to noise, because a digital signal is either a binary “1” or “0.” Therefore noise can only change a digital signal if it is big enough to change a logical “0” to register at the receiving end as a logical “1”, or vice versa.

» View All Featured PWM Control for Half-Bridge Converters

Featured Suppliers

Power MOSFETs for Half-Bridge Converters

Metal-oxide-semiconductor field-effect transistors (MOSFETs) are by far the most common of transistors today, being used for flash memory, processors, random-access memory (RAM), and application-specific integrated circuits (ASICs), and more. MOSFETs can be conceptualized as a voltage-controlled device for limiting current flow.

MOSFETs are also for power switching circuits. Unlike bipolar junction transistors (BJTs), the competing type of power transistor, MOSFETs do not require a continuous flow of drive current to remain in the ON state. Additionally, MOSFETs can offer higher switching speeds, lower switching power losses, lower on-resistances, and reduced susceptibility to thermal runaway. In switched-mode power supplies (SMPSs), MOSFETS are often used as the switching elements as well as for power factor correction (PFC).

» View All Featured Power MOSFETs for Half-Bridge Converters

Featured Suppliers

Diodes for Half-Bridge Converters

The first silicon-based electronic component, diodes are passive devices which are found in virtually every electronic product or device. The ideal diode allows current to flow freely in one direction and completely prevents current from flowing in the opposite direction. Although, at their core, semiconductor diodes consist of a single P-N junction, there is vast array of different diode types and designs. The zener diode, for example, is designed to also conduct current in the opposite direction when reverse-biased at or above a specific voltage threshold known as the "breakdown voltage". AC/DC power supplies often employ diodes in a bridge-type configuration to rectify the AC input.

» View All Featured Diodes for Half-Bridge Converters

Featured Suppliers

Inductors for Half-Bridge Converters

Like a capacitor, inductors are also passive energy-storing devices. Inductors, however, store energy in a magnetic field, and have the effect of opposing changes in current flow. An ideal inductor is characterized by a single value called inductance, which is measured in units called henries. Physical, real-world inductors generally consist of a coil of wire wrapped around a core of ferromagnetic material. However, not all inductors use a magnetic core, and the material used directly affects the non-ideal properties of the device such as eddy current losses, magnetic saturation, peak current, and high-frequency losses. Mutual inductance, formed by one or more inductors with coupled magnetic flux, is the principle that underlies another electronic device, the transformer. In a switched-mode power supply, one or more inductors can be used for both output filtering and energy storage (often implemented as a transformer).

» View All Featured Inductors for Half-Bridge Converters

Featured Suppliers

Application Notes and Resources